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Abstract

A Hierarchical Verification of the IEEE-754 Table-Driven

Floating-Point Exponential Function using HOL

The IEEE-754 floating-point standard, used in nearly all floating-point applications, is

considered one of the most important standards. Deep datapath and algorithm complexity

have made the verification of such floating-point units a very hard task. Most simulation

and reachability analysis verification tools fail to verify a circuit with a deep datapath like

most industrial floating-point units. Theorem proving, however, offers a better solution to

handle such verification.

In this thesis, we have formalized and verified a hardware implementation of the

IEEE-754 Table-Driven floating-point exponential function algorithm using the HOL the-

orem prover. The high ability of abstraction in the HOL verification system allows its use

for the verification task over the whole design path of the circuit, starting from the gate

level implementation of the circuit up to a higher level behavioral specification. To

achieve this goal, we have used both hierarchical and modular approaches for modeling

and verifying the floating-point exponential function in HOL.
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Chapter 1

Introduction

The verification of floating-point circuits has always been an important part of processor

verification. The importance of arithmetic circuit verification was illustrated by the famous

floating-point division bug in Intel’s Pentium processor [20]. Floating-point algorithms are

usually very complicated. They are composed of many modules where the smallest flaw in

design or implementation can cause a very hard-to-discover bug, as occurred in Intel’s case.

Traditional approaches to verifying floating-point circuits are based on simulation.

However, these approaches cannot exhaustively cover the input space of the circuits.

1.1 Formal Hardware Verification

Hardware designs are getting larger and larger, more complex everyday. With a fast

moving market like consumer electronics, where short time-to-market is sometimes the

only difference between success and failure of a product,Fast, Efficient,andFully Trusted

approaches should be adopted for testing these products. It would be a lot better if these

methods give a full coverage of these products because, the smallest design flaw in

hardware can be nearly lethal to this product. Full coverage and less design errors is what

Formal Hardware Verificationis trying to offer.

Formal Hardware Verification: “is the proof that a circuit or a system (the

implementation) behaves according to a given set of requirements (the specification).”[24]

Formal verification has theFull Coverageadvantage over any other testing method.

This can meanreal fault free products if it was used in the whole design path.As indicated



2

from the definition, all Formal Verification approaches are composed of three parts:first,

the circuit (system) under investigation (called the implementation);second,the set of

requirements this circuit should obey (called thespecification); and finally, the formal

verification toolwhich is responsible for the verification process.

Figure 1.1:  Formal Verification Approach

As shown in Figure 1.1, these three parts interact with each other to ensure system

correctness. This can be achieved by modeling both the implementation and the

specification in the tool, in some cases the tool is responsible for modeling too, and then

the tool uses one of the formal verification algorithms to check the correctness of the

system or in some cases also to give a kind of trace (calledcounter example) to where the

error is.

Formal methods have long been developed and advocated within the computing science

research community as they provide sound mathematical foundation for the specification,

implementation and verification of computer systems. These methods exploit

representations with formally defined semantics in order to describe abstractly

(independent of details of implementation) the desired functional behavior of a system [24].

Implementation Specification

Formal Verification Tool

Correct

Not Correct
(Counter Example)
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Such formalization methods provide precise and unambiguous system specifications which

can be checked for completeness and internal logical consistency. The mathematical nature

of these specifications enable reasoning about consistency (i.e., whether the system

dynamics is consistent with system’s static properties) and the deduction of consequences

of the specification. These can be checked against the user’s expectations and used to

generate tests for the system implementation.

Simulation, although widely used as a way for testing, could never give the verification

coverage needed. There are two full coverage approaches, brute-force and special-purpose

simulation [4], which even fail to give a fair coverage ratio for a moderate design. Usually

a test pattern (vector) is generated either randomly or by an algorithm. This tries to cover

the areas that could be faulty and check that the design is working correctly. But this

process, although less time consuming, is also less accurate, because sometimes faults

occur where they are least expected. Directive test benches, and random test benches are

the ways adopted by simulation to get over these problems, but it is becoming clear that the

“quality” of the validation achieved by traditional simulation is rapidly deteriorating as

VLSI technology progresses.

Specifications in an executable formal language allow direct simulations (animations)

of system behavior, giving early feedback to be compared with user requirements before

full system development is begun. Equally important in the system development process, a

formal specification which is a yardstick against which to verify implementations or

implementation steps through mathematical proof of the equivalence of abstract and

concrete representations of system operations or data structures [24]. A formally based

development methodology requires that a mathematical theory of the desired system be
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created, documented and analyzed. This foundation activity entails a greater proportion of

time and effort being invested in the initial pre-design phases of system development than

is now commonly the case.

Thanks to the rigorous discipline imposed by these methods, system development

phases are rendered less error-prone, more systematic and amenable to computer

assistance, and hence higher quality products are achieved. Thus, formal verification is

proposed as a method to help certify hardware and software, and consequently, to increase

confidence in new designs. Formally verifying designs may be cost effective in “safety

critical” applications, for systems in high volume or remotely placed systems, and for

systems that will go through frequent redesign because of changes in technology. Recently,

formal verification has been considered as a powerful complementary approach to

simulation and has made exciting progress.

Formal Verification is not the golden rule in circuit testing because of some limitations

[27]. A correctness proof cannot guarantee that the real device will never malfunction; the

design of the device may be proved correct, but the hardware actually built can still behave

in a way unintended by the designer (this is the case for simulation too). Wrong

specifications can play a major role in this, because it has been verified that the system will

function as specified, but it has not been verified that it will work correctly. Defects in

physical fabrication can cause this problem too. In formal verification amodelof the design

is verified, not the real physical implementation. Therefore, a fault in the modeling process

can givefalse negatives(errors in the design which do not exist). Although sometimes, the

fault covers some real errors.
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Formal verification can generally be divided into two main categories [9]:reachability

analysis,anddeductive methods.Model checkers and equivalence checkers are examples

of the first approach. Many different theorem provers (such as HOL [12]) have been used

for deductive verification.

1.1.1  Decision Diagram Based Methods

Reachability analysis approaches are internally categorized into two main flows:Model

checking, and equivalence checking.

Model checking: In this approach, a circuit is described as a state machine with

transitions to describe the circuit behavior. The specifications are described as properties

that the machine should or should not satisfy. Traditionally, model checkers used explicit

representations of the state transition graph, for all but the smallest state machines. To

overcome this capacity limitation, different representations of BDD’s (Binary Decision

Diagrams) are used to represent the state transition graphs and this allows model checkers

(such as SMV [26], and VIS [5]) to verify systems with as many as 10-100 states, much

larger than that can be verified using an explicit state representation technique. However,

these model checkers still have the state explosion problem (i.e., BDD size explosion)

while verifying large circuits [9].

Equivalence checking: In recent years, many CAD vendors offer equivalence checking

tools for design verification. For example, the partial list of equivalence checkers are

Formality (from Synopsys [39]), and MDG [10] (University of Montreal). These tools

perform logic equivalence checking of two circuits based on structural analysis. The

common assumption used in the equivalence checking is that two circuits have identical

state encoding (latches) [9]. With this assumption, only the equivalence of the
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combinational portions of two circuits must be checked. These tools cant handle large

designs with similar structures. However, these tools cannot handle the equivalence of

designs with no structure similarity. Another drawback of equivalence checkers is that they

all need golden circuits as the reference to be compared with. However, the correctness of

golden circuits is still questionable [9].

The major advantage of the reachability analysis verification approaches isautomation.

The machine (tool) is usually responsible for building the whole model and automatically

verifying either the equivalence or a property. But reachability analysis verification has two

main drawbacks which affect it, specially in the field of floating-point verification.First is

the state explosion problem, where large designs (or deep datapaths) saturate the tool,

stopping it from continuing the verification process.Second,is the problematic description

of specifications as properties, specially in model checking, this description needs

experience and sometimes may not give full system coverage.

Also, to verify floating-point arithmetic circuits, model checkers encounter more

difficulties as noted in [8].First, the specification languages are not powerful enough to

express arithmetic properties; for arithmetic circuits, the specifications must be expressed

as Boolean functions, which is not suitable for complex circuits.Second, these model

checkers cannot represent arithmetic circuits efficiently in their models.

1.1.2  Theorem Proving

With theorem proving, an implementation and its specification are usually expressed as

first-order or higher-order logic formulas. Their relationship, stated as equivalence or

implication, is regarded as a theorem to be proven within the logic system, using axioms
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and inference rules. Thus, theorem proving is a powerful verification technique. It can

provide a unifying framework for various verification tasks at different hierarchical levels.

However, the task of proving complex theorems needs expertise. A theorem prover or

proof checker is a tool developed to partially automate the proof process or to check a

manual proof. Theorem proving systems are being widely used on an industrial scale for

hardware and software verification. Some of the well-known ones are HOL (Higher Order

Logic) [12], and PVS (Prototype Verification System) [14].

Theorem proving is considered a very strong verification tool because mathematical

formulas can express nearly all design levels. The proof procedures are very efficient if

they are constructed by experts. Also, hierarchical modeling is used to give theorem

provers nearly unlimited power; especially in handling deep datapath designs, which can

be modeled efficiently, using a hierarchy in most of the common theorem provers.

The main problem with theorem proving techniques is the lack of expertise and

documentation. It takes a considerably long time to learn theorem proving techniques.

