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slow-moving tissue is one of the main obstacles to obtain a clear view of the
vascular network. Enhancement of the vasculature by suppressing the clutters is a
significant and irreplaceable step for many applications of ultrasound CFI.
Currently, this task is often performed by Singular Value Decomposition (SVD) of
the data matrix. This approach exhibits two well-known limitations. First, the
performance of SVD is sensitive to the proper manual selection of the ranks
corresponding to clutter and blood subspaces. Second, SVD is prone to failure in
the presence of large random noise in the dataset. A potential solution to these
issues is using Decomposition into Low-rank and Sparse Matrices (DLSM)
framework. SVD is one of the algorithms for solving the minimization problem
under the DLSM framework. Many other algorithms under DLSM avoid full SVD
and use approximated SVD or SVD-free ideas which may have better
performance with higher robustness and less computing time. In practice, these
models separate blood from clutter based on the assumption that steady clutter
represents a low-rank structure and that the moving blood component is sparse.
In this paper, we present a comprehensive review of ultrasound clutter suppression
techniques and exploit the feasibility of low-rank and sparse decomposition
schemes in ultrasound clutter suppression. We conduct this review study by
adapting 106 DLSM algorithms and validating them against simulation, phantom,
and in vivo rat datasets. Two conventional quality metrics, Signal-to-Noise Ratio
(SNR) and Contrast-to-Noise Ratio (CNR) are used for performance evaluation.
In addition, computation times required by different algorithms for generating
clutter suppressed images are reported. Our extensive analysis shows that the
DLSM framework can be successfully applied to ultrasound clutter suppression.

Keywords: Ultrasound color flow imaging; Clutter suppression; Vessel
visualization; Low-rank and sparse matrix decomposition
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1 Background

Angiology, which concerns vessel-related diseases, is one of the most important
branches of medical science since vascular diseases are very common and cause
death to a large number of people every year [1]. Vascular diseases can primarily be
divided into several categories based on the type of vessel. Arterial diseases include
aneurysms, thrombosis, vasculitides, and vasospastic disorders. Venous diseases in-
clude venous thrombosis, chronic venous insufficiency, and varicose veins. There
are also diseases associated with capillaries. One such example is the capillary he-
mangioma. Currently, the most accepted classification of vascular abnormalities is
tumors and deformities which were adopted in 1996 by the International Society for
the Study of Vascular Anomalies [2]. Therefore, many major clinical diseases have
been shown to cause vascular growth abnormalities. For example, many cardiovascu-
lar diseases are related to aneurysms or other vascular variations [3, 4]; the growth
of many tumors in cancer is also highly dependent on angiogenesis [5, 6]. Simi-
larly, angiogenesis is also an important feature of diabetes-related diseases [7, 8, 9]
and endometriosis [10]. Therefore, blood vessel imaging is indispensable in clinical
fields and medical research [11], including but not limited to diagnosis, treatment
planning, surgery, and follow-up treatment results.

Several medical imaging modalities such as Duplex Ultrasound (DUS), Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), and Digital Subtraction
Angiography (DSA) have been employed thus far to ensure a proper visualization of
blood vessels. Among different vascular imaging modalities, ultrasound has become
the primary choice, for it is safe, economical, easy-to-use, and most importantly,
real-time [11]. Duplex ultrasound is the combination of Color Flow Imaging (CFI)
and grayscale/brightness mode (B-mode) imaging, whereas the CFI is used to ob-
serve the blood flow direction and velocities, and the B-mode ultrasound is used to
visualize two-dimensional anatomy images simultaneously. By simultaneous process-
ing frequency, phase, and amplitude of the backscattered ultrasound signal, CFI can
rapidly identify the flow direction and velocities in the region of interest. Moreover,
CFI can be used to mark flow abnormalities, including stenoses and occlusions [12].
The comparison between ultrasound and other vascular imaging methods is shown
in Table 1.

Table 1: A comparison of vessel imaging methods [11, 13]. Acquisition time is ap-
proximate with pretreatments and acquisition included.

Acquisition Time  Safety Limitations
MRI 30 min No risk Long imaging time. No vessel wall. Metal Prohibited.
CT 5 min Low risk Radiation risk. Complication risk.
DSA 120 min Low risk Radiation risk. Complication risk. Invasive.
DUS 15 min No risk Limit resolution. Prohibited at wound sites.

High level user dependent. Obstruction of gas and solid.

Due to the excellent performance, ultrasound CFI has been increasingly used for
the diagnosis of vessel-related diseases [14]. However, as one of the most promising
and widely applicable methods with low cost and no risk, CF1I still has some obvious
disadvantages. Firstly, due to the tissue scattering of the ultrasound beam, the
intensity of the blood backscatter is several orders of magnitude less than that of
the tissue backscatter, which makes it hard to image blood flow clearly [12, 15].
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Secondly, more than three pulses are needed to estimate the velocity because of
the stochastic behavior of blood signals and the impact of tissue clutters [12]. The
requirement for multiple pulses limits frame rates and the number of scan lines.
Thirdly, CFI is limited by the insonation angle which is the angle between the
ultrasound beam and the flow direction [16, 17]. Generally, an accurate measurement
requires Doppler angles ranging from 30 to 60 degrees, where smaller angles will
result in lower speeds and greater angles will produce a significant overestimation
of the velocity [16, 17]. Last but not least, blood signals and clutter signals will
possess a significant overlap, that is, when the blood flow rate is very slow (such as
in small blood vessels) or when the tissue movement is obvious. The overlap will
be harmful to blood vessel visualization [18, 19]. Most of these disadvantages are
caused by clutter, as a consequence, clutter suppression is particularly important in
ultrasound blood flow imaging. Figure 1 shows the clutter in two CFI images and
illustrates the importance of clutter filtering.

(a) (b)

Figure 1: A set of comparison images showing CFI with and without clutter

filters. (a) is CFI raw data in Brightness mode. (b) is the same data after
clutter suppression by SVD. In the upper right window, the raw CFI data
contains a lot of tissue clutter in the background, which is suppressed by
SVD in the second image.

The main purpose of clutter filtering is to suppress gross-moving tissue clutter
and beam side lobe leakages [19]. An efficient clutter suppression is a prerequisite
for CFI to present accurate and clear blood flow maps. The most significant effect of
clutter reduction is an increase in the signal-to-noise ratio (SNR) of the blood signal,
which enables clearer blood flow maps and reduces erroneous moving tissue signals.
Meanwhile, pure blood flow signals also help reduce the number of pulses needed to
estimate the speed, thereby increasing the frame rate. In addition, the overlapping
frequency spectra of slow blood flow and fast-moving tissue will no longer hinder
the microvascular flow detection or add bias to high-velocity flow [19, 20].

However, the perfect removal of clutter signals is still impossible for now since
clutter signals are 40 to 100 dB stronger than blood signals and they exhibit similar
properties [15].

