
On the Extension of SystemC by SystemVerilog Assertions

Ali Habibi and So£Áene Tahar
Department of Electrical and Computer Engineering

Concordia University
1455 de Maisonneuve, West,
Montreal, Quebec H3G 1M8

Email: {habibi,tahar}@ece.concordia.ca

Abstract— In this paper, we present an extension to the
SystemC library by SystemVerilog assertions. SystemC is an
emerging system level design and veri£cation language based
on C++ object oriented paradigms. It enables the modelling
and simulation of a complete System-on-a-Chip. We propose to
extend the SystemC library with Assertion Based Veri£cation
(ABV) which is a higher abstraction mechanism that allows a
concise capturing of design speci£cation. In order to do so, we
consider the same ABV structure as de£ned for the SystemVerilog
language. We propose to add ABV as SystemC monitors on
top of the original design. Doing so, an important goal will
be achieved, namely a uni£ed language which brings together
enhanced design and assertion features that deliver increased
designer productivity and smarter veri£cation. In the same
time, considering SystemVerilog’s standard assertions will take
advantage from the result of an industry-wide effort to extend the
Verilog language to include enhanced modelling and veri£cation
features.

I. INTRODUCTION

SystemC [9] is among a group of design system level
languages (SLL) proposed to raise the abstraction level for
embedded system design and veri£cation [8]. It is expected
to make a stronger effect in the areas of system architecture,
co-design and integration of hardware and software [7].

The veri£cation of a SystemC design is a more serious
bottleneck in the design cycle. Going further in complexity
and considering hardware/software systems will be out of
the range of the nowadays used simulation based techniques
[6]. Classical veri£cation techniques when used with SystemC
will face several problems related to the object-oriented (OO)
aspect of this library and to the complexity of its simulation
environment.

For instance, the main trends in de£ning new veri£cation
methodologies are considering a hybrid combination of formal,
semi-formal and simulation techniques. One of the widely
used techniques is Assertion Based Veri£cation (ABV) [5]. In
fact, assertions are said to be the next big breakthrough that
will enable engineers to continue to design and verify larger
and more complex designs. Assertion-based methodologies
will bring much needed structure to the current set of ad-hoc
testbench and monitoring techniques used by most designers
for simulation, as well as enable more widespread adoption of
emerging formal and semi-formal veri£cation technologies.

Accellera currently has three standardization efforts under-
way that will further enable assertion-based veri£cation: For-
mal Property Language—Sugar [4], SystemVerilog Assertions
(SVA) [3] and Open Veri£cation Library (OVL) [1]. First,

there is a formal property language effort, which is de£ning
the Sugar language standard for property speci£cation which
will provide new capability to express abstract, higher-level
speci£cations of design functionality. Next there is the effort
to add a native assertion construct and capability to SystemVer-
ilog, which will provide a simpler and more expressive way
of including assertions directly into Verilog designs. Finally,
the OVL effort de£nes the standard library of assertions,
providing a consistent method of reporting and controlling
these assertions.

In this paper we propose to augment SystemC by the support
of SVA. To do so, we consider the same syntax and semantics
of SVAs. These latter are translated into external SystemC
modules connected as read-only monitors (objects) to the
original design. Every monitor is composed of a set of input
signals (involved in the assertions) and a veri£cation process
(representing the code to verify the assertion itself). The design
is updated in order to be correctly connected to the assertions’
monitors by offering access to the signals involved in the
assertion. During simulation, all assertions monitors act as a
part of the design. In order to get advantages of the SystemC
OO nature, every monitor is only triggered whenever at least
one of its signals is updated, which leads to a more ef£cient
simulation.

The rest of this paper is organized as follows: Section 2
introduces the SystemC library. Section 3 presents SystemVer-
ilog Assertions. Section 4, de£nes the extension of SystemC
by SVA. Finally, Section 5 concludes the paper.

II. SYSTEMC LANGUAGE

SystemC is a set of C++ class de£nitions and a methodology
for using these classes [7]. SystemC is built on standard
C++. The core language consists of an event-driven simulator
as the base. It works with events and processes. The other
core language elements consist of modules and ports for
representing structures. Interfaces and channels are used to
describe communications. The primitive channels are built-in
channels that have wide use such as signals, semaphores and
FIFOs. SystemC provides data types for hardware modelling
and certain types of software programming as well.

