

Examination Cover Sheet

COURSE: ELEC	NUMBER: 273	SECTION(S): D, R	
EXAMINATION:	DATE : December 14, 2018	TIME: 2:00-5:00	PAGES: 4
X_ FINAL			Including
ALTERNATE		Exam Length: 3	cover
DEFERRED		hours	
MID TERM			
VERSION:			
INSTRUCTOR(S): Dr. C. W. Trueman, Dr. F. Fayyaz		DIVISION:	
MATERIALS ALLOWED:		INSTRUCTIONS:	
X Booklets		_X Return all	
IBM (Scantron) Blue Green		Answer on Exam	
Printed Translation Dictionary Other		Open book	
X Calculator _XENCS Approved		Crib sheet	
Other		Details	

Please print your name, I.D. number and section in the appropriate spaces below.

STUDENT NAME:	

I.D. NO. ______ SECTION: ______

SPECIAL INSTRUCTIONS:

Closed book exam. No books or notes are permitted.

Do not tear pages out of the exam booklet.

Cell phones or other electronic devices are forbidden in final examinations.

1a) Find the voltages v_1 , v_2 , v_3 , and v_4 in the circuit of Figure 1a. (4 marks)

1b) For the circuit of Figure 1b, calculate current through 2Ω resistor using superposition theorem. (6 marks)

- 2a) For the circuit of Figure 2, write a set of mesh equations using mesh currents i_1 , i_2 and i_3 . (6 marks)
- 2b) Solve the mesh equations to find i_b . (2 marks)
- 2c) Find the value of v_e . (2 marks)

- 3a) For the circuit of Figure 3, find the value of v_o using nodal analysis. (6 marks)
- 3b) Find the value of i_o . (4 marks)

Figure 4

For the circuit of Figure 4:

4a) Find the open circuit voltage across terminals AB. (3 marks)

4b) If terminals AB are connected together by a short circuit, find the current flowing in the short circuit. (3 marks)

4c) Find the Thevenin Equivalent Circuit at terminals AB. (2 marks)

4d) If a load resistor of 2 k Ω is connected across terminals AB, what is the voltage across the load resistor? (2 marks)

Figure 5

5. Find the output voltage v_o of the operational amplifier circuit of Figure 5, with $V_s = 5$ volts. Assume that the op-amps are ideal with infinite gain. (10 marks)

Figure 6

In the circuit of Figure 6, the switch has been open for a long time. At t = 0 the switch closes and remains closed for t > 0.

6a) Find the initial value of the capacitor voltage v_c just after the switch closes. (2 marks)

- 6b) Find the final value of the capacitor voltage v_c as $t \rightarrow \infty$. (2 marks)
- 6c) Find the time constant τ . (2 marks)
- 6d) Write the equation giving the capacitor voltage $v_c(t)$ as a function of time for t > 0. (2 marks)
- 6e) What is the value of the capacitor voltage at $t = 2.2\tau$? (2 marks)

Figure 7

In the circuit of Figure 7, the operating frequency is 60 Hz. The component values are $R_1 = 1 \Omega$, $R_2 = 2 \Omega$, $R_3 = 2 \Omega$, L = 2.653 milliHenries, and C = 1,326 microFarads.

7a) With the load impedance Z_L removed, find the Thevenin equivalent circuit at terminals AB. (6 marks)

7b) With a load impedance Z_L connected to terminals AB, what value of Z_L dissipates the maximum amount of average power? (2 marks)

7c) With Z_L chosen as in question 7b, how much power does Z_L dissipate? (2 marks)

December 18, 2018

Figure 1a

1a) Find the voltages v_1 , v_2 , v_3 , and v_4 in the circuit of Figure 1a. (4 marks)

Figure 1b

1b) For the circuit of Figure 1b, calculate current through 2Ω resistor using superposition theorem. (6 marks)

Super position

$$\lambda_1 = \frac{5}{2} - 4 + 1 = \frac{5 - 8 + 2}{2} = -\frac{1}{2}$$

2a) For the circuit of Figure 2, write a set of mesh equations using mesh currents i_1 , i_2 and i_3 . (6 marks) 2b) Solve the mesh equations to find i_b . (2 marks)

2c) Find the value of v_e . (2 marks)

$$2a) \oplus 12 - 30 \dot{v}_{1} - 70 (\dot{v}_{1} - \dot{v}_{2}) = 0$$

$$\oplus 70 (\dot{v}_{1} - \dot{v}_{2}) - \dot{v}_{2} - 0.7 - 1.3 (\dot{v}_{2} - \dot{v}_{3}) = 0$$