In early development of CFI clutter filtering, tissue signals and blood signals were
assumed to have completely different frequency characteristics. This assumption
holds that tissue and blood signals exhibit non-overlapping frequency spectra since
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the tissue is considered to be nearly stationary whereas red blood cells are rapidly
moving [18]. Based on this assumption, Finite Impulse Response (FIR) and Infi-
nite Impulse Response (ITR) high pass filters were used to filter clutter signals and
enhance the sensitivity of blood flow [15, 18]. Nowadays, it is recognized that FIR
and IIR filters have distinct drawbacks. FIR filters require a high order to separate
blood from clutter, whereas IIR filters take a long time to settle [18, 21]. Further-
more, both types of high pass filters suffer from the insufficient number of slow time
samples, which leads to inefficient suppression of clutter [19, 22]. Another clutter re-
moval approach introduces linear regression filters [23, 24, 25]. The regression filter
eliminates clutter signals by taking the least square fitting of signals from the signal
model [18]. Studies suggest that polynomial regression filters and IIR filters have
better performance than FIR filters. In the case of contrast-enhanced ultrasound
vascular imaging, pulse inversion technique has been introduced towards the end
of clutter rejection [26, 27, 28]. In this approach, the linearity property of tissue
echo is exploited for distinguishing tissue from blood [26, 29, 30]. Although these
methods significantly improve the SNR of blood signals, they are not considered in
this paper because of their invasiveness.

The aforementioned traditional clutter suppression algorithms, such as FIR and
IIR, have at least one of the following issues: 1) long settling time 2) inability
to adaptively suppress the clutter based on data property 3) inadequate temporal
sample or resolution. Besides, two main reasons are resulting in the imperative inno-
vation of ultrasonic clutter filtering. Firstly, new ultrasound technologies like plane
wave ultrasound have brought a higher frame rate and imaging speed. Traditional
filters cannot meet the higher clutter filtering performance requirements, though
they do not suffer from the settling time due to the high frame rate. Secondly, the
underlying assumption of traditional filters does not hold in the presence of signifi-
cant tissue motion stemming from the sonographer’s sinusoidal hand movement or
the patient’s breathing and heart-beat [31, 32]. In such a scenario, the frequency
bands corresponding to tissue and blood overlap with each other without a definite
boundary between them. Hence, high pass filters fail to separate blood from tis-
sue when the clutter signal dominates with non-zero Doppler frequency caused by
substantial tissue movements.

To resolve these issues, eigen-based filters [33, 34, 35] have been proposed which
take both spatial and temporal samples into consideration to develop an adap-
tive clutter suppression scheme. The techniques related to these eigen-based filters
have been widely applied in the field of computer science which is mainly used for
processing high-dimensional data. Meanwhile, these techniques are not based on
incomplete traditional assumptions. Matrix decomposition is the principal idea be-
hind these algorithms and it is assumed that clutter and blood signals lie in different
subspaces. Therefore, eigen-based filters are considered adaptive to gross motions
induced by the sonographer or the subject being examined. Based on different as-
sumptions, research proves that eigen-based filters perform better than traditional
methods [20, 22].

Most of the eigen-based filters for ultrasound clutter suppression are based on Sin-
gular Value Decomposition (SVD) or eigenvalue decomposition and improve upon
it [36, 37, 38, 39]. To perform the subspace separation task, slow-time temporal
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ultrasound frames are stacked as columns of data matrix, known as the Casorati
matrix [40]. The SVD of this Casorati matrix provides the opportunity to distinguish
blood from clutter. It has been reported in the literature that the most dominant
singular values and vectors correspond to clutter, the next few represent blood and
the least significant ones correspond to noise [41]. In these eigen-based approaches,
the eigen or singular values representing clutter and noise are set to zero to find the
blood component of the echo signal [41, 42].

Many SVD-based techniques have been proposed which work with conventional
line-by-line scanning [20, 43, 44, 45]. These methods suffer from lacking an adequate
number of temporal samples due to low frame rate associated with focused ultra-
sound imaging [21]. Recent clutter suppression algorithms [18, 42, 46, 47, 48, 49]
have resolved this issue by incorporating ultrafast plane-wave imaging. However, the
blood signal in plane-wave ultrasound is even weaker than normal ultrasound due to
the unfocused wave [50, 51]. The sidelobe in plane-wave imaging is also much higher
than that in conventional imaging due to the same reason. Therefore, plane-wave
ultrasound has a higher and more urgent filtering requirement than traditional CFL.
Recent methods have extended SVD-based clutter suppression to a higher order by
analyzing a data tensor instead of a two-dimensional matrix [42, 48, 52]. Since the
first few singular values do not necessarily correspond to the clutter signal in the
presence of a large temporal misalignment among the frames, the motion correc-
tion step has been introduced in SVD-based clutter rejection [53]. Since SVD was
initially combined with plane-wave imaging in 2015, almost all the clutter suppres-
sion research has been based on plane-wave ultrasound since SVD can reach its full
potential on large datasets [18].

Although SVD based techniques are promising for suppressing clutter optimally,
they have two major drawbacks. First, there is still no uniform and efficient standard
for rank selection which presents boundaries of tissue and blood flow [42]. Proper
subspace rank selection which is done by extensive manual intervention, is crucial
for the optimality of clutter rejection. Recent methods suggest different criteria for
selecting the optimal ranks [54]. In addition, [21] proposes K-means clustering of the
decomposed components as a criterion for selecting singular values and vectors cor-
responding to clutter and blood. Though different ideas are proposed for automatic
rank selection [55], there is still no efficient and standard method. An example that
briefly explains the problem of SVD threshold selection is shown in Figure 2. The
selected rank will affect blood signals. A large threshold range cannot effectively
filter clutter and noise, and a small range will lose part of the blood signals. The
second drawback is that SVD is sensitive to noise. It fails to obtain the optimal
result while processing data with large random noise [56].

The aforementioned issues can potentially be resolved by taking the framework
called Decomposition into Low-rank and Sparse Matrices (DLSM) [21] into account.
SVD is one of the calculation methods in DLSM framework and there are also
approximate SVD or SVD-free algorithms. This is a well-established framework in
the field of computer vision due to its robustness to large noise and information
corruption [56]. The underlying assumption of this approach is that steady tissue is
a low-rank component and moving blood exhibits sparsity [50]. It has been noticed
that both temporal and spatial information can be used to separate tissue and
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(c)b=4,e=16

(d) b=6,e=14

Figure 2: A set of pictures showing the threshold selection of SVD. (a) is
the original simulation data in brightness mode. (b), (¢), (d), (e) are the
processed images by SVD with different thresholds. Parameters b and e
represent the selected rank of blood and noise signal, respectively. The full
rank of the data is 20.

blood signals since tissue signals have a higher temporal-spatial coherence than
blood signals (e.g. the blood scatterers are unique and constantly changing). A
convex optimization problem is usually solved to decompose the data matrix into
low-rank clutter and sparse blood components. A recent technique has used this
model for the concurrent removal of clutter and noise [57]. Furthermore, recent
work has incorporated deep learning with low-rank and sparse decomposition for
improved clutter suppression performance [21].

The main purpose of this work is to demonstrate the feasibility of 106 established
low-rank and sparse decomposition algorithms in ultrasound clutter suppression
and to provide suggestions for most suitable DLSM models, optimization methods,
and algorithms for ultrasonic clutter suppression. The paper is organized as follows.
Section 2 illustrates DLSM framework including decomposition types, loss functions,
and relationships with subspace clustering and tensor decomposition. Section 3
includes detailed experimental settings and results on simulation, phantom, and
in vivo rat datasets. Sections 4 and 5 show the discussion and conclusion of the
experiment and the prospect of DLSM framework in ultrasonic clutter suppression.