Events occur at a given simulation time. Time starts at 0 and
moves forward only. Time increments are based on the default
time unit and the time resolution. Three main concepts are
used here: initialization, elaboration and simulation semantics.

- 1869 -

Sean Dunne

• Initialization: is the £rst step in the SystemC scheduler.
Each process is executed once during initialization and
each thread process is executed until a wait statement is
encountered.

• Elaboration: is de£ned as the execution of the sc main()
function from its entry point to the £rst invocation of
sc start().

• Simulation: The SystemC simulator controls the timing
and the order of process execution, handles event noti-
£cations and manages updates to channels. It supports
the notion of deltacycles, which consists of the execution
of evaluate and update phases. The number of deltacycles
for every simulation time depends on the simulation itself.

III. SYSTEMVERILOG ASSERTIONS

The SystemVerilog standard is the result of an industry-
wide effort to extend the Verilog language in a consistent
way to include enhanced modeling and veri£cation features.
A key feature of SystemVerilog is the SystemVerilog Asser-
tion (SVA), which uni£es simulation and formal veri£cation
semantics to drive the design for veri£cation methodology.

The semantics of SVA are de£ned such that the evaluation
of the assertions is guaranteed to be equivalent between sim-
ulation and formal veri£cation. This equivalence ensures that
multiple tools will all interpret the behaviors speci£ed in SVA
in the same way. Moreover, the uni£cation of assertions with
the design and veri£cation code streamlines the interaction
between the assertion and the testbenchto augment the power
of assertions. In particular, SystemVerilog allows assertions
to communicate information to the testbench and allows the
testbench to react to the status of assertions without requiring
a separate application programming interface (API).

SystemVerilog provides two types of assertions: immediate
and concurrent.

A. Immediate Assertions

Immediate assertions are procedural statements that can
occur anywhere within always or initial blocks, and include a
conditional expression to be tested and a set of statements to be
executed depending on the result of the expression evaluation.
The syntax of an immediate assertion is:

immediate assert statement ::=
assert(expression)[[pass statement]else[fail statement]]

The expression is evaluated immediately when the statement
is executed, exactly as it would be for an if statement. The
pass statement is executed if the expression evaluates to true,
otherwise the fail statement is executed.

B. Concurrent Assertions

The real power of SVA, both for simulation and formal
veri£cation, is the ability to specify behavior over time, which
VHDL assertions cannot do. For instance, it is possible today
to use Property Speci£cation Language (PSL) [?] with VHDL
in the form of pragmas, or structured comments, that begin
with the string “-psl”. But a better solution would be to

add PSL declarations and statements to VHDL as £rst-class
language constructs. In VHDL-200x [10], the Simple Subset
of PSL will be integrated as part of VHDL.

Concurrent assertions provide the ability to specify such
sequential behavior concisely and to evaluate that behavior at
discrete points in time, usually clock ticks (such as “posedge
clk”). The syntax of concurrent assertions is:

concurrent assert statement ::=
assert(sequential expr or prop)[[pass statement] else

[fail statement]]

The concepts and components that make up concurrent
assertions can best be understood as a set of layers, each
building on the layer as described in Figure 1.

Assertions directives

Property declaration

Sequential regular expressions

Boolean expressions

Events to trigger the
assertion block

Methods inside the

assertion block

Conditional statements

C boolean expressions

Fig. 1. Mapping between SystemVerilog assertions and SystemC objects.

The basic function of an assertion is to specify a set of
behaviors that is expected to hold true for a given design or
component. The Boolean expressions layer is the most basic
one, and speci£es the values of elements at a particular point in
time, while the sequential regular expressions layer builds on
the Boolean layer to specify the temporal relationship between
elements over a period of time. The property declarations layer
builds on sequences to specify the actual behaviors of interest,
and the assertion directives layer explicitly associates these
behaviors with the design and guides veri£cation tools about
how to use them.

To ensure consistency between simulation and formal veri-
£cation tools, which apply a cycle-based view of the design,
concurrent assertions in SystemVerilog use sampled values of
signals to evaluate expressions. The sampled value of signals is
de£ned to be the value of the signal at the end (for instance, at
read-only synchronization time as de£ned by the Programming
Language Interface (PLI) [3]) of the last simulation time step
before the clock occurs. This way, a predictable result can
be obtained from the evaluation, regardless of the simulator’s
internal mechanism of ordering and evaluating events.