Constraint $\dot{v}_{3} = -43 \dot{v}_{5}$
where $\dot{v}_{6} = \dot{v}_{2}$
 $50 \quad \dot{v}_{3} = -43 \dot{v}_{2}$

$$Tb) Sulve
T - 30 \lambda'_1 - 70 \lambda'_1 + 70 \lambda_2 = -12
+ 100 \lambda'_1 - 70 \lambda_2 = 12
T - 70 \lambda'_1 - 70 \lambda'_2 - \lambda'_2 - 1.3 \lambda'_2 + 1.3 \lambda'_3 = 0.7
T - 70 \lambda'_1 - 72.3 \lambda'_2 + 1.3 \lambda'_3 = 0.7$$

Since
$$i_{3} = -43i_{2}$$

 $70i_{1} - 7972.3i_{2} + 1.3(-43)i_{2} = -0.7$
 $70i_{1} - 72.3i_{2} - 55.9i_{2} = -0.7$
 $70i_{1} - 128.2i_{2} = -0.7$
 $i_{1} = -0.7 + 4728.2i_{2}$
 70

$$(I) \quad 100 \left(-\frac{0.7 + 128.2 \, A2}{70} \right) - 70 \, iz = 12$$

$$100 \left(-0.7 + 128.2 \, iz \right) - 4900 \, iz = 840$$

$$-70 + 12820 \, iz - 4900 \, iz = 840$$

$$79240 \, iz = 770$$

$$iz = 0.096977 \, \text{mA}$$

$$\dot{u}_{b} = \dot{i}_{2} = 0.096977 \text{ mA}$$

$$V_{e} = 1.3(\lambda_{2} - \dot{i}_{3})$$

$$= 1.3(\dot{i}_{2} - (-43i_{2}))$$

$$= 1.3(44i_{2})$$

$$= 57.2\dot{i}_{2}$$

$$= 57.2 \times 0.096977$$

$$V_{e} = 5.547 \text{ volth}$$

3a) For the circuit of Figure 3, find the value of v_o using nodal analysis. (6 marks)

3b) Find the value of i_o . (4 marks)

$$l_{0} = 45 - V_{0} = 45 - 15 = 30 = 4$$
 A

Figure 4

For the circuit of Figure 4:

4a) Find the open circuit voltage across terminals AB. (3 marks)

4b) If terminals AB are connected together by a short circuit, find the current flowing in the short circuit. (3 marks)

4c) Find the Thevenin Equivalent Circuit at terminals AB. (2 marks)

4d) If a load resistor of 2 k Ω is connected across terminals AB, what is the voltage across the load resistor? (2 marks)

Use volts, amps and ohms.

$$-3 - \sqrt{-1000} - \frac{\sqrt{-1000}}{2000} + 0.001 = 0$$

×6000

$$V = \frac{3}{4}$$
 volts

$$I_{x} = \frac{V}{2000} = 3.75 \times 10^{4}$$
 Amps
 $V_{0C} = V + 1000 T_{x}$

= = + 0.375 = 1.125 volts

x 6000

$$-3 - v - 3v + 6 - 6v - 6000 7x = 0$$

-10 v - 6000 7x = -3

$$T_{7} = \frac{V}{2000} - 10 V - 6000 V = -3$$

-10 V - 6000 V = -3
-10 V - 3 V = -3
V = $\frac{3}{13}$ volts

= 0.2308 uult

$$T_{5c} = \frac{V + 1000 T_{x}}{1000} = \frac{V + 1000}{2000}$$

$$I_{sc} = \frac{3}{2}V = \frac{3}{2}r\frac{3}{13} = 3.46 \times 10^4 \text{ Amps}$$

F 53

$$R_T = \frac{V_{0L}}{1_{5C}} = \frac{1.125}{0.34L} = 3.25 \text{ km}$$

$$V_{L} = 2 \frac{1.125}{2+3.25} = 0.429 \text{ votts}$$

Figure 5

5. Find the output voltage v_o of the operational amplifier circuit of Figure 5, with $V_s = 5$ volts. Assume that the op-amps are ideal with infinite gain. (10 marks)

SOLUTION

The first op-amp is a "current blocker" and provides a high input resistance to source V_s , the output voltage is V_s .

