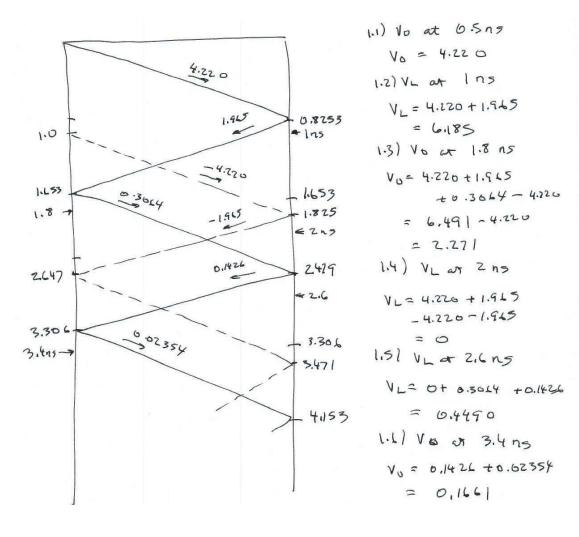
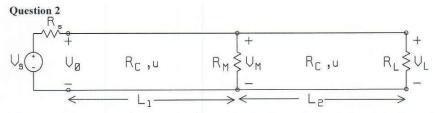
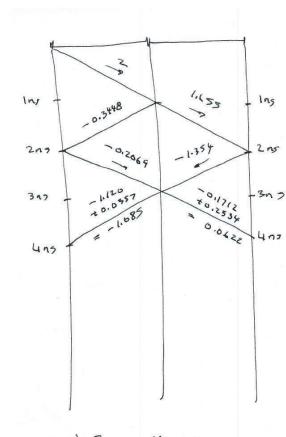

ELEC 353 - Final Exam 2019 - Solution


Question 1



1.A transmission line is L=14 cm long. It has speed-of-propagation u=17 cm/ns, and characteristic resistance $R_c=73$ ohms. The load resistor is $R_L=200$ ohms. The voltage generator V_s is a pulse function from 0 volts to 10 volts starting at t=0 and ending at t=1 ns. The internal resistance of the generator is $R_s=100$ ohms.

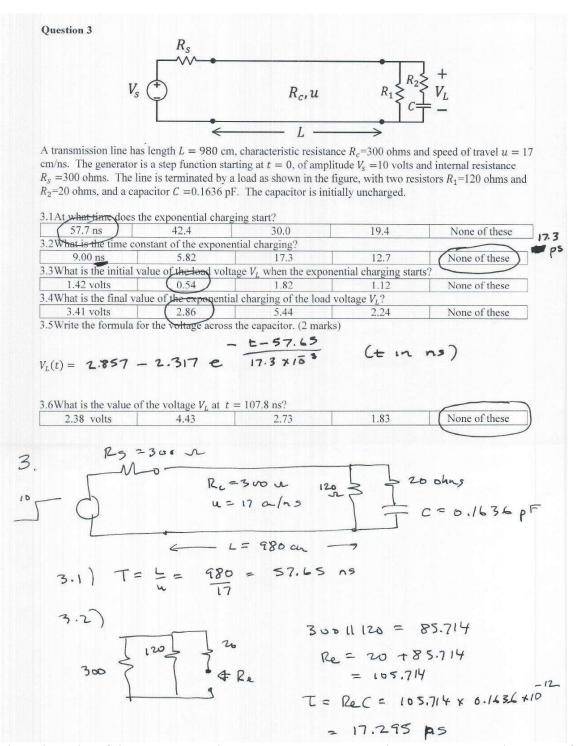
7.14 volts	8.89	6.67	(4.22)	None of these
1.2) What is the voltage	V_L at the load termin	nals at $t=1$ ns?	\sim	
(6.18 volts	13.6	16.9	11.6	None of these
1.3) What is the voltage	Vo at the generator t	erminals at <i>t</i> =1.8 ns?		
3.29 volts	(2.27)	3.69	1.79	None of these
1.4) What is the voltage	V_L at the load termin	nals at t=2 ns?		
1.96volts	8.04	(0.00)	6.46	None of these
1.5)What is the voltage	V_L at the load termin	nals at 1=2.6 ns?		***
-11.9 volts	-2.86	0.449	-5.28	None of these
1.6)What is the voltage	V_0 at the generator t	erminals at =3.4 ns?		
-0.809 volts	-1.43	(0.165)	-1.26	None of these



The transmission-line circuit shown above has a step function generator starting at t=0 of height $V_S=10$ volts and internal resistance $R_S=200$ ohms. The two transmission lines are identical, with characteristic

resistance $R_c=50$ ohms and speed of travel u=20 cm/ns. The lengths are $L_1=L_2=20$ cm. The load resistors are $R_M=120$ ohms and $R_L=5$ ohms.