Also, there is a strong need for libraries of specifications to be established, and more

automated tools and approaches.

1.2 Floating-Point Numbers and the IEEE-754 Standard

1.2.1  Floating-Point Numbers

Computers were originally built asfast, reliable, andaccuratecomputing machines. It

does not matter how large computers get, one of their main tasks will be to always perform

computation. The history of computer arithmetic is always interwined with that of digital

computers. In all microprocessor based computers, the Arithmetic Logic Unit (ALU) is one
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of the units that takes most of the design effort to introduce more accurate and faster

techniques.

Most of these computations need real numbers as an essential category in any real world

calculations. Real numbers arenot finite, therefore no finite representation method is

capable of representing all real numbers, even within a small range. Thus, most real values

will have to be represented in an approximate manner. Various methods can be used for this

representation [35]:

1.Fixed-point number systems: offer limited range and/or precision. Computations must be

“scaled” to ensure that values remain representable and that they do not lose much

precision

2. Rational number systems: approximate a real value by the ratio of two integers, and lead

to difficult arithmetic operations.

3. Floating-point number systems: represent numbers in 3 fields (sign, exponent and

mantissa), and is the most common approach which will be discussed in detail shortly.

4. Logarithmic numbers systems: represent numbers by their signs and logarithms,

attractive for applications needing low precision and wide dynamic range, considered as

a limited special case of floating-point representation.

Figure 1.2:  Typical Representation of a Floating-Point Number

A typical floating-point number representation (shown in Figure 1.2) is composed of

four main components [35]: the sign, the significant (also called mantissa)s, the exponent

+/- s: Significante: Exponent 
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baseb, and the exponente. The exponent baseb is usually implied (not explicitly

represented) and is usually a power of 2, except of course in the case of decimal arithmetic.

This number then is represented as follows:

A main point to observe is that there are two signs involved in a floating-point number:

1. The number signindicates a positive or negative floating-point number and is usually

represented by a separate sign bit (signed-magnitude convention).

2. The exponent signis embedded in the biased exponent and it indicates mainly a large or

small number. If the bias is a power of 2, the exponent is the complement of its most

significant bit.

The use of biased exponent format has virtually no effect on the speed or cost of

exponent arithmetic (addition/subtraction) [35], given the small number of bits involved. It

does, however, facilitate zero detection (zero will be represented with the smallest biased

exponent of 0 and an all-zero significant) and magnitude comparison (we compare

normalized floating-point numbers as if they were integers).

The range of values in a floating-point number representation format (shown in Figure

1.3) is composed of the intervals [- max, -min] and [ min, max], where:

Figure 1.3:  Sub-ranges and Special Values in Floating-Point Number Representations

s be×±

max SIGmax biasEXPmax×=

min SIGmin biasEXPmin×=

+-

UnderflowOverflow Overflow

0 .... ........
DenserDenser SparserSparser
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Figure 1.3 shows the number distribution pattern and the various sub-ranges in floating-

point representations. It also clarifies the range of floating point representation. We can

notice that there isno real zerojust a number which is very close to the zero (min or -min).

The range [-max, max] increases if a larger exponent baseb is chosen. However, the

precision decreases for the same number of bits representation [35]. Once, a value ofb is

fixed and one bit for the sign of the number is assigned, the next question is the allocation

of the remaining bits to the exponent and significant parts. Devoting more bits for the

exponent widens the number representation range but decreases the precision [35].

In the next subsection, the IEEE-754 standard for floating-point representation will be

discussed as well as its ranges, maximum and minimum values and special values.

1.2.2  IEEE-754 Floating-Point Standard

In the early days of digital computers, it was quite common that machines from different

vendors have different word widths and unique floating-point formats. Many problems

were caused by this, especially in the porting of programs between different machines

(designs). A main objective in developing such a standard,floating-point representation

standard, is to make numerical programs predictable and completely portable, in the sense

of producing identical results when running on different machines [35].

The IEEE-754 floating-point standard, formally named “ANSI/IEEE Std 754-1985”,

introduced in 1985 tried to solve this problems. Another main objective for this standard is

that an implementation of a floating-point system conforming to this standard “can be

realized in software, entirely in hardware, or in any combination of software and

hardware” [22]. The standard specifies two formats for floating-point numbers,basic
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(single precision) andextended(double precision), it also specifies the basic operations for

both formats which are addition, subtraction, multiplication, division, square root,

remainder, and comparison of operations. Then different conversions are needed, as integer

to floating-point, basic to extended and vice versa. Finally, it describes the different

floating-point exceptions and their handling, including non-numbers (NaNs) [22].

Table 1.1 Features of the ANSI/IEEE Standard Floating-Point Representation

Table 1.1 summarizes the most important features of IEEE floating-point standard. Zero

can not be presented with a normalized significant, thus, a special code was assigned to it,

Zero has all zero representation with either + or - sign. Also, special codes where needed

to represent other exceptions as NaN (not-a-number), and . The NaN is useful for

representingundefined results as 0/0.

Feature Single Double

Word width, bits 32 64

Significant bits 23 + 1 hidden 52 + 1 hidden

Significant range

Exponent bits 8 11

Exponent bias 127 1023

Zero e + bias = 0, f = 0 e + bias = 0, f = 0

Infinity e + bias = 255, f = 0 e + bias = 2047, f = 0

Not-a-number (NAN) e + bias = 255, f 0 e + bias = 2047, f 0

Minimum

Maximum

1 2 2 23––,[ ] 1 2 2 52––,[ ]

0±( )

∞±( )

≠ ≠

2 126– 1.2 10 38–×≈ 2 126– 2.2 10 308–×≈

2128 3.4 1038×≈ ≈ 21024 1.8 10308×≈ ≈

∞±
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The standard has adopted the hidden (implicit) approach to save one bit in the

representation, contributing to increasing the precision without taking up space [35]. This

can be done by always representing the floating-point numbers innormalizedform, starting

with 1 in the most significant bit of the mantissa (significant). Therefore one can omit this

1 in storing the number. Denormals, or denormalized values are defined as numbers

without a hidden 1 and with the smallest possible exponent. These numbers where provided

to decrease the effect in case of underflow. This provision can lead to a high speed and cost

overhead, so it was offered optionally.

In this thesis, we have used only the single precision format of the standard. Table 1.1

shows that this format uses 8 bits for exponent with abiasof 127. Twenty-three bits are

used as significant (mantissa) with one hidden bit, which will always be concatenated with

one at demoralizing phases. We did not use denormal format and we have also defined

certain ranges for operations to protect our function from overflow and undesired inputs.

The standard defined only five arithmetic operations:Addition, Subtraction,

Multiplication, DivisionandSquare root. Many implementations are still needed for a real

computation scheme, for instance in a microprocessor floating-point computation unit.

This lead to a lot of work to produce accurate and fast algorithms used in computing

different floating-point operations. One of which was the work of Tang [40], who used

polynomial expansion to produce a new method to calculate the floating-point exponential

function; which will be discussed thoroughly in Chapter 3.
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1.3 Related Work

There exists some related work on the verification of floating-point algorithms and

designs in the open literature.

Miner [29] formalized the IEEE-854 floating-point standard in PVS. He defined the

relation between floating-point numbers and real numbers, rounding, and some arithmetic

operations on both finite and infinite operands. He used this formalization to verify abstract

mathematical descriptions of the main operations and their relation to the corresponding

floating-point implementations. This paper is one of the earliest works in formalization of

floating-point standards using theorem proving. It described a large portion of the IEEE-

754 standard but did not cover all of it.

Carreno [7] formalized the same, IEEE-854 standard, in HOL. He interpreted the lexical

descriptions in the standard into mathematical conditional descriptions and organized them

in tables; then these table were formalized in HOL. He discussed different standard aspects

such as precisions, exceptions and traps, and many other arithmetic operations such as

addition, multiplication and square-root of floating-point numbers.

Miner et al. [30] parameterized the definition of the subtractive floating-point division

algorithm. They defined classes of floating-point decision, then proved each class to satisfy

the formal definition of the IEEE-754 standard using PVS. This gave them the ability to

prove the correctness of these division algorithms for any precision.

Russinoff in [36], and [37] used the ACL2 [4] prover to verify the compliance of the

floating-point multiplication, division, and square root algorithms of the AMD-K7

Processor [33] to the IEEE-754 standard.
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Harrison [16] defined and formalized real numbers using HOL. He then developed a

generic floating-point library to define and verify the most fundamental terms and lemmas

of IEEE-754 standard [17]. This former library was used by him to formalize and verify

floating-point algorithms against behavioral specification such as the square root [18] and

the exponential function [15].

In most of the work above, the scope of the researchers was concentrated in two main

fields: first, the formalization of the IEEE floating-point standards and the verification of

their relations to the unbounded real numbers as in [16],[7], and [29],second, the

behavioral modeling of floating-point algorithms and verifying their correctness against

their main mathematical models as in [15], and [18].

Leeser et al. [25] verified a radix-2 square-root algorithm and its hardware

implementation, used in many processors as HP PA7200, and Intel Pentium [21]. They

used theorem proving to bridge the abstraction gap between the algorithm and the

implementation. The Nuprl proof development system was used for proof automation. This

work discussed the proof of the above algorithm starting from RT (Register Transfer) level

and progressing down to Gate level implementation.

