Examination Cover Sheet

Please print your name, I.D. number and section in the appropriate spaces below.

STUDENT NAME: \qquad
I.D. NO. \qquad SECTION: \qquad

SPECIAL INSTRUCTIONS:
Closed book exam. No books or notes are permitted.
Do not tear pages out of the exam booklet.

Cell phones or other electronic devices are forbidden in final examinations.

Figure 1a
1a) Find the voltages v_{1}, v_{2}, v_{3}, and v_{4} in the circuit of Figure 1a. (4 marks)

Figure 1b
1b) For the circuit of Figure 1b, calculate current through 2Ω resistor using superposition theorem. (6 marks)

Figure 2
2a) For the circuit of Figure 2 , write a set of mesh equations using mesh currents i_{1}, i_{2} and i_{3}. (6 marks)
$2 b)$ Solve the mesh equations to find i_{b}. (2 marks)
2 c) Find the value of v_{e}. (2 marks)

Figure 3
3a) For the circuit of Figure 3 , find the value of v_{o} using nodal analysis. (6 marks)
$3 b)$ Find the value of i_{o}. (4 marks)

Figure 4
For the circuit of Figure 4:
4a) Find the open circuit voltage across terminals AB. (3 marks)
4b) If terminals $A B$ are connected together by a short circuit, find the current flowing in the short circuit.
(3 marks)
4c) Find the Thevenin Equivalent Circuit at terminals AB. (2 marks)
4 d) If a load resistor of $2 \mathrm{k} \Omega$ is connected across terminals $A B$, what is the voltage across the load resistor? (2 marks)

Figure 5
5. Find the output voltage v_{o} of the operational amplifier circuit of Figure 5 , with $V_{s}=5$ volts. Assume that the op-amps are ideal with infinite gain. (10 marks)

Figure 6
In the circuit of Figure 6, the switch has been open for a long time. At $t=0$ the switch closes and remains closed for $t>0$.

6a) Find the initial value of the capacitor voltage v_{c} just after the switch closes. (2 marks)
$6 b)$ Find the final value of the capacitor voltage v_{c} as $t \rightarrow \infty$. (2 marks)
6 c) Find the time constant τ. (2 marks)
6 d) Write the equation giving the capacitor voltage $v_{c}(t)$ as a function of time for $t>0$. (2 marks)
$6 \mathrm{e})$ What is the value of the capacitor voltage at $t=2.2 \tau$? (2 marks)

Figure 7

In the circuit of Figure 7, the operating frequency is 60 Hz . The component values are $R_{1}=1 \Omega, R_{2}=$ $2 \Omega, R_{3}=2 \Omega, L=2.653$ milliHenries, and $C=1,326$ microFarads.

7a) With the load impedance Z_{L} removed, find the Thevenin equivalent circuit at terminals $A B$. (6 marks)
7b) With a load impedance Z_{L} connected to terminals $A B$, what value of Z_{L} dissipates the maximum amount of average power? (2 marks)

7c) With Z_{L} chosen as in question 7b, how much power does Z_{L} dissipate? (2 marks)

Solution to the ELEC 273 Final Exam 2018

Figure ia
1a) Find the voltages v_{1}, v_{2}, v_{3}, and v_{4} in the circuit of Figure ia. (4 marks)

$$
\begin{aligned}
& R_{I N}=1\|3\|(4+2) \\
& 1 \| 3=\frac{1 \times 3}{1+3}=\frac{3}{4} \\
& \frac{3}{4} 116=\frac{\frac{3}{4} \times 6}{\frac{3}{4}+6}=\frac{18}{27}=\frac{6}{9}=\frac{2}{3} \\
& V_{1}=V_{2} \approx 6 A \times \frac{2}{3} \Omega=\frac{12}{3} v=4 \mathrm{v} \text {. } \\
& V_{3}=V_{2} \times \frac{4}{6}=\frac{4 \times 4}{1}=\frac{16}{6}=\frac{8}{3} v . \\
& v_{4}=v_{2} \times \frac{2}{6}=\frac{42^{2}}{6}=\frac{8}{6}=\frac{4}{3} v .
\end{aligned}
$$