$$(f) \qquad \begin{array}{c} V_{5} - V_{1} \\ \hline \\ 1 \end{array} - \begin{array}{c} V_{1} - V_{0} \\ \hline \\ \hline \\ 1 \end{array} - \begin{array}{c} V_{1} - V_{0} \\ \hline \end{array} - \begin{array}{c} V_{0} \\ \end{array} - \begin{array}{c} V_{0} \end{array} - \begin{array}{c} V_{0} \\ \end{array} - \begin{array}{c} V_{0} \end{array} - \begin{array}{c} V_{0} \\ \end{array} - \begin{array}{c} V_{0} \end{array} - \begin{array}{c} V$$

$$(f) \quad 12 \ V_{5} - 12 \ V_{1} - V_{1} + V_{6} = 0 13 \ V_{1} - V_{6} = 12 \ V_{5} - 2 \ V_{1} - V_{1} + V_{6} = 0 - 3 \ V_{1} = -V_{6} V_{1} = -V_{6} V_{1} = \frac{V_{6}}{3} (f) \quad 13 (\frac{V_{6}}{3}) - V_{6} = 12 \ V_{5} 13 \ V_{6} - 3 \ V_{6} = 36 \ V_{5} 10 \ V_{6} = 36 \ V_{5} V_{6} = 3.6 \ V_{5}$$

In the circuit of Figure 6, the switch has been open for a long time. At t = 0 the switch closes and remains closed for t > 0.

6a) Find the initial value of the capacitor voltage v_c just after the switch closes. (2 marks)

6b) Find the final value of the capacitor voltage v_c as $t \rightarrow \infty$. (2 marks)

6c) Find the time constant τ . (2 marks)

6d) Write the equation giving the capacitor voltage $v_c(t)$ as a function of time for t > 0. (2 marks)

6e) What is the value of the capacitor voltage at $t = 2.2\tau$? (2 marks)

$$(.1) t \to \infty$$

$$(0) t \to \infty$$

$$(1) t \to \infty$$

$$(1)$$

In the circuit of Figure 7, the operating frequency is 60 Hz. The component values are $R_1 = 1 \Omega$, $R_2 = 2 \Omega$, $R_3 = 2 \Omega$, L = 2.653 milliHenries, and C = 1,326 microFarads.

7a) With the load impedance Z_L removed, find the Thevenin equivalent circuit at terminals AB. (6 marks)

7b) With a load impedance Z_L connected to terminals AB, what value of Z_L dissipates the maximum amount of average power? (2 marks)

7c) With Z_L chosen as in question 7b, how much power does Z_L dissipate? (2 marks)

$$V_{1}\left(\frac{(-j^{2})^{2} + (i+j)^{4} + (i+j)(-j^{2})}{(i+j)(-j^{2})^{4}}\right) = \frac{10}{1+j^{2}}$$

$$V_{1} - 8j + 4 + 4j - 2j + 2 = 10$$

$$-8j$$

$$V_{1} = \frac{16 \times (-8j^{2})}{-6j} = \frac{-80j}{6(1-j^{2})}$$

$$V_{6}c = \frac{V_{1}}{2} = -\frac{40j}{6(1+j^{2})} = 4.33 - 3.35j$$

$$= 4.719 - 45^{\circ}$$

$$\frac{1}{1-j^{2}} = \frac{1}{1-j^{2}} = \frac{1}{1-j^{2}} = \frac{1}{1-j^{2}} = \frac{1}{1-j^{2}} = \frac{1}{1-j^{2}} = \frac{1}{1-j^{2}} = \frac{1}{1-j} =$$

$$\frac{2\tau}{3} = \frac{4}{3} \frac{1}{2}$$

$$\frac{1}{4} = \frac{4}{3} \frac{1}{2}$$

$$\frac{1}{4} = \frac{4}{3} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$$

$$= 4.714 - 45^{\circ}$$
Chrose $2_{L} = 2\tau = \frac{4}{3} \frac{1}{3}$
The $I = \frac{1}{2\tau} + \frac{1}{2\tau} = \frac{4.714 - 45^{\circ}}{\frac{4}{3} + \frac{4}{3}}$

$$= \frac{3 \times 4.714 - 45^{\circ}}{8} \approx 1.748 \times -45^{\circ}$$

$$V_{L} = 2LI = \frac{4}{7} \times 1.768 \ \text{(-45°)}$$

= $\frac{1}{1.667} \times -45°$
$$P_{av} = \frac{1}{2} Re (VI)^{2}$$

= $\frac{1}{2} Re (VI)^{2}$
= $\frac{1}{2} Re (1.67 \ \text{(-45°)} \times \frac{1.768}{1.768} \ \text{(+768)} \times \frac{1.768}{1.768} \ \text{(+768)} \times \frac{1.768}{1.768} \ \text{(-45°)}$
= $\frac{1.667 \times 2.357}{2}$
= $1.9.65 \text{ watto}$