2.1 What is the voltage V	3.33	9.80	2.00	None of these
2.2What is transmission	coefficient at the ju	nction?		
0.29	0.67	(0.83)	0.76	None of these
2.3 What is the voltage V	M across the junction	on at $t = 1.2 \text{ ns}$?		
2.80 volts	4.44	2.54	(1.66)	None of these
2.4What is the voltage V	across the load at	t = 2.4 ns?		
1.69 volts	4.48	5.93	0.30	None of these
2.5What is the voltage I	across the general	tor at $t = 2.4 \text{ ns}$?		
1.45 volts	9.53	2.28	5.20	None of these
2.6What is the voltage I	at the junction at	t = 3.2 ns?		
5.20 volts	5.93	0.363	1.69	None of these
2.7What is the final val	ue of the load voltag	ge V_L as $t \to \infty$?		
0.23 volts	9.05	1.60	5.71	None of these


2.
$$P_{5} = 200 \text{ }D$$
 $R_{c} = 50 \text{ }D$
 $R_{c} = 20 \text{ }D$
 $R_{c} = 20 \text{ }D$
 $R_{c} = 20 \text{ }D$
 $R_{c} = 105$
 $R_{c} = 105$

2.1) Vo at 6.4n?

$$V_0 = 2 \text{ v.tb}$$

2.2) $T_3 = 0.8275$
2.31 Vm at 1.2 n.5
 $V_m = 2 - 0.3418$
 $= 1.655$
2.4) VL at 2.4 n.5
 $V_L = 1.655 - 1.354$
 $= 0.3012$
2.5) Vo at 2.4 n.5
 $V_0 = 2 - 0.3448 - 0.2069$
 $= 1.448$ v.
2.6) $V_m = 1.657 - 0.2069$
 $= 1.085$

= 0.3631

Since the units of the answers on the exam paper were "ns" the correct answer is "none of these".

3.4) Initial value: C is a short circuit.

$$\Gamma = \frac{R_1 - R_2}{R_1 + R_2} = \frac{17.14 - 300}{17.14 + 300}$$

$$\Gamma = \frac{R_1 - R_2}{R_1 + R_2} = \frac{17.14 + 300}{17.14 + 300}$$

$$\Gamma = \frac{R_1 - R_2}{R_1 + R_2} = \frac{17.14 + 300}{17.14 + 300}$$

$$\Gamma = \frac{R_1 - R_2}{R_1 + R_2} = \frac{17.14 + 300}{17.14 + 300}$$

$$\Gamma = \frac{R_1 - R_2}{R_1 + R_2} = \frac{17.14 + 300}{17.14 + 300}$$

$$\Gamma = \frac{12.1 - 300}{17.0 + 300} = \frac{12.1 - 300}{17.0 + 300}$$

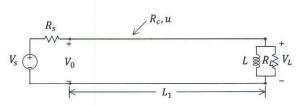
$$\Gamma = \frac{12.1 - 300}{10.0 + 300}$$

$$V_L = V^+ + V^- = 5 - 2.143$$

= 2.857

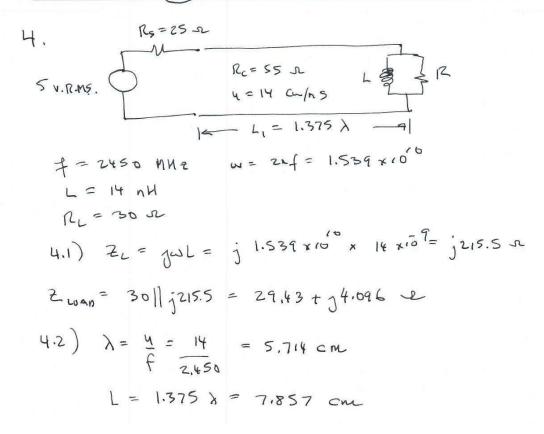
3.6)
$$V_{L}(t) = V_{final} + (V_{Initial} - V_{final}) e^{-\frac{t-T}{Z}}$$