2 Decomposition into Low-rank and Sparse Matrices (DLSM)
Framework

Low-rank and sparse structures are attractive since they usually represent part of
the large and high-dimensional data which we are most interested in. Noise and data
corruption can be fixed when decomposing matrices into low-rank and sparse com-
ponents. Methods like sparse representation and low-rank modeling have achieved
great success in computer vision, natural language processing, system identifica-
tion, bioinformatics, etc. [58, 59, 60]. So far, many different models, optimiza-
tion methods, and algorithms are proposed aiming at solving the low-rank and
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sparse matrix recovery problems. Meanwhile, many classifications have been pro-
posed [58, 61, 62, 63] according to linearity, convexity, number of subspaces, or
number of addition matrices.

Decomposition into low-rank and sparse matrices (DLSM) is one of the rela-
tively detailed and comprehensive frameworks [61] which classifies various models
of matrix decomposition according to the number of constrained component matri-
ces. DLSM framework provides a suitable framework for signal processing, system
identification, computer vision, machine learning, etc. This decomposition idea is
becoming more popular and widely used in recent years, especially after the robust
principal component pursuit (RPCP) was purposed in papers of Candes et al. [56],
and Chandrasekharan et al. in 2009 [64]. In the beginning, these algorithms are de-
signed to deal with high-dimensional data which is often regarded as an extremely
high-dimensional data matrix. Since many dimensions are usually independent, it
is possible to recover the matrix from corruption or noise. These ideas are based on
the assumption that the uncorrupted information matrix is highly correlated within
the observing time-window and therefore lies in the low-rank subspace. At the same
time, the moving foreground objects, noise, or other special signals constitute the
correlated sparse outliers.

Based on similar assumptions, several algorithms under DLSM framework have
been validated that they can be successfully applied to ultrasound clutter suppres-
sion [18, 22, 36, 38, 55, 65]. In medical ultrasound, tissue and blood flow also lie
in different subspace. In terms of temporal information, tissue signals and blood
signals have different spectral features due to the different movement patterns of
blood and tissue. As for spatial features, the blood signal has an extremely lower
spatial coherence than tissue signal because the irregular movement and arrange-
ment of red blood cells produce constantly changing scatterers, whereas the tissue
movement is overall patterned. Therefore, they gain a low rank and sparsity charac-
teristics, respectively, and lie in different subspaces. Due to the robust and efficient
performance of DLSM frameworks in separating low-rank and sparse components,
it can show great potential in the field of ultrasound clutter suppression.

Overall, DLSM framework is divided into decomposition problems, minimization
problems, loss function and solvers (algorithms used to solve the optimization prob-
lems) [63] as Figure 3 shows. The permutations and combinations of models and
optimization methods and solvers lead to various algorithms, which is the origin
of the DLSM framework. DLSM framework and its application in the ultrasound
clutter suppression will be briefly illustrated in the following subsections.

2.1 Preprocessing and Notations

Preprocessing of ultrasound data is necessary for integration into an input matrix
or tensor in a special shape when applying DLSM algorithms. In general, the input
of the DLSM algorithm consists of a sequence of n consecutive ultrasound data
(Fy ... F,) with the original size of F' € R11%%2. For a two-dimensional DLSM al-
gorithm, the input M (M € R™*™ m = i1 X i) is in matrix form in most cases
which consists of n resized ultrasound data frames (F € R7*!) arranged in order.
In terms of higher-order DLSM algorithms, the input is typically an N-order tensor
T (T € Rhrxtz-tn) T is generally third order and concatenated by original size
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Figure 3: The schematic diagram of DLSM framework. DLSM framework
contains 5 branches, which are models (or called math formulations), de-
composition problems, minimization problems, loss functions, solvers (or
called algorithms). Examples are shown beside the branches.

ultrasound frames, where T' = [Fj**"2 .. Fi1x2] T ¢ Raxi2xn Next, the input
M (or T) is decomposed into several components through the DLSM algorithm as
follows:
X
M=Y K, (1)
=1

where 0 < X < 3 and Ki, K5, K3 typically represent low-rank L, sparse S, and
noise components FE, respectively. The specific components K, and the number of
X depend on the purpose (interested in sparse or low rank components) and the

decomposition formulation.

2.2 Decomposition Formulations

2.2.1 Implicit decomposition

Implicit decomposition (X = 1): Under the condition that x is equal to 1, ma-
trix M is approximately equal to a target low-rank matrix L under the constraint
condition, because the information that people interested in mainly lies in the low
rank component in most cases. Sparse matrix S can be obtained from the difference
between M and S (e.g. S = M — L). However, this processing is the opposite in the
application of ultrasound clutter suppression because the blood signal is relatively
sparse. The formulation of this problem is as follows:

min f(M,L) s.t.L (2)

where M =~ L, f(.) is a loss function used for the minimization term which depends
on specific solvers or algorithms. Models like Principal Component Analysis (PCA),
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Non-negative Matrix Factorization (NMF'), and Matrix Completion (MC) are in this
category.

For the applications targeted to sparse components, implicit decomposition sets
the target matrix K7 as a sparse matrix S. Then low-rank matrix L is the differ-
ence between M and S which can be calculated as L = M — S. Sparse dictionary
learning [66], sparse linear approximation, and compressive sensing [66, 67, 68], etc.
are built under the same idea.

min f(M,S) st. S (3)

where M = S, and the difference contains noise and other information. In this case,
implicit decomposition can be used in the compressed sensing and signal recovery
similar to unsupervised clustering [69] and image recognition [70], etc.

Before more robust explicit decomposition method was proposed, the main de-
velopment of ultrasound clutter suppression was based on PCA or SVD or eigen-
values, which belong to implicit decomposition [19, 22, 38, 35, 39, 45]. Although
many experiments have proved that these eigen-based filters greatly improve the
performance than traditional ITR and regression filters, many authors realize that
the filtering method based on implicit decomposition is not robust to accelerated
tissue movements and different kinds of noise [22, 35, 39]. Moreover, their expensive
computational complexity is not suitable for real-time processing.

2.2.2 FExplicit decomposition

Explicit decomposition (X = 2): Under this condition, M is usually decomposed
into a low-rank matrix K; = L and a sparse matrix Ko = S (M ~ L + S). This
is called explicit decomposition because there are two constraints. One is sparse
constraint over S and the other is low-rank constraint over L. Therefore, explicit
decomposition is more robust than implicit decomposition. The formulation of ex-
plicit decomposition is as follows:

min f(L) + f(S) st.L,S (4)

where M ~ L+ S and f(.) represents loss function. The explicit decomposition in-
cludes Robust Principal Component Analysis (RPCA), Robust Non-Negative Ma-
trix Factorization (RNMF'), Robust Matrix Completion (RMC), Robust Subspace
Tracking (RST), etc. [59, 71].

These methods generally work better and are more robust than implicit decom-
position because of the additional constraints [71]. In this way, RPCA has been
used as a powerful tool in MRI, CT, and ultrasound imaging [72, 73, 74]. Many
optimization algorithms have been proposed for cluster suppression in ultrasound
imaging using RPCA, RMC |21, 55, 75].