Another approach for verification is combining a theorem prover with a model checker

or a simulation tool [9]. In these approaches, theorem provers handle the high-level proof,

while the low-level properties are handled by the model checker or simulation. Aagaard et

al [1] used Voss [38] and a theorem prover to verify an IEEE double precision floating-

point multiplier. Cornea-Hasegen [11] used different approaches, mathematical proofs, C

language and assembly language programs, to verify the IEEE correctness of the floating-

point square root, division and remainder algorithms.
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O’Leary et al. [34] formalized and verified some of the Pentium Pro processor’s [21]

floating-point units, such as addition and division, at the Gate level using the FORTE [34]

system which integrates model checking and theorem proving techniques. Compared with

the theorem proving approach, this approach is much more automatic, but still requires user

guidance.

In most of these works, except for [25], hardware implementations were discussed more

deeply. Usually, RT level implementation was proved against pre-defined properties for

the IEEE floating-point standard used. This may cover compatibility of the floating-point

implementations under investigation to the IEEE standard, but it would not cover the

correctness of the implementation against the main circuit behavioral specification.

1.4 Scope of this Thesis

Formal verification methods have sometimes been accused of lacking the ability to be

integrated into an industrial product design cycle. Working on the same design path of most

electronic products, we will discuss, in this work, the formalization and verification of the

IEEE-754 table-driven exponential function in all abstraction levels of the design flow.

The goal of this work is using formal verification in the modeling and verification of the

circuit implementation with respect to the behavioral specification designed by [15]. We

were also interested in the development of a formal proof that the gate implementation,

machine synthesized using Synopsys, implies the RTL implementation.

Figure 1.4, gives an overview of the system specification and verification. The shaded

boxes show the previous work done by others, and the white ones are the modules built in
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this project. Also, the figure divide the work done according to the tool used, HOL or other

tools, and languages such as VHDL and while language.

Harrison [15] formalized and verified that a behavioral specification, an abstract

algorithmic description he developed for the design, implies an abstract mathematical

description of the IEEE-754 Table-Driven Floating-Point Exponential Function [40].

Starting form this behavioral specification, written in a “while-language”, Bui et al. [3]

developed an RTL implementation of the design in a previous part in this project.

Figure 1.4:  Overview of the Specification and Verification Project

It was noticed that the specification [15] is too flat for a lower level modeling or

verification. Therefore, a new modular behavioral specification was introduced, (see

Figure 1.4). The same problem was faced in modeling the RTL implementation where a

newer modular VHDL code had to be driven from the older flat one. The new modular

implementation and specification were essentially considered to ease the verification task,

but it also put some guidelines for implementing testable circuit designs.

Other Design ToolsHOL

HOL

HOL

HOL

HOL

Final Proof

1st Verifi. Task

2nd Verifi. Task

3rd Verifi. Task

Gate Level Imp.

HOL
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Modular RTL Imp.

Provided

Logical

Implication
Synthesized

Developed
in this work

Machine

Hierarchical
Proof
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Mathematics

VHDL

VHDL

VHDL

Gate Level Imp.
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Adopted in [3]

Flat RTL Imp. [3]

Algorithm Description [40]Algorithm Description [15]

Proved in [15]

Flat Behavioral Spec. [15]Flat Behavioral Spec.
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In Chapter 2, we will introduce higher-order logic, the HOL system and the basics of

hardware verification using formalism.Chapter 3 will describe the mathematical

background of the Table-Driven IEEE-745 Exponential Function developed by Tang [40].

Then will show the RTL and Gate level specifications of the IEEE-754 exponential

function and their HOL formalized model. There will be a description of the VHDL

implemented code of the function, which will show the design changes made for an easier

verifiable design and better modeling in HOL.

After modeling, the overall verification process is composed of four main tasks, shown

in Figure 1.4,chapter 4will discuss thew methodology used in handling these verification

tasks in details. as well as, it will discuss the verification procedure and summarize the

experimental results of the whole verification task. Finally, conclusions and future work

will be presented inChapter 5.
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Chapter 2

Hardware Verification and the HOL System

2.1 Higher-Order Logic and HOL

2.1.1  Higher-Order Logic

Since hardware systems deal mostly with boolean-valued signals, it was natural for early

researchers to think of using thepropositional logic to model the behavior of digital

devices. Due to the underlying assumption of the zero-time delay of Boolean gates, this

approach works well only for functional specifications of combinational circuits. For other

circuits, such as sequential ones, it was natural that their next choice would be thefirst-

order logic.

First-order predicate logic is one of the most extensively studied logics and has found

numerous applications, especially in the study of the foundations of mathematics [14]. Its

language alphabet consists of asignature(consisting of sets of symbols for constants,

functions, and predicates),symbols for variables, and a set ofstandard Boolean

connectives (such as ) andquantifiers ( , ). There are two semantic

categories,terms and formulas. Terms consist of constants, variables, and functions

applications of argument terms.Formulasconsist of atomic formulas (with quantifications

allowed to variables only [14]).

The “first-order” part refers to the fact that only domain variables are allowed to be

quantified in such logic. If quantification is allowed over subsets of these variables (i.e.

,∨ ∧ ∀ ∃
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over predicates) we get “second-order” predicate logic. Continuing in this manner one

obtains “higher-order” logics, which allow quantifications over arbitrary predicates. This

ability to quantify over predicate symbols leads to a greater power of expressiveness in the

higher order logic systems than those of the first order one [14].

The HOL theorem prover, developed by Gordon [12], is an interactive proof assistant

using higher order logic that has been under development since mid-1980’s, and is based

on the ideas from the Edinburgh LCF project [13]. The LFC approach implements a logic

in a strongly typed programming Meta Language (ML) [12]. Both the logic and the system

were called HOL. It was explicitly designed for the formal verification of hardware, though

it has also been applied to other areas including software verification and formalization of

pure mathematics.

Several features of HOL are particularly significant as a hardware verification tool. The

higher-order logic allows circuit modules to be expressed as predicates over inputs and

outputs, allowing a very natural and direct mapping from the gate level and RTL

descriptions into the logic. In addition, the extensive infrastructure of real analysis is

essential to verify (or even state) the highest level of specification [14]. Finally, the

adherence to the LCF methodology gives us higher confidence that the final result is indeed

valid.

2.1.2  The HOL98 System

Following the LCF approach, HOL implements a small set of primitive inference rules,

and all theorems must be derived using only these rules. This guards against the assertion

of false “theorems”. However, by ML programming it is possible to automate the

translation of higher-level proof techniques into the low-level primitives. In this way, HOL
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users can call on an extensive selection of automated tools or write special-purpose

inference rules for a given application domain. Among the higher-level inference rules

provided with the system are the so-calledtacticswhich allow the user to organize proofs

in a mixture of a forward and goal-directed fashion.

There are four types of HOL terms: constants, variables, function applications, and

lambda-terms (denoted function abstractions). Polymorphism, types containing type

variables, is a special feature supported by this logic. Semantically, types denote sets and

terms denote members of these sets. Formulas, sequences, axioms, and theorems are

represented by using terms of Boolean types.

The main task of the higher-order logic theorem prover is the derivation of proofs.

Accepting defined types and functions of new types, give us the ability to prove properties

of those types and functions. The sets of types, type operators, constants and axioms

available in HOL are organized in the form of theories. There are two main primitive

theories,bool and ind, for Booleans and individuals (a primitive type to denote distinct

elements). Theorems can be driven based on these two main theories and added to the

system. In a concrete proof system like HOL different theories can be created

independently from each other. However, it is often useful to base the formalization of a

certain theory on previously defined theories (usually called parent theories). This property

allows a hierarchal way of creating more complex theories as shown in Figure 2.1. By

proceeding this way, theories for new types can be created, e.g. floating-point theory, real
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numbers theory, etc. New goals based on these types can be proved directly using the new-

proved libraries.

Figure 2.1:  Hierarchy of Theories

In this work, we have used the HOL98 theorem prover, an adoption by Larsenet al.[27]

of HOL90 to the Moscow ML [12]. In addition to the usual programming language

expressions, ML has expressions that evaluate to terms, types, formulas, and theorems of

the HOL’s deductive apparatus [13]. The HOL system supports a natural deduction style

of proof, with driven rules formed fromeight primitiveinference rules. All inference rules

are implemented using ML functions, and their application is the only way to obtain

theorems in the system. Once proved theorems can be saved and used in future proofs. A

tactic in HOL98 is an ML function that is applied to a goal to reduce it to its subgoals, or

to simplify it. A tactical is a functional that combines tactics to form new tactics.

HOL98 is a powerful hardware verification system, on one hand, it derives its strength

from the expressiveness of higher-order-logic, it drives strength from the effectiveness of

the automated theorem proving facilities it provides. HOL can also capture the various

abstraction mechanisms and hierarchical descriptions, thereby making it very useful for

large designs, and also the logic itself can be extended to allow formalization of virtually

any mathematical theory.

Theory 1 Theory 2

Theory 3

Theory 5

Theory 4
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2.2 Hardware Verification using HOL

2.2.1  Modeling Hardware Behavior using HOL

The essential step in any hardware verification task is the modeling of both the

implementation and specification of the system required to be verified. A significant

advantage of predicate logics are the ability to use functions and predicates to represent

circuit models. Using new constants (refer to constant definition inSubsection 2.1.1),

predicates can be used to abbreviate complex circuit description. Using this mechanism, the

module in Figure 2.2 can be defined as:

Module (x1,x2...,y1,y2...)