$$= 2.857 + (0.5400 - 2.957) e^{-\frac{t-57.45}{17.245 \times 10^3}}$$
with t in ns,
$$V_{L}(t) = 2.857 - 2.317 e^{-\frac{t-57.45}{17.245 \times 10^5}}$$


$$V_{L}(107.8) = 2.857 - 2.317 e^{-\frac{t-7}{Z}}$$

$$= 2.857 - 2.317 e^{-\frac{t-7}{Z}}$$

$$= 2.857 - 2.317 e^{-\frac{t-7}{Z}}$$


The correct answer is "none of these".

Question 4

A transmission line circuit operates at a frequency of 2450 MHz. The transmission line has characteristic resistance $R_c = 55$ ohms and speed of travel u = 14 cm/ns. The length of the transmission line is $L_1 = 1.375\lambda$ where λ is the wavelength on the transmission line. The load impedance consists of an inductance of L = 14 nanoHenries in parallel with a resistance $R_L = 30$ ohms. The A.C. generator has R.M.S. value $V_s = 5$ volts. The internal resistance is $R_s = 25$ ohms.

4.1Find the impedance	of the inductance in	parallel with the load	resistance at the op	erating frequency.
55.68+j15.50 ohms	67.37+j29.17	(29.43+j4.10)	70.32+j45.68	None of these
4.2What is the length of	f the transmission lin	e in cm?		
(7.86 cm)	6.43	5.00	3.57	None of these
4.3 What is the magnitud	de and angle of the re	eflection coefficient a	it the load?	
0.139∠79.5°	0.252∠53.6°	(0.306∠168.1°)	0.361∠51.4°	None of these
4.4What is the standing	-wave ratio (SWR) o	on the transmission li	ne?	
2.13	1.67	(1.89)	1.32	None of these
4.5Find the input imped	lance of the transmis	sion line circuit.		
78.30-j24.98 ohms	41.74+j2.15	84.55-j43.80	40.85-j27.03	None of these
4.6Find the R.M.S. valu	ie of the voltage V_0 a	t the input to the tran	smission line.	
4.04 volts	(3.44)	3.87	3.13	None of these

4.3)
$$\Gamma_{L} = \frac{2 \cos \gamma - R_{C}}{2 \cos \gamma + R_{C}} = \frac{(29.13 + 94.09L) - 55}{(29.13 + 94.09L) + 55}$$

$$= -0.29979 + 36.06365$$

$$= 0.3063 \times 148.1^{\circ}$$
4.4)
$$SWR = \frac{1 + |R|}{1 - |R|} = 1.883$$
4.5)
$$\beta = \frac{27}{\lambda} = \frac{360}{0.057/4} = 6300 \text{ deg/m}$$

$$\beta = \frac{27}{\lambda} = \frac{360}{0.057/4} = 6300 \text{ deg/m}$$

$$\beta = \frac{27}{\lambda} = \frac{360}{0.057/4} = 6300 \text{ deg/m}$$

$$R = -1$$

$$R =$$

Vo Rus is 3,441 V.

Question 5

A plane wave travels in the z direction in a material at 1500 MHz. The relative permittivity of the material is $\varepsilon_r = 51$ and the loss tangent is 0.05. The electric field is oriented parallel to the x axis. The amplitude of the electric field at z = 0 is 5 volts/meter and the phase is zero degrees. The material is non-magnetic.