2.2.8 Stable decomposition

Stable decomposition (X = 3): Due to the fact that there are always noise and
corruption caused by special cases in the real world, an additional matrix Kj is
added to represent unexpected components. K3 could represent distortion, shadows,
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and noise according to special situations (M ~ S+ L+ N). It is more stable than the
explicit decomposition since more detailed information is separated and taken into
account. The stable decomposition can handle more complex situations in the real
life such as dynamic videos and maritime monitoring videos which are corrupted
by complicated noise.

min f(S)+ f(L)+ f(N) st. L, S (5)

Stable decomposition methods include Stable Principal Component Analysis (Sta-
ble PCA) or Stable Non-negative Matrix Factorization (Stable NMF) and Three
Term Decomposition (TTD), etc. These methods can deal with more complex situ-
ations. In terms of US imaging, it is usually assumed that signal M contains clutter
signals L (low-rank), blood signals S (sparse) and noise N. Since ultrasound signals
have complex noises and dynamic clutter signals, this assumption M =S+ L+ N
are more acceptable when there are meticulous requirements such as microvascu-
lar imaging. Although some literature mentions the stable decomposition of blood
(L, S, E respectively represent blood flow signals, clutter signals, and noise), they
do not illustrate whether constraints are added to noise component. Therefore, the
stable decomposition formulation is still a promising research area for ultrasound
clutter suppression.

2.3 Models under DLSM Framework

As of today, many models, also called problem formulations, have been proposed.
According to different math formulations and features, methods are usually classi-
fied under families such as Robust Principal Component Analysis (RPCA), Non-
negative Matrix Factorization (NMF), Matrix Completion (MC), and Subspace
Tracking (ST), etc. Different models have different functions and aims. However, it
has been proved that the solutions of many robust models can be mutually expressed
in closed forms [76]. For instance, RPCA via principal component pursuit [56] can
be considered as MC models using /1-norm loss function [63]. In addition, these
models can be flexibly generated in any decomposition formulations. For example,
adding constraints on noise components on the basis of RPCA will change it from
explicit decomposition to stable decomposition.

2.8.1 Robust Principal Component Analysis

Principal Component Analysis (PCA) generates a set of linearly uncorrelated vari-
ables which is called principal components, from a set of observations by orthogonal
transformation. Similar mathematical tools include SVD and eigenvalue decompo-
sition. RPCA is based on the extension of PCA (expansion from implicit decompo-
sition to explicit decomposition), which aims to recover low-rank components and
reduce the impact of grossly corrupted data. RPCA can be approached by Principal
Component Pursuit (PCP) [56, 64], Bayesian RPCA [77, 78, 79], and so on. RPCA
problem is generally expressed as follows:

M=L+S (6)
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where L is low-rank matrix and S is sparse matrix. According to the nature of L
and S, the most intuitive way to solve the RPCA problem is to minimize the rank
of L and the lgp-norm of S:

riliél rank(L) + A||S|li, st. M —L—-S=0 (7

where ) is a balanced parameter. However, this formulation is NP-hard. Therefore,
optimization problems like PCP are needed.

The convex optimization Principal Component Pursuit (PCP) was first proposed
by Candes et al. [56, 80, 63] to address the RPCA problem. It becomes one of the
most famous methods of face recognition and background modeling in recent years.
PCP uses the following formula to convexly optimize RPCA problem:

min LI« +AIS|l;, st.M—L—-S=0 (8)

where ||.|[« and ||.]|;; are the nuclear norm and l;-norm, respectively. Although
this method excels in computer vision, there are still some limitations to sparse
components recovery. Firstly, it requires expensive computational algorithms. Sec-
ondly, it is a batch method which is not suitable for real-time applications, es-
pecially for plane-wave ultrasound with high frame rates. Third, it has very high
requirements for low rank and sparse properties, however, the complex blood flow
or noise may make it difficult for ultrasound data to meet such requirements. To
accelerate the algorithms and achieve higher precision, different solvers have been
developed [81, 82, 83]. Solvers for real-time implementations have also been pro-
posed [84, 85].

The Stable Principal Component Pursuit (SPCP) is a stable expanded form based
on PCP, which mainly aims at reducing the impact of noise. SPCP adds noise term
E based on PCP and constrains it by Frobenius norm.

2.8.2 Matriz Completion

The main purpose of Matrix Completion (MC) is to recover low-rank observation
matrix of its missing entries. The Netflix movie rating matrix recover problem is
one of the most classic examples. The classic low-rank matrix completion problem
can be seen as finding the lowest rank of the matrix L which matches the matrix M,
for all the measured entries in set 2. The mathematical formulation of MC problem
is as follows:

mLin rank(L) s.t. Ly = My, Vi, j € Q (9)

Due to the implicit decomposition of MC is not robust to noise which only affects
a small scale data [86, 87], MC is generally extended to explicit decomposition by
adding restrictions, which is called Robust Matrix Completion (RMC). The common
RMC obtains stronger robustness than MC by adding sparse constraints, and its
formulation after convex optimization is as follows:

win [ L] + XS], st Po(L+8) = Pa(M) (10)
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where Po(M) is the projection of the complete data set on the measured entries
Q. Although the form of decomposition is the same as PCP, the unique constraints
of RMC make it supervised while the PCP is unsupervised learning [63], which is
consistent with the purpose of RMC.

2.3.83 Nonnegative Matriz Factorization

The Nonnegative Matrix Factorization (NMF) is also a widely used matrix factor-
ization and dimension reduction model under DLSM framework. The main unique
feature of NMF is that low-rank factor matrix is subject to non-negative constraints
consistent with the physically natural features in many fields [88, 89]. The NMF
problem is generally expressed as follows:

M~WH" (11)

where W € R™*F and H € R"** are two nonnegative matrices, and k < min{m,n}
due to the goal of dimension reduction. The most common formulation for the

optimization problem of NMF is as following;:

min f (W, H) = [|[M - WHT|% st.W>0,H>0 (12)

where ||.]|% is the Frobenius norm. The problem (14) is a non-convex problem and
it is NP-hard to find its global minimum [88, 90]. Consequently, optimization algo-
rithms and solvers are developed for the local minimum.

2.8.4 Subspace Tracking

The Subspace Tracking (ST) can be regarded as the dynamic RPCA designed to
handle increasing new data or dynamic subspaces. The data at each moment ¢ is
processed as the increments and then discarded. This idea addresses the problem
when new observations come in asynchronously in online streaming environments.
It makes subspace tracking more efficient and less computationally expensive on
extremely long data sequences [91]. Since ST can recover subspaces from incomplete
frame vectors, it has the potential to further improve efficiency by downsampling
the input frames [63]. The general formulation for the ST problem is as follows:

X
mi=Y ky=li+s+e, fort=12...n X123 (13)

x=1

where m; is input frame data at time ¢, and l;, s;, e; are low-rank, sparse, and noise
components of m;. The number of k is determined according to different decom-
position forms, and the constraint conditions and approximate approximations on
each component are determined according to different optimization methods.