IV. EXTENDING SYSTEMC BY SVA

To add SVA to SystemC two options are possible: integrate
the SVA as part of the library or on top of the library. The £rst
case presents a radical change of SystemC requiring adding
new constructors to the library (assert for example). Besides,
the SystemC simulator and semantics must be updated in order

- 1870 -

to manage and verify correctly the assertions. This choice may
seem to be the most ef£cient as assertions will be de£ned in
SystemC the same way they are integrated in SystemVerilog.
Nevertheless, considering the OO aspect of SystemC and its
modular structure, it is easier yet probably more ef£cient to
add assertions on top of SystemC. In fact, any assertion can be
seen as a monitor having as input some of the design signals,
performing a veri£cation operation and giving as output a
status ¤ag. The open question facing this latter approach is
how to update the design in order to connect the assertions
monitors.

SystemC

design

GCC compiler
Assertion

validationTable of

symbols

SystemC updated design containing

the assertion’s monitor

Assertion in

SVA format

Design updater

Assertion

compiler

List of

updates

Assertion integrator

Assertion

monitor

Updated

design

Fig. 2. Methodology of Extending SystemC by SVA.

Figure 2 shows the proposed methodology to construct
and integrate SVA into SystemC design. We £rst start by
collecting the information about the environment from the
SystemC compiled code. To do so we consider the symbol
£le generated from the Gnu-C-Compiler (GCC). This step is
needed in order to localize which signal belongs to which
module. Then, the assertion is validated and compiled. The
validation phase veri£es the syntax of the assertion while
the compilation phase performs the link between the design
variables and the assertion parameters.

In order to connect the assertion monitor to the existent
design, this latter needs also to be updated. In fact, the signals
involved in the assertion must be transformed to output signals
in order to feed them to the assertion monitor. The list of
signals required to extract from the design is generated by
the assertion compiler and input to the design updater which
performs the required modi£cations to the original SystemC
design. These modi£cation will not affect the behavior of the
design since they will only get some signals connected to the
assertion monitor as read-only.

To assertion module is then connected to the updated design.
This module will be instantiated in the main function of the
SystemC design (sc main) and connected to the appropriate

existent modules. The resulting code when executed will
therefore consider the assertion monitor as part of the design.

The assertion compiler generates the SystemC code that
corresponds to the input assertion which includes: Boolean
expressions, sequential expressions and properties. We will
consider Boolean variables as SystemC signals (sc signal) in
order to get bene£t of the object nature of this module and
to be able to integrate any variable as part of the monitor
constructor section (containing the triggering conditions).

A. Sequential Expressions

SystemVerilog includes the ability to specify sequential
expressions or sequences of Boolean expressions with tem-
poral relationships between them. To determine a match of
the sequence, the Boolean expressions are evaluated at each
successive sample point, de£ned by a clock that gets associated
with the sequence. If all expressions are true, then a match of
the sequence occurs. The most basic sequential expression is
something like event1 followed by event2 after three-clock
cycles” which is represented in SystemVerilog syntax as:
“event1 # # 3 event2”.

In this previous example, the “##3” indicates a three-clock
delay between successive Boolean expressions in the sequence.
Every sequence will be represented in SystemC as a list of
members of the the assertion monitor. The clock cycles will
be represented as counters. The code corresponding to the
previous example is given by:

sc_in<bool> event1;
sc_in<bool> event2;
sc_in<int> counter = 0;

The counter variable is updated in the sequence validation
method as follows:

if(event1)
counter = 1;

if (counter > 0)
counter++;

if(counter == 3) {
if(event2)
{

counter = 0;
return TRUE;

}
else
{

counter = 0;
return ERROR;

}
return Pending;
}

The main operations de£ned over sequences are summarized
in Table I.

B. Property Declarations

The property layer allows for more general behaviors to
be speci£ed. In particular, properties allow users to invert
the sense of a sequence (e.g., when the sequence should not
happen), disable the sequence evaluation, or specify that a

- 1871 -

TABLE I

SVA SEQUENCE OPERATIONS.