Figure ib
1b) For the circuit of Figure ib, calculate current through 2Ω resistor using superposition theorem. (6 marks)
$1 b)$

$$
i_{1}=\frac{30}{2+4+6}=\frac{30}{12}=\frac{5}{2} A
$$

$$
\begin{aligned}
& 6 \|(2+4)=6116=\frac{36}{12}=3 \Omega \\
& v_{1}=-3 \times 8=-24 \mathrm{~V} . \\
& i_{1}=\frac{v_{1}}{6}=\frac{24}{6}=-4 \mathrm{~A} .
\end{aligned}
$$

$$
\begin{aligned}
& 4 \|(2+6)=4 k 8=\frac{32}{12}=\frac{8}{3} \Omega \\
& v_{1}=3 \times \frac{8}{3}=8 \mathrm{volts} \\
& i_{1}=\frac{v_{1}}{8}=1 \mathrm{~A} .
\end{aligned}
$$

Super position

$$
\dot{i}_{1}=\frac{5}{2}-4+1=\frac{5-8+2}{2}=-\frac{1}{2}
$$

Figure 2
aa) For the circuit of Figure 2 , write a set of mesh equations using mesh currents i_{1}, i_{2} and i_{3}. (6 marks)
$2 b)$ Solve the mesh equations to find i_{b}. (2 marks)
2 c) Find the value of v_{e}. (2 marks)

2a)(1) $12-30 i_{1}-70\left(i_{1}-i_{2}\right)=0$
(II) $70\left(i_{1}-i_{2}\right)-i_{2}-0.7-1.3\left(i_{2}-i_{3}\right)=0$

Constraint $\quad i_{3}=-43 i_{b}$
where $i_{n}=i_{2}$

$$
\text { so } \quad i_{3}=-43 i 2
$$

2b) Solve
(I)

$$
\begin{aligned}
& -30 i_{1}-20 i_{1}+70 i_{2}=-12 \\
& \quad+100 i_{1}-20 i_{2}=12
\end{aligned}
$$

(II) $70 i_{1}-20 i_{2}-i_{2}-1.3 i_{2}+1.3 i_{3}=0.7$

$$
70 i_{1}-72.3 i_{2}+1.3 i_{3}=0.7
$$

$\sin u \quad i 3=-43 i z$

$$
\begin{aligned}
& 70 i_{1}-72.3 i_{2}+1.3(-43) i_{2}=-0.7 \\
& 20 i_{1}-72.3 i_{2}-55.9 i_{2}=-0.7
\end{aligned}
$$

$$
70 i_{1}-128.2 i_{2}=-0.7
$$

$$
i_{i}=\frac{-0.7+\hbar 128.2 i_{2}}{70}
$$

(I)

$$
\begin{aligned}
i_{n} & =i_{2}=0.096977 \mathrm{~mA} \\
v_{e} & =1.3\left(i_{2}-i_{3}\right) \\
& =1.3\left(i_{2}-\left(-43 i_{2}\right)\right) \\
& =1.3\left(44 i_{2}\right) \\
& =57.2 i_{2} \\
& =57.2 \times 0.096977 \\
v_{e} & =5.547 \quad v o l t
\end{aligned}
$$

$$
\begin{aligned}
& 100\left(\frac{-0.7+128.212}{70}\right)-70 i_{2}=12 \\
& 100\left(-0.7+128.2 i_{2}\right)-4900 i_{2}=840 \\
& -70+12820 i_{2}-4900 i_{2}=840 \\
& 7970 \mathrm{i}_{2}=770 \\
& i_{2}=0.096977 \mathrm{~mA}
\end{aligned}
$$

Figure 3
Ba) For the circuit of Figure 3 , find the value of v_{o} using nodal analysis. (6 marks)
$3 b)$ Find the value of i_{o}. (4 marks)

31
(1) $0.45-\frac{v_{0}}{100}-\frac{v_{0}-6.25 i 0}{5}-\frac{v_{0}-45}{25}=0$

$$
\text { Constraint } i_{0}=\frac{45-v_{0}}{25}
$$

(I) $45-v_{0}-20 v_{0}+125 i_{0}-4 v_{0}+180=0$

$$
-25 v_{0}+125 i_{0}=-225
$$

$$
-25 v_{0}+125\left(\frac{45-v_{0}}{25}\right)=-225
$$

$$
-25 v_{0}+225-5 v_{0}=-225
$$

$$
-30 v_{0}=-450
$$

$$
v_{0}=15 \text { volts }
$$

$$
i_{0}=\frac{45-v_{0}}{25}=\frac{45-15}{25}=\frac{30}{25}=\frac{1}{5} \mathrm{~A} .
$$