2.3.5 Low-Rank Representation

Low-Rank Representation (LRR) can also be called low-rank optimization or low-
rank minimization. Other unclassified models can be regarded as LRR. LRR is a
minimization problem in mathematics. In LRR, the cost function measures the fit
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between the input matrix M and the approximation matrix L [63]. The mathemat-
ical formulation of LRR problem is as follows:

min [|[M — M||p  s.t. rank(L) <r (14)

where M is the input matrix, M is the approximate matrix, |.|| is the Frobenius
norm, and 7 is the rank. The basic form of LRR is similar to other models, therefore,
most of the other unclassified models can be regarded as a category in LRR. For
instance, RPCA and NMF can be obtained by similar architectures. Constraints
other than rank constraints can be added for specific applications. LRR can be
extended into an explicit or stable form by adding constraints on the sparse and

noise components.

2.3.6 The Extension to Tensor

In DLSM framework, only some of the single dimensional information is used when
images are pretreated into data matrix M as vectors. This means that some multi-
dimensional information is not taken into account in the process of decomposition.

To improve the results, the tensor decomposition is proposed.

Tensor DLSM

When it comes to tensor, the most intuitive idea is to change all matrices to tensors
directly since a tensor can be seen as a combination of several matrices. It is very
similar to DLSM framework which subjects to T'= L + S + E. The tensor DLSM
extends all components to a tensor form as Figure 4.

T=L+S+E (15)

where T', L, S, N represent the data tensor, low-rank tensor, sparse tensor and noise
tensor, respectively. Similar to the matrix DLSM framework, it can be optimized
and solved by a minimization problem. Some other classic matrix decomposition
optimization methods have also been extended to tensor. The Tensor Robust Prin-
cipal Component method [92] has been proposed based on tensor Singular Value
Decomposition (t-SVD) [93]. It has been demonstrated the effectiveness of image
denoising. Another robust low-rank tensor recovery model based on RPCA has also
been published for complex multilinear data analysis [94]. Rank Sparsity Tensor De-
composition (RSTD) [95] and some other ideas based on stable principal component
pursuit (PCP) also have been utilized in image processing.

Tensor Decomposition
There are two classical tensor decomposition forms which are CANDECOMP/
PARAFAC (CP) decomposition and Tucker decomposition [96]. Given a tensor
T € fhrxt2xtn the CP decomposition and Tucker decomposition can be modeled
as follows:

- Tucker decomposition

N
T=gx|[[Ui+e (16)

=1

Page 13 of 41



Zhang et al.

Figure 4: The illustration of tensor decomposition

where g € R™M*72X"™n ig the core tensor and r is the rank of factor matrix
U; € R4*"i ¢ represents the residuals. Figure 5 is a schematic representation
of the Tucker decomposition. The Tucker decomposition is usually regarded as a
non-convex optimization problem [63]. Two most famous and widely used solvers
for Tucker decomposition are Tucker-ALS based on alternating least squares [96]
and Tucker-ADAL based on alternating direction augmented Lagrangian [94]. SVD
based on Tucker decomposition is generally called Higher-Order Singular Value De-
composition (HOSVD) [97, 98], which calculates the singular values of the three
expansions Uy, Uy, Us of a three dimensional tensor under Tucker Decomposition.
HOSVD-based ultrasound clutter optimization has been proposed [52, 99] and
proved to be more robust to low sampling rates than SVD.

L/

=
ﬁ

. IR

Uy

N |

Figure 5: The illustration of Tucker decomposition

- CP decomposition
T=UjoUy---oUgr+¢ (17)

where R is the number of the components, U; € R X" ¢ represents the residuals,
and UyoUs - - -oUp is the CP model [71]. Figure 6 is a schematic representation of the
CP decomposition. CP-decomposition is similar in form to Tucker decomposition
since the number of components in the factor matrices is the same [96]. The original
CP problem is NP-hard. Therefore, the Frobenius norm is generally used to relax the
low-rank constraint. Similar to Tucker decomposition, CP decomposition problem
can also be solved by alternating least squares, called CP-ALS. To the best of our
knowledge, there is currently no well-known article applying CP decomposition to
ultrasound clutter filtering.
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Figure 6: The illustration of CANDECOMP /PARAFAC (CP) decomposition

2.4 Minimization Problems
The decomposition problems generally turn into minimization problems or opti-

mization problems in its original form or its Lagrangian form [63].
min Zl Nfi(K;) st G (18)

where \; are the regularization parameters, f;(.) are the loss functions for low-
rank, sparse, and noise components, C; are the constraints on K;. Consistent with
the decomposition problems, the minimization problems can be divided into three
categories according to the number of constraints and loss functions imposed.

- 2 =1 is the case of implicit decomposition: miny, A; f1(L) s.t. Cy
where C is ||M — L||2 = 0 or other forms. For sparse decomposition, the low-
rank components are replaced by sparse components. This problem can be
NP-hard, non-convex, or under specific constraints. Therefore, other formats
of the loss functions are applied to relax the constraints when the problem is
NP-hard or non-convex. For example, the loss function f is rank loss function
in original MC model as miny, rank(L) s.t. ||M — L|l2 =0.

- x = 2 is the case of explicit decomposition: miny, s A1 f1(L)+A2f2(S) s.t. Co
where Cy is |M — L — S||2 = 0 or other forms. For example, the f; and fo
loss functions are rank and ly — norm loss functions in original RPCA model
as miny, g rank(L) + A||S|l;, st. [|M — L =S|z =0.

- x = 3 is the case of stable decomposition: miny s A1 f1(L) + Aafa(S) +
Asf3(N) s.t.Cs
where C3 is |[M — L — S — EJj2 = 0 or other forms. For example, the f;
and fo loss functions are rank and ly — norm in original RPCA model as
miny, s rank(L) + A||S|l;, s.t. ||M — L — S||2 = 0. The stable decomposition
is generally adding constraints on the noise component based on the robust
decomposition. The Frobenius norm loss function (A|M — L — S||% = 0) is
used in most cases.

Although there are some algorithms that can solve non-convex problems through
mathematical approximation [100], in general, non-convex problems are difficult
to solve with weak convergence. This is also an important role that minimization
problems play.

2.5 Loss Functions
The loss function can be seen as a constraint of the decomposed matrices. In DLSM

framework, loss functions are used on the minimization matrices as norm formats.
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For example, in implicit decomposition, explicit decomposition, and stable decom-
position, the functions f(S5), f(L), f(E), represent the loss functions or norms on
sparse component, low-rank component, and noise component, respectively. How-
ever, in most cases, the original loss function will be replaced by other forms of the
loss function in order to optimize and solve the problem. The common loss function
forms (or norm forms) can be listed as follows:

- lpnorm loss function (||M|;,) is the number of non-zero entries.

- linorm loss function (||M|[;, =3, ;[M;;|) is the Manhattan distance.

- Iz norm loss function (| M|, = /32, ; M7;) is also called the Frobenius norm

Ipnorm loss function ([|M|li, = /32, ; M?;) ).
oo Dorm loss function (||M|;., = mazx, ;|M; ;|) is also called the max norm
M |[mae = mai ;| Mi ;).

«norm loss function (|| M

(
1
(
1

1,) is the sum of singular values.