Different logic relations can then be used inside this predicate to define the relation

between the inputs and outputs. For example in the lower level operators like AND or OR

operators can be used for describing these relations. In larger circuits, these operators will

not be enough, since the relation between different modules need to be described.

Figure 2.2:  Circuit Module as a Black Box

A strong point of higher order logic is that constant definitions can still be used in such

a way that they reflect the composition of several modules. The predicates modeling the

behavior of the modules are conjunctively connected forming a new predicate, this was

....
....
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X

X
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described as the hiding property [27]). Using this property, the formalization of a multi-

module as the one shown in Figure 2.3, will be modeled in HOL logic as:

M(x1,x2,x3,y1,y2) := ∃ sig1 sig2 . M1(x1,x2,sig1,y1) M2(sig1,x2,sig2)

M3(x3,sig2,y2)

Figure 2.3:  Composition of Modules

The different intermediate signals can be considered as wires connecting different

modules. In Figure 2.3, the two signals,sig1andsig2, connect modules M1, M2, and M3.

The collection of these three modules build a new module M, which can be used as a higher

level representation of this system.

2.2.2  Performing Proofs using the HOL System

A proof in HOL is constructed by repeatedly applying inference rules to axioms or to

previously proved theorems. Since proofs may consist of large number of steps, it is

necessary to provide tools to make proof construction easier for the user. HOL supports two

styles of interactive proof: forward proof and backward proof styles.

∧ ∧
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2.2.2.1  Forward Proofs in HOL

In the forward proof style, inference rules are applied in sequence to previously proved

theorems until the desired theorem is obtained [27]. The user specifies the rule to be applied

at each step of the proof, either interactively or by writing an ML program that calls the

appropriate sequence of procedures.

Forward proof is not the easiest way of doing proof, since the exact details of a proof are

rarely known in advance. It can work with small circuits and shallow mathematical proofs

but it would be considered unpractical for larger proofs. The forward proof style is

unnaturalandtoo ‘low level’ for many applications [2]. It suffers of two main handicaps

[12]:

1. It is usually quite hard to know where to start.

2. In general, there would be a lot of book keeping allocated with any large proof.

2.2.2.2  Backward Proofs in HOL

An important advance in proving using HOL was made by Robin Milner [13] in the

early 1970s when he invented thetactics, introducing a new proof methodology called the

Backward proof.

A tactic is a function that performs two things [12]:

1. Splits a ‘goal’ into ‘subgoals‘.

2. Keeps track of the reason why solving the subgoals will solve the goal. This is necessary

because all theorems in the system must ultimately be obtained by forward proof.

The idea behind a backward proof in HOL are that we recursively apply tactics to

decompose a goal into a tree of subgoals until all the leaves are simple enough to prove [2].
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Figure 2.4 shows an example of backward proof scheme of a usual HOL proof. The basic

steps of such methodology are as following:

First, a goal is set using the pre-modeled implementation and specification. The

behavioral specification of the circuit to be verified can be given by any formulas in higher-

order logic. However, to achieve a methodological approach to the specifications it is

suitable to represent the overall description by a constant definition, e.g.Spec(x1,...., y1,...)

where xi are inputs, and yi are outputs.

Assuming the circuit was modeled byImp(x1,...., y1,...), we get the following two

possible proof goals for hardware verification [24]:

1. If the specification completely covers the implementation behavior, then specification is

to be proven equivalent to their implementation, resulting in:

x1... y1... . Imp( x1,...., y1,...)  Spec( x1,...., y1,...)

2. A partial specification, covering only certain properties to be verified leads to:

x1... y1... . Imp( x1,...., y1,...)  Spec( x1,...., y1,...)

Second, the implementation and specification are expanded producing the lower level

description of the system. Usually this is performed using some of the rewriting tactics

available in the system.

Third, these expanded definitions are decomposed, using other tactics and tacticals, to

subgoals if there is a need to divide the main problem into smaller, more controllable,

problems.

∀ ≡

∀ ⇒
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The fourth step is simplifying these subgoals. Usually these subgoals are simplified by

three ways [24]:Creation of a simplified normal form to ease processing, internal wire

elimination,or logic simplifications.

Finally, the theorem prover (HOL) decision procedures or semi-automated tactics and

tacticals are used to prove these goals which leads to the proof of the initial goal.

Figure 2.4:  HOL Proof Procedure for Hardware Verification

Usually, the proof complexity increases with the size of the circuit. To reduce this effort,

the hierarchical verification methodology is used. In case of datapath circuits, as in this

thesis, arithmetic operations are performed and the numbers are encoded into bit vectors.

The width of bit vectors directly determines the size of the involved modules as adders, and

registers, but these modules are very regular structures. Starting by building a concrete

model for the 1-bit module, then using recursive definition for defining an n-bit module,

G: Imp (x  /\  y /\ ..) Spec((y= ..) /\ (...))

G1 G2 G3 Gn

G: Spec.Imp.

........

........G1’ G2’ G3’ Gn’

Theorem Prover/ Decision Procedures

Intial Goal 

Simpler subgoals

Decomposing G into

Proving subgoals

Simplifying subgoal 

Imp. & Spec.

Expanding the definitions of
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HOL gives a very strong tool forgeneric circuit modeling and verification. These circuits

will be verified only once using mathematical induction procedure then this result can be

always generalized, used for any arbitrary bit width. The verification effort of these

modules is only done once then the result can always be reused directly. This dramatically

decreases the proof time in mathematical circuits. On the other hand, induction proofs

require a higher effort in finding suitable induction schemes, i.e., a higher degree of manual

interaction [24].
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Chapter 3

Formal Modeling of the Exponential Function

3.1 Table-Driven Exponential Function (Mathematical Background)

Using an approximate polynomial expansion, Tang [40] has developed an algorithm for

computing the floating-point exponential function using what he calls a Table-Driven

approach. In this approach, the input is first reduced to a certain working precision where

r (will be discussed shortly) will be bounded by , whereL

is an integer larger than or equal to 1, chosen beforehand, (for instance,L = 4 for single

precision). Then this inputX is considered to be composed of:

wherem andj are integers, and r is a real number,|r|  log 2/64

Starting from this equation, the exponential function can be constructed as follows [40]:

Theexponential of Xwill hence be equal to

2 2L 1+⁄log– 2 2L 1+⁄log,[ ]

X
32 m j+×( ) 2log( )×

32
----------------------------------------------------- r+=

<

X m 2log×( ) j 2log×( )
32

------------------------ r+ +=

X( )exp m 2log×( ) j 2log×( )
32

------------------------ r+ + 
 exp=

2
m

log( ) 2

j
32
------

log r+ +
 
 
 
 

exp=
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Here, exp (r) can be represented using Taylor’s expansion as follows:

wherep(r) = exp (r) -1, anda1, a2,...are the coefficients of Taylor expansion.

Returning to the exponential function:

The main objective of the algorithm is isolatingmandj, and evaluating the approximating

polynomial. According to [40], four steps are needed to compute this exponential function:

Step 1:Filter any out-of-bounds inputs that occur. As mentioned before,X should be a

number between . So, ifx is NaN (not-a-number, invalid IEEE-754

format), out of range, zero, positive or negative infinity, the algorithm would either be able

to compute it by an approximated arithmetic operations (as in the case of positive or

negative infinity), or not able to solve it at all (as for NaN).

Step 2: Start the computation by first calculatingN,

whereINVL is a floating-point constant approximately equal to32/log 2 in our case, and

INTEGERis the default IEEE-754 round-to-nearest mode. ThisN is composed of two parts,

whereN1 = 32 * m, and N2 = j

The variablesm andj were derived, from the previous result as follows [40]:

2m 2 j 32/ r( )exp+ +=

p r( ) r a1 r×( ) a2 r2×( ) a3 r3×( ) …+ + + +=

x( )exp 2m 2j 32/ p r( ) 1+( )××=

2log( ) 32⁄– 2 32⁄log,[ ]

N INTEGER X INVL×( )=

N N1 N2+=

j N2=
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With the value ofN, and considering r equal to r1 + r2, where r2 and r1 satisfy |r2| <<

|r1| so that r1+r2 represents r = X- (N * log 2 / 32)with a great accuracy.r1 andr2 can be

calculated as follows:

If  then

else

and

L1 andL2 are constants, whereL1 + L2 approximateslog 2/32to a precision higher than

that of single precision (the working one).

Step 3:Compute the polynomialp(r), similar to the Taylor expansion, as follows [40]:

where the coefficients (a1anda2) are obtained from a Remez algorithm calculated by Tang

[40].

Step 4:The values of 2j/32, j= 0,1,....32, are calculated beforehand and represented by

two working-precision numbers (single precision in our case),SleadandStrail. Their sum

approximates to roughly double the working precision. Finallyexp(x)is calculated as

follows:

m
N1
32
-------=

N 29≥

r1 x N L1×–( )=

r1 x N1 L1×–( ) N2 L2×–=

r2 N L2×–=

r r1 r2+=

Q r r a1 r a2×+( )××=

p r( ) r1 r2 Q+( )+=

2 j 32/
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3.2 Table Driven Exponential Function Specification

In this chapter, we will discuss the specification model we formalized for the table-

driven exponential function. As discussed in the previous chapter, the scope of this thesis

is to verify that the RTL hardware implementation of the exponential function conforms

with the behavioral description written in [15], shown in Figure 3.2.