Figure 4
For the circuit of Figure 4:
4a) Find the open circuit voltage across terminals AB. (3 marks)
4b) If terminals $A B$ are connected together by a short circuit, find the current flowing in the short circuit. (3 marks)

4c) Find the Thevenin Equivalent Circuit at terminals $A B$. (2 marks)
4d) If a load resistor of $2 \mathrm{k} \Omega$ is connected across terminals $A B$, what is the voltage across the load resistor? (2 marks)

Use volt, amps al ohms.

$$
-\frac{3-v}{6000}-\frac{v}{2000}+0.001=0
$$

$\times 6000-3-v-3 v+6=0$

$$
\begin{aligned}
-4 v & =-3 \\
v & =\frac{3}{4} \text { volts }
\end{aligned}
$$

$$
\begin{aligned}
& I_{x}=\frac{V}{2000}=3.75 \times 10^{-4} \quad \text { Ans } \\
& V_{\text {OC }}=V+1000 \quad 7_{x} \\
& =\frac{3}{4}+0.375=1.125 \text { volt } \\
& \frac{-3-V}{6000}-\frac{V}{2000}+0.001-\frac{V+10007 x}{1000}=0 \\
& \times 6000 \\
& -3-v-3 v+6-6 v-60007 x=0 \\
& -10 v-60007 \pi=-3 \\
& I_{x}=\frac{V}{2000} \\
& -10 \mathrm{v}-6000 \frac{\mathrm{~V}}{2000}=-3 \\
& -10 v-3 v=-3 \\
& V=\frac{3}{13} \text { volts } \\
& =0.2308 \text { volt } \\
& I_{s c}=\frac{V+1000 I_{x}}{1000}=\frac{V+1000 \frac{V}{2000}}{1000}
\end{aligned}
$$

$$
\begin{aligned}
& I_{S C}=\frac{\frac{3}{2} V}{1000}=\frac{\frac{3}{2} \times \frac{3}{13}}{1000}=3.46 \times 10^{-4} \text { Amps } \\
&=0.346 \mathrm{~mA} \\
& R_{T}=\frac{V_{0}}{I_{S C}}=\frac{1.125}{0.345}=3.25 \mathrm{kn} \\
& V_{V_{L}}=\frac{2 k V_{2}}{2+3.25}=0.429 \text { volts }
\end{aligned}
$$

Figure 5
5. Find the output voltage v_{o} of the operational amplifier circuit of Figure 5 , with $V_{S}=5$ volts. Assume that the op-amps are ideal with infinite gain. (10 marks)

SOLUTION

The first op-amp is a "current blocker" and provides a high input resistance to source V_{s}, the output voltage is V_{S}.
(I) $\frac{V_{5}-V_{1}}{1}-\frac{v_{1}-v_{0}}{12}=0$
(II) $-\frac{v_{1}}{5}-\frac{v_{1}-v_{0}}{10}=0$
(I)

$$
\begin{gathered}
12 v_{5}-12 v_{1}-v_{1}+v_{0}=0 \\
13 v_{1}-v_{0}=12 v_{s}
\end{gathered}
$$

(I)

$$
\begin{gathered}
-2 v_{1}-v_{1}+v_{0}=0 \\
-3 v_{1}=-v_{0} \\
v_{1}=\frac{v_{0}}{3}
\end{gathered}
$$

(I)

$$
\begin{aligned}
13\left(\frac{v_{0}}{3}\right)-v_{0} & =12 v_{s} \\
13 v_{0}-3 v_{0} & =36 v_{s} \\
10 v_{0} & =36 v_{s} \\
v_{0} & =3.6 \mathrm{v}_{\mathrm{s}}
\end{aligned}
$$

Figure 6
In the circuit of Figure 6, the switch has been open for a long time. At $t=0$ the switch closes and remains closed for $t>0$.
ba) Find the initial value of the capacitor voltage v_{c} just after the switch closes. (2 marks)
$6 \mathrm{~b})$ Find the final value of the capacitor voltage v_{c} as $t \rightarrow \infty$. (2 marks)
6 c) Find the time constant τ. (2 marks)
6 d) Write the equation giving the capacitor voltage $v_{c}(t)$ as a function of time for $t>0$. (2 marks)
6 e) What is the value of the capacitor voltage at $t=2.2 \tau$? (2 marks)