2.6 Solvers

The models are solved by specific algorithms, which are called solvers in DLSM [63,
71] framework. Solvers are generally applied to the models after the minimiza-
tion problem has been optimized and the loss function has been relaxed. Solvers
can be broadly divided into regularization-based approaches and statistical-based
approaches [101]. As for regularization approaches, the data matrices are regular-
ized by convex surrogates with different features [63]. Typical regularization ap-
proaches include Singular Value Thresholding (SVT) [102], Accelerated Proximal
Gradient (APG) [103], and Augmented Lagrange Multiplier (ALM) [83]. In terms
of statistical-based approaches, prior distributions are used to capture low-rank or
sparse properties and predict the joint distribution of the measured entries and un-
known variables. Meanwhile, posterior distributions of the unknown variables can
be approximated by Bayesian-based methods [63].

Although many solvers are proposed to solve the optimization problems under
DLSM framework, most of the mainstream algorithms for ultrasound clutter sup-
pression are based on SVD. SVD-based clutter suppression algorithms that are
proposed and reviewed [19, 20, 22, 38, 43] based on traditional CFI before 2011.
In these algorithms, SVD is used as one of the steps or iterations within many
of the algorithms we evaluated. After 2015, with the rapid development of ultra-
sound technologies like plane-wave ultrasound, SVD was combined with ultrafast
plane-wave imaging, which can provide a huge amount of data at a high frame
rate, in order to improve the effectiveness of SVD and overcome the limitation of
low frame rate [18, 51, 104, 105]. Due to the excellent performance of SVD on
large data sets, SVD-based clutter suppression algorithms based on the plane-wave
ultrasound has become a popular and mainstream research area. The SVD-based
algorithms have been used in functional ultrasound [106, 107], super resolution
ultrasound localization microscopy [104, 108] and high-sensitivity micro vessel per-
fusion imaging [18, 51] due to its excellent performance in the ultrasound clutter
suppression and the microvascular imaging [21].

Due to the obvious disadvantages of SVD, DLSM framework contains many ap-
proximate SVD and non-SVD algorithms for higher efficiency and lower computa-
tional cost, which have the potential for real-time ultrasound clutter suppression.
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3 Experiments

DLSM framework has been successfully utilized to video surveillance, face recog-
nition, texture modeling, video inpainting, audio separation, and latent semantic
indexing, etc. [109]. However, only a few algorithms under DLSM framework have
been applied to ultrasound clutter suppression. Herein, we apply DLSM algorithms
as the clutter filter for CFI. To that end, we test if DLSM algorithms can be used for
clutter suppression and conduct simulation experiments, phantom experiments, and
in vivo experiments. Finally, we will conclude a list of algorithms that are suitable
for ultrasound clutter suppression.

3.1 Experiment Data

Three data sets are used in this experiment which are simulation data, phantom
data, and in vivo rat data. For each data set, raw RF-data, complex envelope
data, and B-mode data formats are used for analysis. The specific parameters and
obtaining process of three data sets and a brief introduction of three data formats
are given in the following subsections.

Simulation data

The simulation data includes a set of ultrasound simulation frames as Fig 7 shows.
The ultrasound simulation data is generated by the Field II simulation program
implemented in MATLAB [110, 111]. A cube A € R69%60%60 jg huilt to represent the
tissue filled with scatterers given the fact that each voxel is 1 mm?. A vessel through
the middle of the cube with a radius of 20 mm is generated by scatterers flowing to
the right. The max velocity in the center of the vessel is 15mm/s. Assuming sound
waves travel from the top to the bottom and focus on the center. Probe frequency
and sampling frequency are set to 7.27 M Hz and 40 M H z, respectively. The frame
rate is set to 1000 fps and 64 active elements are used for beamforming.

Phantom data

The phantom was created to simulate a cube of tissue including one blood vessel
which travels across the cube in the middle. Knox unflavored gelatin, water, and
sugar-free Metamucil psyllium fiber supplement were gently heated and mixed to
prepare the phantom gel which represents soft tissue. An intra-venous tube simu-
lating a venous structure model runs through the gel cube. Probe frequency and
sampling frequency are set to 10M Hz and 40M H z, respectively. The Alpinion E-
Cube R12 ultrasound system is used in ultrasound data collection with an L3-12H
linear array probe. Figure 8 briefly illustrates the phantom experiment.

Rat data

The acquisition of the rat data was under the supervision of the Animal Care Facility
of Concordia University. A 27-week-old Sprague-Dawley male rat was anesthetized
for ultrasound scanning. The experiment followed the guidelines of the Canadian
Council on Animal Care and was approved by the Animal Ethics Committee of Con-
cordia University (#30000259). The probe frequency and the sampling frequency
were set to 10M Hz and 40M H z, respectively. Similarly, as with phantom data,
the Alpinion E-Cube R12 research ultrasound system with an L3-12H linear array
probe was used. The schematic diagram of the in vivo rat experiment is shown in
Figure 9.
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(a)

Figure 7: The illustration of the simulation data. (a) is the simulation cube

with tissue scatterers and blood scatterers. The red blood scatterers are in

the middle and moving to the right. The simulated sound waves focus in the

center. (b) is a series of simulation data frames obtained from simulation

experiments.

l |
Probe °
c\‘} — Pump

Container with  Tube within
phantomgel  flowing liquid

(@)

5

- p— Phantom gel
i (Tissue)

Tube
(Vessel)

(b)

Figure 8: The illustration of the phantom experiments. (a) is the illustration

of phantom data collection experiment. (b) is the B-mode image of the first

frame in phantom data.

Page 18 of 41



Zhang et al.

a—
sy U ., B
":"-w -—4“—0Ha|r removal area
&

Test bench

Figure 9: The illustration of the in wvivo rat experiments. (a) is the illus-
tration of the in wvivo rat data collection experiment. (b) is a schematic
representation of sparse component of the in vivo rat data.

Data Formats

Both real and simulated ultrasound data are available in three formats, which are
raw RF data, complex envelope data, and B-mode data. Common ultrasound probes
generally consist of a piezoelectric transducer array that emits and receives signals.
The backscatter signal which is processed by the preamplifier and the time gain
compensation is referred as radio-frequency (RF) signal. The RF signal is then pro-
cessed by an envelope detector becomes complex envelope data. Lastly, the complex
envelope data is log-compressed into a grayscale format. And the data is further
passed through intensity mapping and post-processing filtering. The final readable
image is commonly called brightness mode (B-mode) image. RF frames generally
have a very large size since the sampling rate of the RF data is usually extremely
high. This high sampling rate is not necessary for envelope data as it does not have
high frequency contents. Therefore, envelope and B-mode images can be downsam-
pled by a large factor. RF data may also be downsampled by a small factor, but
the Nyquist sampling rate should be considered to avoid aliasing.

3.2 Experiment Methods
In Section 2, DLSM framework is introduced and built as figure 3 shows. The DLSM
algorithms are classified in five groups which are implicit decomposition, explicit de-
composition, stable decomposition, tensor decomposition and subspace clustering.
In this experiment, all algorithms are selected from LRSLibrary [71, 61, 63] which
provides a group of low-rank and sparse matrix decomposition algorithms in mov-
ing object detection. In LRSLibrary, these algorithms are further subdivided into
Robust PCA (RPCA), Subspace Tracking (ST), Matrix Completion (MC), Three-
Term Decomposition (TTD), Low-Rank Representation (LRR), Non-negative Ma-
trix Factorization (NMF), Non-negative Tensor Factorization (NTF), and standard
Tensor Decomposition (TD) according to the models. Due to the flexible conversion
between models and their similar mathematical formulations, in this paper, TTD
can be a subcategory in stable PCA under stable decomposition. Similarly, NTF
belongs to the subcategory under the Tensor Decomposition (TD) model.