As discussed above, we were faced by the flatness problem of the specification, which

was not directly useful for a hardware synthesis and/or verification. We have divided this

specification into six intermediate blocks (modules), where the conjunction of these blocks

(Figures 3.1, and 3.2) represents the RTL code described below. Trying to achieve

maximum modularity for the design, we have tried to minimize the interfaces between

different modules. This helps us to divide the verification tasks into well-defined smaller

ones. Each of these blocks was also divided into smaller specifications giving us smaller

sub-specifications clearly related to the goals needed to be proved.

The highest-level system specification in HOL is as follows:

S Strail j( ) Slead j( )+ 2 j 32/≈=

x( )exp 2m × Slead j( ) Strail j( ) S p r)( )×+( )+=

 IEEE_EXP_SPEC X EXP =
  ∃ N N1 M R1 J R2 Strail Stail EXP_in P_R.

( M_J_SPEC  X N N1 M J)
( R1_R2_SPEC  X N N1 J R1 R2)
( Get_J_SPEC J Strail Stail)
( P(R)_SPEC  R1 R2 P_R)
( EXP_CAL_SPEC Stail Strail M P_R  EXP_in)
( Compare_SPEC EXP_in X Out_EXP)

∧
∧

∧
∧

∧
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Where the six main modules composing the system are:

m and j computing block(M_J_SPEC): responsible for half ofStep 2(cf. Section 3)

by computing the value ofm andj. Its input is the number X and its outputs are J, M, N,

and N1.

r1 and r2 block(R1_R2_SPEC): responsible for the second half ofStep 2, it computes the

values ofr1 andr2. Its inputs are X, N1, N2 (equal to J) and its outputs are the two floating-

point numbers R1 and R2.

p(r) block (P_R_SPEC): computes the value of p(r); it takes R1 and R2 and outputs P_R.

Slead and Strail block(Get_J_SPEC): a floating-point multiplexer module, where the

value of J decides which values for Strail and Slead should be chosen. Its input is just the

number J and its outputs are Slead and Strail.

Exponent calculation block(Exp_Cal_SPEC): the main computational block where

finally the exponential function is computed. It takes Slead, Strail, M and P_R as its inputs

and output is the EXP_X.

Checking block(Compare_SPEC): the compare and decision module. According to the

value of input X, this module decides whether to choose the computed value of the

exponent or another output as NAN (Not A Number). It takes X and the computed exponent

as its inputs and the final answer is the output (OUT_EXP_X).
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Figure 3.1:  The Modular Organization of Exponential Function Specification

There is a high level of regularity in these six modules where floating-point operations,

such as addition, and multiplication are the main sub-modules in all of them. This will help

us in the reuse of the developed models and theories in building the higher levels of the

specification. Each of the six modules was modeled as a conjunction of lower level

components. As an example, we will describe the m-and-j module specification

(M_J_SPEC).

X (Float)

J (Int)

R1 (Float)

M (Int)

EXP_X_SPEC

N   (Int)

N1    (Int)

M_J_SPEC

R1_R2_SPEC P(R)_SPEC

Get_J_SPEC Exp_Cal_SPEC

C
om

pa
re

_S
PE

C

R2 (Float)

Slead (Float)

Strail (Float)

P(R) (Float)

EXP(X)  (Float)
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Figure 3.2:  The Behavioral Specification for the Exponential Function in “while-language” [2]

Int_32 = Int(32)
Int_2e9 = Int (2 EXP 9)
Plus_one = float (0, 127, 0)
THRESHOLD_1 = float (0, 134, 6066890)
THRESHOLD_2 = float (0, 102, 0)
Inv_L = float (0, 121, 3240448)
L1 = float (0, 121, 3240448)
L2 = float (0, 102, 4177550)
A1 = float (0, 126, 68)
A2 = float (0, 124, 2796268)

var x:float, E:float, R1:float, R2:float, R:float, P:float, Q:float,
S:float, E1:float, N:Int, N1:Int, N2:Int, M:Int, J:Int;

if Isnan (X) then E:= X
else if X == Plus_infinity then E:= Plus_infinity
else if X == Minus_infinity then E:= Plus_Zero
else if (abs(x) > THRESHOLD_1 then Checking block
if X > Plus_Zero then E:= Plus_ infinity
else E:= Plus_Zero
else if abs(X) < THRESHOLD_2 then E:= Plus_one + X
else
(

N:= INTRND (X * Inv_L);
N2:= N% Int_32; m and j computing block
N1:= N - N2;
M:= N1 / Int_32;
J:= N2;

if abs (N) Int_2e9 then
R1:= (X-Tofloat(N1) * L1) - Tofloat (N2) * L1    r1 and r2 block
 else
        R1:= X - Tofloat(N) * L1;
R2:= Tofloat(N) * L2;

R:= R1 + R2;
Q:= R * R (A1 + R * A2);    p(r) block
P:= R1 + (R2 + Q);

S:= S_Lead(J) + S_Trial(J);      Slead and Strail block

E1:= S_Lead(J) + (S_Trial(J) + S * P);  Exponent calculation block
E:= Scalb (E1, M);
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Figure 3.3:  Specification of the M-J Module (M_J_Spec)

The M_J_SPEC is responsible for computing themandj values mentioned before. It is

composed of the conjunction of five sub-specifications as shown in Figure 3.3. These sub-

specifications are the floating-point multiplication module (FP_MUL_SPEC), floating-

point to integer approximation module (FP_INT_SPEC), Modulo 32 module

(Mod_32_SPEC), floating-point subtraction module (FP_Sub_SPEC), and division by 32

module (Div_32_SPEC). Heremandj are integer valued numbers, even though they were

represented in the IEEE-754 floating-point format, since it is easier to use them afterwards

in this format. In short, this module would have one input (X) and a constant32/log 2,

composed of three parts (sign, exponent and mantissa) and four outputs (J, M, N, and N1),

each composed of the same three parts. This was modeled in HOL as follows:

X (Float) N2 (Int)

32/ log 2

N (Int)
N1 (Int)

J (Int)

M (Int)

FP_MUL_SPEC Mod_32_SPECFP_to_INT_SPEC

Sub_SPEC Div_32_SPEC
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Figure 3.4:  Specifying the Floating-Point Multiplier

Each of these main modules is then hierarchically top-down specified to reach the full

specification of this system. As an example of the next levels specification, we consider the

floating-point multiplier sub-module (Figure 3.4). This sub-module has three datapaths: the

sign, the exponent and the mantissa. For the sign and the exponent, the specification could

be done directly on this level, but for the mantissa we have to build another level of

M_J_SPEC X N N1 M J =
∃ const s1.

( valu const 31  = 132 * 2 EXP 23 + 3713595 )
( FP_MUL_SPEC X const s1)
( FP_to_INT_SPEC  s1 N)
( Mod_32_SPEC N J)
( FP_Sub_SPEC N J N1)
( DIV_32_SPEC N1 M)

∧
∧

∧
∧

∧
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hierarchical modules and give lower level specifications. This can be formalized as follows

using HOL:

Figure 3.5: distrib_Spec and collect_Specand their Usage in the Modeling Process

Wheredistrib_Specand collect_Spec(shown in Figure 3.5) are the specifications of

two main functions in floating-point implementation. Thedistrib_Specis responsible for

taking the floating-point number as a bit vector and distributes it to sign, exponent, and

mantissa. While thecollect_Specis performing the opposite taking the outputs and

returning the bit vector again. The specifications of both functions are as follows:

FP_MUL_SPEC A B MULout overFlow=
∃ check A_m B_m A_e B_e A_s B_s.

(distrib_Spec  A A_s A_e A_m) /\

( distrib_Spec  B B_s B_e B_m) /\
( Mantissa_SPEC  A_m B_m MULout_m check)
( Exp_SPEC A_e B_e MULout_e check overFlow)
( Sign_SPEC  A_s  B_s MULout_s)
( collect_Spec  MULout_s MULout_e MULout_m MULout)

∧
∧

∧
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This eases the modeling process as it decreases the signals transferred between the

modules to one bit vector per output instead of three. The multiplier Sign, Exponent and

Mantissa modules were specified as follows:

The latter code is composed of a number of sub-modules at the lower level. As an

example, we have shown the specification of one of the main modules which is the

multiplier:

distrib_Spec  Input s e m =
valu Input 31 = (bv s * 2 EXP 31)

+ ((valu e 7) * 2 EXP 23)+ (valu m 22)

collect_Spec  s e m OUT=
valu OUT 31  = (bv s * 2 EXP 31)

+ ((valu e 7) * 2 EXP 23)+ (valu m 22)

Sign_SPEC  i1 i2 out = (out =((i1 = i2) => F | T))

EXP_SPEC e1 e2 e3 e4 overFlow =
((valu e4 7 =  (((( ((valu e1 7 - 127) + (valu e2 7 - 127))
- valu e3 7)) + 127 < 2 EXP SUC 7)
(((((valu e1 7 - 127)+(valu e2 7 - 127))-valu e3 7))+127)
|((((((valu e1 7 - 127) + (valu e2 7 - 127)) - valu e3 7))
+ 127) -  2 EXP SUC 7)))
(overFlow = ~(((( ((valu e1 7 - 127) + (valu e2 7 - 127)
- valu e3 7)) + 127 < 2 EXP SUC 7))))

Mantissa_SPEC  A B MULout check =
∃ A_1 B_1 MULout_pre MULout_pre_1 C P check1.