6.2) $t \rightarrow \infty$

6.3)

$$
\begin{aligned}
& R_{e}=\left(2+\frac{6}{5}\right) 113=\frac{16}{5} 113 \\
& =\frac{\frac{16}{5} \times 3}{\frac{16}{5}+3}=\frac{48}{31} \Omega \\
& T=\operatorname{Re} C=\frac{48}{31} \times 2 \mu F \\
& =\frac{96}{31} \mathrm{Ms}=3.097 \mu \mathrm{~s} . \\
& \text { 6.4) } \quad v_{c}(-1)=v_{\text {final }}+\left(v_{\text {initual }}-v_{\text {fial }}\right) e^{-t / \tau} \\
& =\frac{154}{3 i}-\left(\frac{5}{2}-\frac{154}{31}\right) e^{-t / 3.097} \\
& =4.968-2.418 e^{-t / 3.097} \\
& 6.51 t=\tau \\
& V_{c}(3.2 L)=4.968-2.468 e^{2} \\
& =4,8674,695 \text { valts }
\end{aligned}
$$

Figure 7
In the circuit of Figure 7, the operating frequency is 60 Hz . The component values are $R_{1}=1 \Omega, R_{2}=$ $2 \Omega, R_{3}=2 \Omega, L=2.653$ milliHenries, and $C=1,326$ microFarads.

Ta) With the load impedance Z_{L} removed, find the Thevenin equivalent circuit at terminals $A B$. (6 marks)
7b) With a load impedance Z_{L} connected to terminals AB , what value of Z_{L} dissipates the maximum amount of average power? (2 marks)

7c) With Z_{L} chosen as in question 7 b , how much power does Z_{L} dissipate? (2 marks)
8.

$$
w=2 a f=376.99
$$

$$
\begin{aligned}
& w=2 a f=376.99 \\
& j_{L}=j 376.99 \times 2.653 \times 10^{-3}=j 1
\end{aligned}
$$

$$
\frac{-j}{\omega C}=\frac{-j}{376.99 \times 5,305 \times 10^{-6}}=-j, 326
$$

$$
\begin{aligned}
& \frac{10-v_{1}}{1+j}-\frac{v_{1}}{-j^{2}}-\frac{v_{1}}{4}=0 \\
& v_{1}\left(\frac{1}{1+j}+\frac{1}{-j^{2}}+\frac{t}{4}\right)=\frac{10}{1+j}
\end{aligned}
$$

$$
\begin{aligned}
& V_{1}\left(\frac{\left(-j^{2}\right) 4+(1+j) 4+(1+j)\left(-j^{2}\right)}{(1+j)\left(-j^{2}\right) 4}\right)=\frac{10}{1+j} \\
& V_{1} \frac{-8 j+4+4 j-2 j+2}{-8 j}=10 \\
& v_{1}=\frac{10 \times(-8 j)}{6-6 j}=\frac{-80 j}{6(1-j)} \\
& \begin{aligned}
V_{b C}=\frac{V_{1}}{2}=\frac{-40 j}{6(1+j)} & =3.33-3.33 j \\
& =4.718-4
\end{aligned} \\
& =4.714-45^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& (1+j) H\left(-j^{2}\right)=\frac{(1+j) \times(-j 2)}{1+j-j^{2}}=\frac{2-j 2}{1-j}=\frac{2(1-j)}{1-j}=2 \\
& 2 v_{2=}^{2} \& z_{1}^{2} \quad 2 \| 4=\frac{2 \times 4}{2+4}=\frac{8}{6}=\frac{4}{3} \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& =4.714-45^{\circ} \\
& \text { Chrose } z_{L}=z_{\tau}=\frac{4}{3} \Omega \\
& \text { Thn } I=\frac{V_{+}}{z_{T+} z_{L}}=\frac{4.714-45^{\circ}}{\frac{4}{3}+\frac{4}{3}} \\
& =\frac{3 \times 4.71 *-45}{8}=1.768 k-450
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
V_{L}=z_{L I} & =\frac{4}{3} \times 1.768 \leftarrow-45^{\circ} \\
& =\frac{2.357}{t_{1} .667-450}
\end{aligned} \\
& P_{a v}=\frac{1}{2} \operatorname{Re}\left(V I^{*}\right) \\
& =\frac{1}{2} \operatorname{Re}(1.6674-450 \times+.768 \nleftarrow+45) \\
& =\frac{1.662 \times 2.357}{2} \\
& =1.965 \text { warts }
\end{aligned}
$$