In the first step, the DLSM algorithms are applied to three formats of simulation
data to verify the performance of all algorithms compare to sparse component with
ground truth and give a computing time contrast. Then, all algorithms are used
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on phantom data to find out if DLSM suits ultrasound data with real ultrasound
features. In the third step, rat data is used for verification and comparison. The
acquired data has three formats which are RF data format, complex envelope data
format, and B-mode data format. The results of different data formats and different
data-sets are grouped for comparison in order to find the optimal conditions of
ultrasound clutter suppression.

All experiments are processed by a normal desktop computer with an i7-4770
CPU @ 3.40 GHz and 16.0 GB RAM.

3.3 Evaluation Metrics

Two main indicators are used to evaluate the performance of various algorithms,
which are Signal-to-Noise Ratio (SNR) [112] and Contrast-to-Noise Ratio (CNR).
The SNR and CNR are calculated as follows:

SNR=' ongo Imzrzl (19)

o1 o2+ 02/2

where 1 and o7 are the mean intensity value and the standard deviation of the
background window, ps and oo are the mean intensity value and the standard
deviation of the target window.

3.4 Experiment Results

The results of 106 DLSM algorithms on three datasets and their three formats
are reported in this section. The results of all algorithms include the SNR, CNR,
calculation times, and images for visual observation. Since all the output images
are sparse components of the same data and are very similar, we classify the results
according to their performance and report the number of algorithms in each category
instead of SNR and CNR of all algorithms.

The results of all algorithms are divided into several categories. The results which
fall in the first category are considered to be good results as they give the correct
sparse matrix with a pure blank background which means high robustness to noise
and dynamic background and strong decomposition ability. The cases when the
output sparse component is more than 100 times higher than background pixel
values are also regarded as good results. The results which fall in the second category
are considered to be defective. These results either contain background noise which
is supposed to be part of the low-rank components, or are noisy and algorithms
failed to decompose. The results in the third category are not considered because
some algorithms failed to run due to some limitations like non-negative limitations
or real input limitations. Algorithms with this type of results are called restricted
algorithms in this section.

The information that all algorithms, including their model classifications, are from
LRSLibrary [71, 61, 63], and they have all been proved to be successfully applied
to moving object detection on traffic video.

3.4.1 Simulation Ezxperiments
The experiments firstly applied simulation data to verify the availability and ap-
proximate performance of all algorithms. Meanwhile, the computation cost and time
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of these algorithms on ultrasound clutter suppression are also tested. The first ex-
periment applied all 106 DLSM algorithms to the RF simulation data. Among 106
algorithms, 11 of them were out of memory and failed to run. These algorithms
cannot deal with the large size of simulation data because they use the full singular
value decomposition or QR decomposition and require a huge memory to initialize
(7.9 GB). Meanwhile, there are 6 algorithms that require non-negative input and
cannot take RF data as input. Consequently, a total of 17 of these two kinds of
algorithms are classified as restricted algorithms.

In terms of the remaining 89 algorithms, only 19 of them are able to output rela-
tively pure sparse components that match the ground truth without any processes
of RF simulation data. To be precise, only 3 algorithms (abbreviation: LRR-ROSL,
RPCA-IALM, RPCA-TALM-BLWS) give a truly pure background as zero matrices
(all entries in sparse matrices except the ones presenting simulated vessel are 0).
The other 16 results highlight simulated vessel with a non-zero background. Since
the value of the background pixels is 1000 ~ 10000 times less than the value of
sparse component, we consider it to be a pure result without low-rank components.
The possible reason is the particular small values of RF simulation data and low
dynamic range. In general, these results with the CNR values above 1.6 are clas-
sified as good results in Table 2. The results of the other 44 algorithms are very
noisy with the CNR values less than 1.1. As for these algorithms, the sparse parts
in simulation data are not clearly determined and the clutter is not well suppressed.
The remaining 24 algorithms give blank output due to low dynamic range and other
reasons. Almost all the DLSM algorithms give an SNR of about 0.759, so SNR is
not reported in detail here.

Table 2: The 19 algorithms with the CNR values above 1.6. The algorithms with *
give pure background. The remaining algorithms are arranged in alphabetical order
of abbreviations.

Group  Abbreviation Time CNR Group  Abbreviation Time CNR
RPCA |ALM* 0.590 1.681 | MC IALM-MC 6.537 1.680
RPCA  IALM-BLWS* 2.278 1.680 | TTD MAMR 1.861 1.740
LRR ROSL* 0.359 1.688 | NMF PNMF 13.556 1.733
RPCA DECOLOR 3.013 1.602 | RPCA PRMF 1.280 1.687
RPCA EALM 9.068 1.677 | RPCA ReglLl-ALM 3.634 1.686
RPCA  flip-SPCP-max-QN 71.933 1.688 | MC RPCA-GD 4.747 1.627
RPCA  flip-SPCP-sum-SPG ~ 214.900 1.688 | RPCA  SSGoDec 0.034 1.736
RPCA  GoDec 0.072 1.736 | TD Tucker-ADAL  6.131 1.736
RPCA  GreGoDec 0.199 1.736 | TD Tucker-ALS 0.101 1.736
TD HoSVD 4.461 1.736

Due to the extremely small data values and dynamic ranges, a large number of
algorithms are invalidated. Therefore, in the second step, the order of magnitude and
dynamic range of RF simulation data are expanded to re-examine the performance
of all algorithms.

After processing RF data, 56 algorithms show good results. Among these algo-
rithms, 16 of them give correct sparse components with a zero-valued background,
others give sparse components 1000 ~ 10000 times greater than background pixel
values. The results of the remaining 33 algorithms are noisy. These algorithms either
do not correctly isolate sparse components or contain inseparable background noise
with similar values. Most good results have a CNR, greater than 1.3, while noisy
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results generally have a CNR less than 1. Similarly, almost all the DLSM algorithms
with good results give an SNR of about 0.759. There are a few good results with
a CNR less than 1. The algorithms with such results only highlight the sparsest
parts which reduce the mean intensity values of the target window. However, these
results are considered to be good because the unhighlighted sparse components
still have higher intensities than backgrounds. The results after increasing dynamic
range are listed in the Table 3. Examples of different kinds of results in simulation
experiments are shown in Figure 10.

Table 3: The 16 algorithms with pure background after increasing dynamic range.
The algorithms with * give pure background on original data. The remaining algo-
rithms are arranged in alphabetical order of abbreviations.