( Concatenate_SPEC  23 A A_1 T)
( Concatenate_SPEC  23 B B_1 T)
( MUL_SPEC 24 A_1 B_1 C P MULout_pre)
( Check_SPEC MULout_pre check1 check)
( Shifter_SPEC  MULout_pre MULout_pre_1  check)
( Truncate_SPEC  MULout_pre_1 MULout 25)

⇒

∧

∧
∧

∧
∧

∧
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Similarly, we would proceed to more and more sub-modules in order to describe the

circuit behavioral. We use intermediate sub-modules to change the very flat behavioral

level to a more hierarchical one to ease the verification task.

3.3 Implementation of IEEE-754 Exponential Function

In this section, we describe briefly the implemented VHDL code developed by Buiet al.

[1] of the IEEE-754 Exponential Function and its modular model in HOL. We were faced

with the same problem in the specification, which was the flatness of the design. The code

CELL_MUL_SPEC a b c p co po =
(bv po = ((bv(a b)+bv c +bv p < 2) =>
(bv(a b)+ bv c + bv p) |
(bv (a b) + bv c + bv p) - 2))
(co = ~ (bv (a b) + bv c  + bv p  < 2))‘--);

LEFT_SHIFT_SPEC X Y =  ∀n. ((Y 0 = F) (Y (SUC n) = X n))

ROW_MUL_SPEC A b C P CO PO Aout= ∀ n.
( ∃ c. (((bv (PO n) = ( bv ((A n) b) + bv (C n) +
bv (P n) < 2 =>
(bv ((A n) b)  + bv (C n) + bv (P n))
| (bv ((A n) b) + bv (C n) + bv (P n))- 2))
((c n) = ~ (bv ((A n) b) + bv (C n)
+ bv (P n)< 2))))
LEFT_SHIFT_SPEC A Aout
LEFT_SHIFT_SPEC c CO
(C (SUC n) = F) (P (SUC n) = F))

(* Recursive definition of the Array module *)

( ARRAY_MUL_SPEC 0 A B C P Co Po Aout = ROW_MUL_SPEC A (B 0)
C P Co Po Aout)
( ARRAY_MUL_SPEC (SUC n) A B C P Co Po Aout = ∃ a p c.

ARRAY_MUL_spec n A B C P c p a
ROW_MUL_SPEC a (B (SUC n)) c p Co Po Aout)
MUL_SPEC n A B C P MULout = ∃ Co Po Aout.
ARRAY_MUL_SPEC n A B C P Co Po Aout
nadd_SPEC ((2*n)-1) Co Po F MULout (MULout (2 * n))

∧
∧

∧
∧

∧

∧

∧
∧ ∧

∧
∧

∧
∧

∧

∧

∧

∧
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was so flat it made it nearly impossible to be modeled, let alone verified. Thus, some design

changes had to be made, which involved keeping the same code properties but making the

design easier to model and verify. The main aim in the changes was to attack the following

criteria:

1) Logic Complexity:Hierarchical designs reduce the logic complexity in the circuit.

Also, in some modules the code could be changed to perform the same function, although

it is less complex.

2) Verification time and effort:it is very hard to model and verify a very large flat

design. Redesigning the VHDL code has saved a lot of time and effort needed in the

verification process. Also, this helped in emphasizing the modules needed to be verified,

i.e. clarifying the verification tasks needed for whole circuit verification.

These goals were reached by deriving a modified VHDL implementation based on

modules from the code written in [1]. The new high-level RTL implementation is

composed of modules corresponding to the high level specification. We have shown in

Figure 3.6 the synthesis of this code as resulting from the Synopsys design analyzer tool

[39]. This figure only shows the exponential computation module.
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Figure 3.6:  Top-level VHDL Implementation Built in Synopsys Design Analyzer

The HOL high level model of our implementation, which was nearly a one-to-one

mapping to VHDL, is as follows:

To show how the hierarchical implementation of these modules were modeled in HOL,

we will stick to the same example we gave before in the specification: we will discuss the

VHDL code of the M_J module and its HOL model all the way down to the gate level

implementation.

As discussed before, the module is composed of primitive floating-point functions, such

as floating-point addition (calledAdder1 in the VHDL code below) which were

implemented in the lower levels. The VHDL code of the M_J_Module was then

synthesized using the Synopsys tool and the result is shown in Figure 3.7.

IEEE_EXP_IMP X EXP =
∃ N M J N1 ...

( M_J_IMP X N M J N1)
( R1_R2_MOD_IMP X N N1s ..)
( Get_J_IMP  J Strail ..)
( P_R_IMP R1 R2 PR)
( EXP_CAL_MOD_IMP Slead ..)
( Compare_IMP  EXP_1 X EXP)

∧
∧

∧
∧

∧
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Figure 3.7:  Synthesis of the M_J Module VHDL Implementation with Synopsys Design Analyzer

This code was directly modeled in HOL as follows:

Each of these main modules is then hierarchically top-down implemented to reach the

lower implementation of the system. For example, the floating-point multiplier

implementation, was implemented as in three sub-modules. These sub-modules were the

M_J_IMP X N N1 M J =
∃ const s1.

( FP_MUL_IMP X const s1)
( FP_to_INT_IMP  s1 N)
( Mod_32_IMP N J
( FP_Sub_IMP N J N1)
( DIV_32_IMP  N1 M‘)

∧
∧

∧
∧
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three usual paths of the floating-point numbers:sign, exponentandmantissa. The main

implementation was modeled as follows:

For the sign and the exponent, the implementation depends on other sub-modules as

XOR, and ADDER. This was modeled using following modules:

WherenSub_imp, andnAdd_impare the n-bit Subtractors and adder implementations,

respectively. The modeling of the mantissa is a little longer process, because the mantissa

FP_MUL_IMP A B MULout overFlow=
∃ check A_m B_m A_e B_e A_s B_s.

( distrib_IMP  A A_s A_e A_m) /\
( distrib_IMP  B B_s B_e B_m) /\
( Mantissa_IMP  A_m B_m MULout_m check)
( Exp_IMP  A_e B_e MULout_e check overFlow)
( Sign_IMP  A_s  B_s MULout_s)
( collect_IMP  MULout_s MULout_e MULout_m MULout)

∧
∧

∧

Sign_IMP  i1 i2 out = XOR i1 i2 out

EXP_IMP e1 e2 e3 e4 overFlow =
∃ s1 b bout1 s2 bout2 s3 bout3 s4 bout4 overFlow.

(valu b 7 = 127)
(nSub_imp 7 e1  b  F s1 bout1)
(nSub_imp 7 e2  b  F s2 bout2)
(nAdd_imp 7 s1  s2 F s3 bout3)
(nSub_imp 7 s3  e3 F s4 bout4)
(nAdd_imp 7 s4  b  F e4 overFlow)

∧

∧
∧
∧
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got the main multiplication module. This was described in more than one level as shown

bellow:

The latter HOL description is composed of a number of sub-modules at the lower level.

To be consistent with the previous section, the integer multiplier implementation

(MUL_IMP) was implemented as follows:

Mantissa_IMP  A B MULout check =
∃ A_1 B_1 MULout_pre MULout_pre_1 C P check.

( Concatenate_IMP  23 A A_1 T)
( Concatenate_IMP  23 B B_1 T)
( MUL_IMP 24 A_1 B_1 C P MULout_pre)
( Check_IMP  MULout_pre check1 check)
( Shifter_IMP  MULout_pre MULout_pre_1  check)
( Truncate_IMP  MULout_pre_1 MULout 25)

∧
∧

∧
∧

∧

CELL_MUL_IMP a b c p co po =
∃ s1. (and2 a b s1) (fa_imp s1 c p po co)

ROW_MUL_IMP A b C P CO PO Aout= ∃ c.
(CELL_MUL (A (n)) b (C (n)) (P (n)) (c n) (PO (n))
(ShiftLeFT_Imp n A Aout)
(ShiftLeFT_Imp n c CO)
(C (SUC n) = F)
(P (SUC n) = F)

(* Recursive definition of the Array module *)

( ARRAY_MUL_IMP 0 A B C P Co Po Aout =
ROW_MUL_IMP A (B 0) C P Co Po Aout)

( ARRAY_MUL_IMP (SUC n) A B C P Co Po Aout = ∃ a p c.
ARRAY_MUL_IMP n A B C P c p a
ROW_MUL_IMP a (B (SUC n)) c p Co Po Aout)

MUL_IMP n A B C P MULout = ∃ Co Po Aout.
ARRAY_MUL_IMP n A B C P Co Po Aout
nadd_imp  ((2*n)-1) Co Po F MULout (MULout (2 * n))

∧

∧
∧

∧
∧

∧

∧

∧
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For instance, the distribution module, which is responsible for taking the floating-point

number as a bit vector and distributing it to sign, exponent, and mantissa, was implemented

as follows:

Similarly, we would proceed to more and more sub-modules in order to reach the gate

level implementation. We use intermediate sub-modules to cover the gap between the RTL

and the gate level. This ends with simple gate building blocks of all the modules. These

gates are considered the elementary building blocks for the whole architecture. Examples

of these primitives are AND, OR, NOT, XOR, etc.