5.1 What is the value of t	the conductivity?			
63.8 mS/m	8.68	267	(213)	None of these
5.2What is the phase cor	nstant?			
(224.6 rad/meter)	71.7	14.4	53.6	None of these
5.3 What is the penetration	on depth?	1		
1.40 m	0.250	(0.178)	0.113	None of these
5.4What is the amplitude	e of the electric fiel	d at $z = 37.43$ cm?		
1.36 V/m	0.913	(0.612)	1.12	None of these
5.5What is the magnitud	le of the intrinsic in	pedance of the materia	al?	
124.9 ohms	164.8	65.1	(52.7)	None of these
5.6What is the amplitude	e of the magnetic fi	eld at $z = 0$?	A	
40.04 mA/m	30.34	76.22	(94.84)	None of these

5)
$$f = 1500 \text{ MHz}$$
 $cos = 22 f = 9.124 \times 10^9 \text{ r/s}$
 $6_1 = 51$
 $tms = 0.05$
 $E_0 = 5 \text{ v/m}$

5.1) $tms = \frac{\pi}{\omega \epsilon}$
 $\pi = \omega \epsilon + ms = 9.124 \times 10^9 \times 51 \times 8.854 \times 10^2 \times 0.05$
 $= 0.2128 = 212.8 \text{ ms/m}$

5.2) $8 = \sqrt{3}\omega \mu (5t_{3}\omega \epsilon)$
 $= \sqrt{3}(1.84 \times 10^9 \times 4\pi \times 10^3) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $\times 51 \times 8.854 \times 10^{12})$
 $= \sqrt{3}(1.84 \times 10^9 \times 4\pi \times 10^3) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 4\pi \times 10^3) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 4\pi \times 10^3) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 4\pi \times 10^3) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 4\pi \times 10^3) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 4\pi \times 10^3) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 4\pi \times 10^3) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 4\pi \times 10^3) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 4\pi \times 10^3) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 4\pi \times 10^3) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 4\pi \times 10^3) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 4\pi \times 10^3) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 10^9 \times 10^9) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 10^9 \times 10^9) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 10^9 \times 10^9) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 10^9 \times 10^9) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 10^9 \times 10^9) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 10^9 \times 10^9) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 10^9 \times 10^9) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 10^9 \times 10^9) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 10^9 \times 10^9) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 10^9 \times 10^9) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 10^9 \times 10^9) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 10^9 \times 10^9) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.84 \times 10^9 \times 10^9 \times 10^9) (0.2128 t_{3}^{2} 9.1424 \times 10^9)$
 $= \sqrt{3}(1.$

5.3)
$$8 = \frac{1}{\alpha} = \frac{1}{5.65} = 0.17691 = 17.7 \text{ cm}$$

5.4) $E(37.43 \text{ cm}) = 5e = 5e$

$$= 5 \times 0.17207$$

$$= 0.6033 \text{ V/m}$$
5.5) $9 = \sqrt{\frac{3JM}{67396}} = \sqrt{\frac{11.842.5 +90}{4.241 + 87.13}}$

$$= \sqrt{2779} \times 287 = 52.72 \times 1.440$$

$$|M| = 52.72$$
5.6) $|M| = \frac{|E|}{|\eta|} = \frac{5}{52.72} = 0.09484 \text{ A/m}$

$$= 94.84 \text{ A/m}$$
Question 6

6. A plane wave in air at 3.20 GHz has amplitude $E_r = 12.0$ mV/m and travels in the +z direction. The xy plane is the interface between air for z < 0 and plastic for z > 0. The plastic material has $\varepsilon_r = 7.1$ and is lossless and non-magnetic. The observer is in the air at z=-1.56 cm.

6.1) What is the intrin	isic impedance of the p	plastic material?		
104 ohms	248	281	(141)	none of these
6.2) What is the reflec	ction coefficient at the	surface of the plastic?		
-0.567	-0.205	-0.146	(-0.454)	none of these
		incident electric field		er?
8.00 mV/m ∠-135°	42.5 mV/m ∠ 135°	(12.0 mV/m ∠ 60°)	$14.0 \text{ mV/m} \angle -45^{\circ}$	none of these
6.4) What is the ampl	itude and phase of the	reflected electric field	strength at the observ	er?
2.04 mV/m ∠-135°	(5.45 mV/m ∠120°	8.72 mV/m ∠ 45°	4.54 mV/m ∠-45°	none of these
6.5) What is the ampl	itude of the electric fie	eld strength at the obse	rver?	
9.20 mV/m	43.4	(15.5)	14.1	none of these
6.6) What is the power	er density transmitted i	nto the plastic?		
57.6 nanoW/m ²	255	(152)	2230	none of these