Operation Syntax Meaning

Concatenation seq1 ##1 seq2 seq2 begins on the clock

after seq1 completes

Overlap seq1 ##0 seq2 seq2 begins on the same clock

seq1 completes

Ended seq1 ##1 seq2 completes on the clock after

Detection seq2.ended seq1 completes

(regardless when seq1 started)

Repetition seq1 [*n:m] repeat seq1 a minimum of n

and maximum of m times.

First Match £rst match(seq1) if seq1 has multiple matches,

Detection consider the £rst one.

OR seq1 or seq2 compound sequence that matches

when seq1 or seq2 matches

End seq1 and seq2 compound sequence that matches

when both seq1 and seq2 match

sequence be implied by some other occurrence. The property
construct allows these capabilities using the following syntax:

property declaration ::=
property name[formal item(, formal item)];

assertion varaibles declaration

property specification

endproperty

property specfication ::=
property name[formal item(, formal item)];

[clocking events]
[disable iff (expression)] [not] property expr

property expr ::= sequence expr | implication expr

The important difference between sequences and properties
resides in the fact that these latter are triggered by other signals
other than clocks. As a result, the representation of a property
in the assertion monitor will contain two parts:

• Property veri£cation method: A method that is responsi-
ble for the veri£cation of the assertion.

• Triggering conditions: a list of conditions that activates
the veri£cation of the assertion (a signal update for
example).

As an illustration consider the property: “as long as the
test signal is low, check that the abort seq sequence does not
occur”. This can be written in SVA as:

property p1 ;
@ (posedge clk) disable iff (test) not abort seq

endproperty

This assertion is represented in the SystemC assertion
monitor as method triggered when the signal test is low and
performing the following code:

if(test.in()) {
if(abort_seq)

return ERROR;
else

return TRUE;
}

We note that in practice, most sequential assertions are
expressed as some form of implication “when this happens,
then that will happen”, and thus require the assertion writer to
specify the antecedent expression to trigger the assertion (for
the previously given assertion the condition was test.in() set to
TRUE). The object nature of the SystemC assertion monitor
as a “SystemC Module” offers more ¤exibility to de£ne this
kind of assertions.

V. CONCLUSION

In this paper we presented a methodology to integrate
SystemVerilog Assertions (SVA) support to SystemC. We
proposed to translate SVA into SystemC monitors connected to
the design in order to verify some assertions during simulation.
Our approach takes advantage from the object-oriented nature
of the C++ language and the events concept of the SystemC
library. We offered a hierarchical transformation of SVAs
starting from basic Boolean expressions and getting to proce-
dural assertions; therefore covering completely SystemVerilog
assertions.

As future work, we consider to augment the assertion layer
we de£ned for SystemC by: (1) A support for customizable
messaging resulting from the assertions; (2) A communication
between the assertions and the testbench and vice-versa; and
(3) An optimization of the assertion code in order to get faster
veri£cation time.

REFERENCES

[1] Accellera Organization. Open Veri£cation Library, Assertion Monitor
Reference Manual, pp. 234, 2003.

[2] Accellera Organization. Property Speci£cation Language reference man-
ual, Version 1.01, Accellera Organization, pp. 122, 2003.

[3] Accellera Organization. SystemVerilog 3.1 Accellera’s Extensions to
Verilog, Accellera Organization, pp. 374, 2003.

[4] I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze and Y. Rodeh.
”The temporal logic sugar”. In Computer-Aided Veri£cation, volume
2102 of Lecture Notes in Computer Science, pp. 363-367, Springer-
Verlag, 2001.

[5] B. Bentley. Validating the Intel Pentium 4 Microprocessor. In Proc. of
the 38th Design Automation Conference, pp. 244-248, 2001.

[6] M. Kantrowitz and L. Noack. “I’m Done Simulating: Now What?
Veri£cation Coverage Analysis and Correctness Checking of the DEC-
chip21164 Alpha Microprocessor”. In Proc. ACM/IEEE Design Automa-
tion Conference, 1996.

[7] Open SystemC Initiative. SystemC 2.0.1 language reference manual.
Open SystemC Initiative, pp. 428, 2003.

[8] P. R . Panda. SystemC: a modeling platform supporting multiple design
abstractions. In In Proc. of the 14th International Symposium on Systems
synthesis, pp. 75–80, 2001.

[9] SystemC: http://www.systemc.org, 2004.
[10] VHDL-200X (The Future of VHDL): http://www.eda.org/vhdl-200x,

2004.

- 1872 -