After fully modeling the specification and implementation of the system, the next task

was the verification process, which will be discussed in the next section along with the

experimental results. The high similarity between the implementation at high levels and the

specification considerably eased the verification task.

distrib_IMP  Input s e m =
(bv s = bv (Input 31) )
(valu m 22 = valu Input 22)
(e 0 = Input 23)
(e 1 = Input 24) ...(e 7 = Input 30)

∧
∧
∧
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Chapter 4

Verification of The Exponential Function Using

HOL

4.1 Verification Methodology

4.2.1  Verification and Hardware Design Path

A cornerstone of many of the CAD suites is the ability to design hierarchically [31]. In

a hierarchical design, the circuit entry stage is a process of designing parts. The entire

circuit is the top-level part in the hierarchy. It consist of a number of functional blocks, each

implemented as a part. These parts then in turn consist of lower level parts and so on. As

shown in Figure 4.1, the system designer manually derives the requirements of the system

as the system behavioral specification. This behavioral specification is then used to drive

an RTL design and usually this step is done manually with the help of some CAD tools

(e.g., Synopsys). By driving the RTL design, usually automatic tools are used to drive a

gate level then a final layout product is ready to be manufactured.

Figure 4.1:  Design Stages and Errors [24]

Specification

Implementation

Architecture

Level

Implementation = Specification

Implementation = Specification

Implementation = Specification

RTL 

Gate

Transistor

Layout

Faults
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There is a large abstraction gap between specification and implementation. This gap

cannot be bridged in one move. Hence, a series of design (and verification) steps (levels)

are performed, reducing the abstraction levels until realizable description are available.

These levels, as mentioned by Kropf [24], areArchitecture (behavioral), Register-

Transfer, Gate, Transistor, andLayout levels (Figure 4.1). Table 4.1 shows the different

units and blocks used in each level.

Table 4.1 Abstraction Levels in Circuit Design [24]

In Table 4.1, different structures, behaviors, and data types are described. For instance,

the data types used in the design would differ from plain numbers (or real numbers), in the

highest levels of the design, to just pulses of different voltages indicating bits in the very

low levels.

Hierarchical design is important for two main reasons [31].First, it leads to a clear, well-

structured design. This facilitates “top-down” design and insures that any common element

is only entered once, simplifying both design and verification process.Second, it insures

the placement of related parts next to each other.

Level Behavior Structure Data Time

Architecture Algorithm Process Numbers Causality

RTL Data flow,
FSM

Registers,
ALU

Bit Vectors Clock cycles

Gate Boolean
functions

Flip-flops,
gates

buts discretedelay
time

Transistor Differential
equations

Capacitors,
transistors

Voltage,
current

Continuos
time

Layout - area - -
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In the design process, usually the implementation of a higher level is considered the

specification of the lower one as demonstrated in the Figure 4.1. Design faults may result

from erroneous transformation of the specification, given on a certain abstraction level, into

an implementation on the next lower level [24] (Figure 4.1). Three main fault classes can

be distinguished according to [24]. The first class encompassesdesign faults. The second

class resides inlocal optimizationsthat can be made in the same level. The third are

inherited implementation faults. As the late detection of design errors is largely responsible

for unexpected delays in realizing the hardware design, it is extremely important to ensure

correctness in each design step.

Formal verification methods have sometimes been accused of a lack of ability to get into

a whole industrial product design cycle. Factors like verification time, manpower, and

inability for handling large designs by verification tools were always showed to be the main

obstacle in using formal verification in industry. In this work, we have used HOL, a

theorem proving tool, along with the hierarchal and modular verification approaches to

insert formal verification into the whole design cycle of a floating-point circuit.

4.2.2  Exponential Function Verification

As shown in Figure 4.2, Harrison [15] formalized and verified that a behavioral

specification, an abstract algorithmic description he developed for the design, implies an

abstract mathematical description of the IEEE-754 Table-Driven Floating-Point

Exponential Function [37]. Starting form this behavioral specification, written in a “while-

language”, Bui et al. [1] developed an RTL implementation of the design in a previous part

in this project.
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The goal of this work is using formal verification technique (using HOL tool) in the

modeling and verification of the latter implementation with respect to the behavioral

specification designed by [15]. We were also interested in the development of a formal

proof that the gate implementation, machine synthesized using Synopsys, implies the RTL

implementation.

Starting the modeling, it was noticed that the specification [15] is too flat for a lower

level modeling or verification. Therefore, a new modular behavioral specification was

introduced, where its modules are shown in Figure 3.1 with a corresponding source as

given in Figure 3.2. The same problem was faced in modeling the RTL implementation

where a newer modular VHDL code had to be driven from the older flat one. The new

modular implementation and specification were essentially considered to ease the

verification task, but it also put some guidelines for implementing testable circuit designs.

Figure 4.2:  Verification Stages of the Exponential Function

Other Design ToolsHOL
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50

After the modeling, the overall verification process is composed of four main tasks,

shown in Figure 4.2, where the left side of the figure shows the different verification stages

done by HOL, while the right side shows design stages, the different languages, and the

tools used in the design process:

First, we proved the correctness of the modular behavioral specification, the

specification we developed to meet the verification modular needs, against the main flat

specification provided in [15].

Second, we proved that the modular RTL implementation implies the modular

behavioral specification. Our new modular design implementation is the verified design

now which will be used afterwards to be both synthesized and verified in the next steps.

Third, we adopted aHierarchical Verification approach for the modeling and

verification of our design to prove that the synthesized gate level implementation implies

the modular RTL description. In this approach, the design is structured into a hierarchy of

components and sub-components, and specifications that describe “primitive components”

at one level of the hierarchy then become specifications of the intended behavior at the next

level down [5] (Figure 4.3).

Figure 4.3:  Hierarchical Verification Approach

Spec.
Imp.
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Imp.

Spec.
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Spec.
Imp.

Spec.
Imp.

Spec.
Imp.

Spec.
Imp.

Spec.
Imp.

Spec.
Imp.

Spec.
Imp.

.......

Gate   Level

RTL



51

Finally, The whole proof should be linked in one global proof covering the whole design

cycle of the floating-point exponential function. Starting from the gate level

implementation, we should be ending by the abstract mathematical description of the

function. These verification paths are shown in Figure 4.2, where the shaded boxes are the

material provided by [15], [37] and [1], while the white boxes represent those developed in

this work.

4.2 Formal Verification of the Exponential Function

The ultimate theorem to be proved should be:

Let X be the input and EXP the exponential output, then:

 X EXP.

       if THRESHOLD_2  THRESHOLD_1 then

EXP_GATE_IMP   X   EXP EXP_BEH_SPEC   X    EXP

The assumption on X is made by the boundary module within both the specification and

the implementation. So the goal would look as following in HOL:

∀ X EXP.

IEEE_EXP_GATE_IMP X  EXP IEEE_EXP_BEH_SPEC    X  EXP

Where IEEE_EXP_GATE_IMPis the gate level implementation of the function and

IEEE_EXP_BEH_SPECis the behavioral implementation considered as our specifications.

This goal cannot be reached directly, due to the very high abstraction gap between the

gate and behavioral levels as described above. Therefore, the proof scheme was changed to

hierarchically prove that the gate level implies the more abstract RTL. Then this RTL was

∀

X≤ ≤

⇒

⇒
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related, by a formal proof, to a modular behavioral specification. The latter was proved to

imply the high level flat behavioral specification. This can be formalized as follows in

HOL:

∀ X EXP.IEEE_EXP_GATE_IMP X   EXP

IEEE_EXP_RTL_IMP    X   EXP  (1)

∀ X  EXP. IEEE_EXP_RTL_IMP   X   EXP

IEEE_EXP_MOD_BHV_SPEC    X   EXP                        (2)

∀ X EXP.IEEE_EXP_MOD_BHV_SPEC X   EXP

IEEE_EXP_BHV_SPEC     X   EXP                                   (3)

Where IEEE_EXP_RTL_IMPand IEEE_EXP_MOD_BHV_SPECare the RT and

modular behavioral specifications respectively.

Finally using equations (1), (2) and (3) we can reach the final goal stated again in

equation (4):

∀ X EXP.IEEE_EXP_GATE_IMP X   EXP

IEEE_EXP_BHV_SPEC    X   EXP

Due to the high modularity of the two intermediate blocks, the goals (1), (2), and (3)

could be extended to sub-level modules’ specification and implementation, and then the

verification continues with these sub-level modules. These proofs were then composed to

yield the original goal. As an illustrative example, let’s consider the M_J module at the RT

level, whose specification and implementation have been shown above. In the following

theorem the goal was set as:

X N N1 M J.M_J_IMP X N N1 M J

⇒

⇒

⇒

⇒

∀
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M_J_BEH_SPEC X N N1 M J

This was proven in HOL using the following tactic:

Theorems likeDIV_32_correct, Mod_32_correct, etc.are lemmas that were already

proved in previous verification steps. Usually in lower modules different strategies were

developed. For instance, induction (INDUCT_TAC) was mostly used in proving recursive

functions. Automatic tactics as PROVE_TAC and ARW_TAC were also used when the

goal was straightforward. These tactics take more machine time but they shorten the proof

and decrease the manpower needed.

Lower level implementations usually took more proof effort and time. As an example,

the verification goal of the floating-point multiplier, (cf. Sections 4.2, and 3.3) is set as

follows:

A B MULout OverFlow.