6) ary dielectric
$$fi = 12.6$$
 $fi = 12.6$ $fi = 3.77 = 141.5 JL$

6.1) $fi = \frac{40}{161} = \frac{377}{17.1} = 141.5 JL$

6.2) $fi = \frac{40}{161} = \frac{141.5 - 377}{141.5 + 377} = -0.4542$

6.3) $fi = 12 = 382$
 $fi = \frac{3408}{3.20 \times 10^9} = 0.09375 \text{ m}$
 $fi = \frac{360}{3.20 \times 10^9} = 3.846 \text{ dag/m}$
 $fi = \frac{3}{12} = \frac{3}$

IEL = 1.545

6.6)
$$E_{t} = TE_{1}$$
 $T = \frac{2\pi 2}{\eta_{2}} = \frac{2 \times 141.5}{141.5 + 377} = 0.5458$
 $E_{t} = 0.5458 \times 12 = 6.55 \text{ mV/m}$
 $S_{w} = \frac{|E_{t}|^{2}}{2\pi} = \frac{(0.00655)^{2}}{2 \times 141.5}$
 $= 1.516 \times 10^{2} = 0.1516 \times 16^{6} = \frac{\text{mW/m}^{2}}{\text{m}^{2}}$
 $= 151.6 \times 10^{4} = 151.6 \times 10^$

Question 7

A wireless link is set up at 14 GHz between a transmit antenna of gain $G_T = 8$ dB, and a receive antenna of gain $G_R = 9$ dB. The antennas are 4 km apart. The input power to the transmitter is 1 kW. The antennas are lossless

7.1What is the spreadin	(-127)	-141	-147	None of these
7.2What is the power fl	low density S_{av} in m	icrowatts per square i	meter at the location	of the receiver?
31.38 microWatts/m ²	6.17	0.32	12.37	None of these
7.3 What is the effective	e area of the receive a	intenna?		
(0.000290 m ²)	0.000145	0.000578	0.000365	None of these
7.4 The receive antenna	is terminated in a ma	atched load. What is	the power delivered	to the matched load?
(9.10 nW)	1.80	2.25	0.18	None of these
7.5The system designer for the receive antenna	r is considering a diff	erent antenna separat	ion of 14 km apart. ne as in question 7.4	What gain G_R is need?
7.82 dB	6.89	12.02	(19.88)	None of these

7
$$f = 14 \text{ GNZ}$$

 $G_7 = 8 \text{ dB}$ $\Rightarrow 10^{8/10} = 6.31$
 $G_{12} = 9 \text{ dB}$ $\Rightarrow 10^{9/10} = 7.94$
 $R = 4 \text{ km}$
 $R = 1 \text{ km}$

7.1) Lt =
$$\left(\frac{x}{k\pi R}\right)^{2}$$
 $\lambda = \frac{c}{c} = \frac{3710^{6}}{14 \times 10^{9}} = 0.02143 \text{ m}$

Lt = $\left(\frac{0.02143}{4 \times 10 \times 4006}\right)^{2}$

= $(4.1.43 \times 10^{7})^{2}$

= 1.817×10^{5}

= -127.4 dB

7.2) $Sav = CT$
 $\frac{Pt}{4\pi R^{2}} = 6.31 \frac{1000}{47(4000)^{2}}$

= $3138 \times 10^{5} = 31.38 \text{ mW/m}^{2}$

7.3) $Ae = \frac{\lambda^{2}}{4\pi} C_{R} = \frac{(0.02143)^{2}}{47} \times 7.99$

= $7.902 \times 70^{9} \text{ m}^{2}$

7.4) $P_{R} = Ae Sav = 9.106 \times 70^{9} \text{ m}^{2}$

7.5) $P_{R} = \left(\frac{\lambda}{4\pi R}\right)^{2} C_{R} C_{T} P_{T}$
 $R = 14 \text{ km}$
 $C_{R} = \frac{P_{R}}{\left(\frac{\lambda}{4\pi R}\right)^{2}} C_{T} P_{T}$

$$\left(\frac{x}{4\pi 12}\right)^2 = \left(\frac{0.02143}{4x \times 14006}\right)^2 = \left(1.218 \times 10^{7}\right)^2$$

$$= 1.484 \times 10^{14}$$

 $G_{12} = \frac{9.101 \times 10^{9}}{1.484 \times 10^{14} \times 6.31 \times 1000}$ = 97.24 - 919.88 dB