FP_MUL_IMP   A  B  MULout  overFlow

FP_MUL_SPEC  A  B  MULout  overFlow

This goal can be tackled by dividing it into smaller sub-goals, where every sub-goal

represents the verification of one of its sub-modules. For instance, for the main multiplier

block, ARRAY_MUL, this was done on many levels starting by verifying the cell, then the

⇒

REPEAT GEN_TAC THEN
REWRITE_TAC[M_J_Imp,M_J_SPEC] THEN
REPEAT STRIP_TAC THEN
EXISTS_TAC (--‘const_s:bool‘--) THEN
.
.
ARW_TAC[DIV_32_correct, Mod_32_correct ,
         FP_to_INT_correct, FP_MUL_correct,
FP_Sub_correct, FP_Add_correct ]

∀

⇒
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row then the array multiplier. These proofs were held in theories (as all other HOL theories

proved), then they were in the higher levels of the hierarchy. For the cell, the row of the

main multiplier unit (array multiplier) (cf. Sections 4.2, and 3.3), the proof was as follows:

The correct theorems of the cell and row were used as lemmas in the higher level

verification. In this way, HOL is used to build a hierarchy of theorems which were used as

building blocks of other proofs afterwards. Proceeding in this way, the floating-point

multiplier verification was performed as follows:

Goal 1:
 a b c p co po. CELL_MUL a b c p co po

 CELL_MUL_SPEC a b c p co po

Proof:
REPEAT GEN_TAC THEN
REWRITE_TAC[CELL_MUL,CELL_MUL_SPEC] THEN
REWRITE_TAC[GSYM FA_CORRECT] THEN
REWRITE_TAC[fa_spec,and2] THEN
EXISTS_ELIM_TAC THEN
ARW_TAC[]

Goal 2:
 n A b C P CO PO Aout. ROW_MUL_1 n A b C P CO PO Aout

 ROW_MUL_SPEC_1 n A b C P CO PO Aout

Proof:
REPEAT GEN_TAC THEN
REWRITE_TAC[ROW_MUL_1,ROW_MUL_SPEC_1] THEN
REWRITE_TAC[CELL_MUL] THEN
REWRITE_TAC[and2, GSYM FA_CORRECT] THEN
REWRITE_TAC[fa_spec]THEN
EXISTS_ELIM_TAC THEN
REPEAT STRIP_TAC THEN
EXISTS_TAC(--‘c:num->bool‘--) THEN
ARW_TAC[ShiftLeFT_correct]

∀
⇒

∀
⇒
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In HOL, we have the possibility of making use of previously proved theorems. This

saves a lot of time by eliminating the need for proving the same theory more than once. For

instance the above proof depends on other preproved theorems, so it looks really short,

although the goal is a real large one. This is clear in the usage of MUL_TRUE,

Concatenate_correct, Check_correct, and distrib_correct which were proved before.

Finally the goal for the distribution function (bothdistrib_impanddistrib_spec) will be

set and proved as follows using HOL:

Goal:
 A B MULout CHAN  . FP_MUL_IMP A B MULout CHAN

 FP_MUL_spec A B MULout CHAN

Proof:
REPEAT GEN_TAC THEN
REWRITE_TAC[FP_MUL_IMP,FP_MUL_spec] THEN
REWRITE_TAC[Concatinate_IMP,Concatinate_SPEC] THEN
REPEAT STRIP_TAC THEN
EXISTS_TAC (--‘A_1:num->bool‘--) THEN
EXISTS_TAC (--‘B_1:num->bool‘--) THEN
EXISTS_TAC (--‘MULout_pre:num->bool‘--) THEN
EXISTS_TAC (--‘MULout_pre_1:num->bool‘--) THEN
EXISTS_TAC (--‘C:num->bool‘--) THEN
EXISTS_TAC (--‘P:num->bool‘--) THEN
EXISTS_TAC (--‘check:bool‘--) THEN
REWRITE_TAC[valu] THEN
ASM_REWRITE_TAC[] THEN
UNDISCH_TAC (--‘MUL_imp 24 A_1 B_1 C P MULout_pre‘--) THEN
ARW_TAC[MUL_TRUE,Concatenate_correct, Check_correct,
Shifter_correct, Truncate_correct,
distrib_correct, collect_correct]

∀
⇒
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In this proof, we have used some main tactics, such as different REWRITE_TAC forms,

to simplify the main goal, until the remaining part could be forwarded to an automatic

tactic, ARW_TAC, to solve it fully.

4.3 Experimental Results

A summary of the verification times for the whole system is given in Table 4.2. All the

experiments have been carried out on a Sun Ultra SPARC 2 workstation with 296 MHz

processor and 768 MB of memory. In the table, we have showed the verification times of

two main building blocks, the floating-point adder and multiplier. These modules took a

very high verification time, but due to the high reusability of pre-proven theorems and

lemmas, other building blocks and even the main module required much less verification

time. Also, it can be seen that the verification time for four of the six main modules are

Goal:
 Input s e m. distrib_IMP Input s e m

 distrib_Spec Input s e m

Proof:
REWRITE_TAC[distrib_IMP,distrib_Spec] THEN
ONCE_REWRITE_TAC[MULT_SYM] THEN
REPEAT STRIP_TAC THEN
PURE_REWRITE_TAC[ num_CONV(--‘7‘--),... ,num_CONV(--‘1‘--)] THEN
REWRITE_TAC[valu,CONV_2] THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[LEFT_ADD_DISTRIB] THEN
REWRITE_TAC[MULT_ASSOC] THEN
REWRITE_TAC[GSYM EXP_ADD] THEN
PURE_REWRITE_TAC[ num_CONV(--‘7‘--),...num_CONV(--‘1‘--)] THEN
REWRITE_TAC[ADD_CLAUSES] THEN
PURE_REWRITE_TAC[num_CONV(--‘31‘--),...num_CONV(--‘23‘--)] THEN
REWRITE_TAC[valu] THEN
ARW_TAC[]

∀
⇒
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much smaller, since all these modules’ building blocks were pre-proved, it made the final

task shorter. The sum of the times of the systems showed here will be less than the total

verification time since there were some lemmas verified to achieve the final proof goal. The

whole code was composed of nearly 4600 lines.

Table 4.2 Verification Times of Different System Modules

Module Name CPU Time (in Sec.)

Floating-Point Addition 60.500

Floating-Point Multiplication 30.540

M_J Module 2.120

R1_R1 Module 5.620

P_R Module 3.420

EXP_Cal Module 1.970

IEEE_EXP Module 5.290

Total Verification Time 214.200
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Chapter 5

Conclusions and Future Work

Most verification and testing tools will fail to verify a circuit with a deep datapath. The

IEEE-754 Table Driven Exponential function with its 32 bit input and 32 bit output

implementation is considered an impossible task for exhaustive simulation. For full

coverage with simulation we would have cases to be checked, which means that even

a 2 or 3 percent coverage would take very long simulation time. Another important aspect

is that in case of any detected error, the new code would need to be re-simulated fully to

make sure that this change did not affect any other module. Decision diagrams based formal

methods will, also fail to verify such circuits. Either because of the state space explosion

problem; or the lack of expressiveness of the specification languages, e.g. CTL properties

will fail to describe arithmetic operations.

In this thesis, formal verification methods, based on theorem proving techniques (HOL),

enabled a full sound verification of a complex floating-point algorithm. The higher-order

logic in HOL enabled the hierarchal and modular descriptions at different levels of

abstraction.

In this thesis, we have formalized and verified a hardware implementation of the IEEE-

754 Table-Driven floating-point exponential function algorithm using the HOL theorem

prover. The high ability of abstraction in the HOL verification system allows its use for the

verification task over the whole design path of the circuit, starting from the gate level

implementation of the circuit up to a higher level behavioral specification. To achieve this

goal, we have used both hierarchical and modular approaches for modeling and verifying

232
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the floating-point exponential function in HOL, we did not find any errors in the RTL or

gate level implementation adopted.

Formal Verification, specially theorem proving, with some effort in automation and

training, can be integrated in the design cycle of mathematical circuits, increasing

confidence in these designs. The output of such effort leads to less design errors based on

the full coverage such techniques offer.

As a future work, this proof should be connected to the one developed by Harrison in

[15], to give a fully sound proof for such function starting from the gate level

implementation until the complete mathematical description of the function.

This project worked only onsingle precisionfloating-point numbers. It would be very

useful to extend this work to cover double and extended versions of the same standard.

Also, it would be interesting to specify and verify a generic version of the function which

can be directly used for any given precision.

Human efforts exerted in such a work is an interesting aspect to industry. In theorem

proving, it is very hard to define man-power used in the verification of each module,

because of the slow start of the process. However, time tends to diminish along the

verification path due to both an increase in the human knowledge of the system, and re-use

of previous tactics and theories. This process can be speeded up in a team work and through

the use of larger libraries of previous proofs.

On the other hand, more research is needed in the automation of both the modeling task

and the decision procedures of the HOL system. Tools used in modeling high definition

languages, VHDL and Verilog, or even subsets of them, in HOL language would decrease

significantly the need for human intervention and lead to the development of far more
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accurate methods of implementation and specification modeling. HOL, as a system, needs

better documentation, as it is pretty hard to find tactics for non-HOL experts. A Graphical

User Interface would give HOL more capabilities to be used in industry.
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