Group  Abbreviation Time CNR Group  Abbreviation Time CNR
RPCA TALM* 0.604 1.681 | RPCA FPCP 0.102 1.392
RPCA  IALM-BLWS* 1.647 1.680 | RPCA FW-T 0.647 0.611
LRR ROSL* 0.408 1.688 | TD HoRPCA-S-NCX  116.955 1.689
RPCA APG 4.155 1.667 | RPCA  Lag-SPCP-QN 0.517 0.377
RPCA  APG-PARTIAL 3.559 1.661 | RPCA Lag-SPCP-SPG 0.955 0.354
RPCA  AS-RPCA 1.890 1.682 | TD OSTD 0.663 0.479
NMF DRMF 2.580 1.640 | RPCA PCP 27.078 1.677
RPCA DUAL 100.797 1.682 | RPCA SVT 453.337  1.682

(c)

Figure 10: The output result images of simulation data. (a) is the output of

sparse component, obtained by the TALM algorithm on original simulated
RF data. It is a typical good result representing correct decomposition and
pure sparse components. (b) is the output of sparse component obtained
by the ADM algorithm on original simulated RF data. It is a typical noisy
result with background noise as sparse components. (c¢) is the output of
sparse component obtained by the OSTD algorithm on processed simulated
RF data with larger dynamic range. The algorithms with a CNR less than
1 in Table 3 give such results with pure background because they only show
the sparsest parts.

The complex envelope simulation data is obtained by Hilbert transform on the
basis of RF data. For this reason, the complex envelope data does not have the prob-
lem of miniature pixels values and low dynamic range. However, the SNR and CNR,
of the complex envelope simulation data are lower than the SNR and CNR of RF
simulation data. Except for the 11 algorithms that are limited by frame size, 24 of

the remaining algorithms show good results. In addition, 13 algorithms are affected
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by complex numbers generated by the Hilbert transform and thus failed to run.
The results of other algorithms are noisy. After enlarging the dynamic range of the
complex envelope simulation data, 8 algorithms which failed on original simulation
data give good results on the preprocessed data. These algorithms are sensitive to
the changes of dynamic ranges. The results on complex envelope simulation data are
shown in Table 4. Obviously, the CNR in the results of complex envelope simulation
data is far less than the CNR on the RF data.

Table 4: The algorithms with good results on complex envelope simulation data.
The results on original data are listed in the left column and the results on processed
data are listed in the right column. The algorithms with * give pure background.
The algorithms are arranged in alphabetical order of abbreviations.

Group  Abbreviation Time CNR Group  Abbreviation Time CNR

TTD 3WD 5.061 0.079

RPCA ALM 19.662 0.049
NMF Deep-Semi-NMF 0.169 0.049 | NMF Deep-Semi-NMF 0.221 0.049
LRR EALM 10.096 1.723 | LRR EALM 0.580 0.049
NMF ENMF 42,921 0.049 | NMF ENMF 45.057 0.049
RPCA  flip-SPCP-max-QN 358 0.151 | RPCA  flip-SPCP-max-QN 294 0.151
RPCA  flip-SPCP-sum-SPG 403 0.151 | RPCA  flip-SPCP-sum-SPG 630 0.151
RPCA FPCP* 0.138 0.154 | RPCA FPCP 0.181 0.049
RPCA  GoDec 0.116 0.049 | RPCA  GoDec 0.127 0.049
RPCA  GreGoDec 0.396 0.049 | RPCA  GreGoDec 0.430 0.092
TD HoRPCA-S-NCX* 201 0.059 | TD HoRPCA-S-NCX* 210 0.059
TD HoSVD 3.083 0.049 | TD HoSVD 3.074 0.049

LRR IALM 3.999 0.049
MC IALM-MC 10.481 0.051 | MC IALM-MC 10.784  0.051
NMF iNMF 1.675 0.040 | NMF iNMF 1.916 0.040

RPCA  Lag-SPCP-QN* 77.200 0.176

RPCA  Lag-SPCP-SPG* 92.931 0.186
MC LMaFit 0.512 0.071 | MC LMaFit 0.547 0.071
NMF NeNMF 0.141 0.049 | NMF NeNMF 0.158 0.049
NMF nmfLS2 0.512 0.049 | NMF nmfLS2 0.563 0.049
NMF NMF-MU 3.206 0.049 | NMF NMF-MU 3.379 0.049
NMF NMF-PG 0.431 0.049 | NMF NMF-PG 164 0.032
RPCA  noncvxRPCA 1.044 0.048 | RPCA  noncvxRPCA 0.193 0.089
NMF PNMF 24.802 0.048 | NMF PNMF 25.377 0.048

RPCA  R2PCP* 2.251 0.058
LRR ROSL* 1.018 0.058 | LRR ROSL* 1.039 0.058
NMF Semi-NMF 0.210 0.030 | NMF Semi-NMF 2.305 0.029
RPCA  SSGoDec 3.772 0.049 | RPCA  SSGoDec 3.729 0.051

RPCA  TFOCS-EC 26.941 0.132

RPCA  TFOCS-IC 26.162  0.094
TD Tucker-ADAL 10.290 0.049 | TD Tucker-ADAL 458 0.039
TD Tucker-ALS 0.217 0.049 | TD Tucker-ALS 0.216 0.049
RPCA VBRPCA 4.031 0.046 | RPCA VBRPCA 6.471 0.069

The third step of the simulation experiment is using B-mode data. As for the
results of B-mode simulation data, 40 DLSM algorithms have successfully detected
the simulate vessel on original B-mode simulation data. Meanwhile, 12 algorithms
are affected by high peak values in the background and keep static peaks into sparse
components. These algorithms give pure sparse matrices after suppressing peak
values. After enlarging the dynamic range of the original B-mode data, another 10
algorithms successfully detect correct sparse components. Therefore, 62 algorithms
can successfully separate the correct sparse components. The other algorithms which
give very noisy results may need parameter adjustment and threshold process. The

results of simulation experiment on B-mode data are reported in Table 5.
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Table 5: The algorithms with good results on B-mode simulation data. The algo-
rithms with o are affected by high peak values and get good results after suppressing
peaks. The algorithms with e only get good results after increasing the dynamic
range. The algorithms with * give pure background.

Group  Abbreviation Time CNR Group  Abbreviation Time CNR
TTD 3WDo 2.027 1.486 | RPCA  Lag-SPCP-QN* 2.809 0.494
LRR ADM 0.563 3.401 | RPCA Lag-SPCP-SPG* 8.961 0.456
RPCA ALMe 18.748 1.827 | MC LMaFit 0.424 1.889
RPCA  APGo* 4.229 1.855 | MC LRGeomCG 0.811 1.885
RPCA  APG-PARTIALo* 3.696 1.860 | RPCA LSADMo 1.454 1.847
RPCA  AS-RPCA 2.180 1.803 | TTD MAMR 1.642 1.781
RPCA DECOLOR 3.450 1.717 | NMF ManhNMF 1.422 1.903
NMF Deep-Semi-NMF 0.195 1.903 | RPCA MoG-RPCA 1.710 1.934
NMF DRMFo* 2.461 1.842 | NMF NeNMF 0.073 1.903
RPCA DUALo* 89.410 1.824 | NMF NMF-ALS 1.848 1.903
LRR EALMe 0.321 1.903 | NMF NMF-ALS-OBS 1.987 1.903
RPCA EALMo 4.324 1.840 | NMF nmfLS2 0.206 1.903
NMF ENMF 9.056 1.903 | NMF NMF-MU 1.643 1.903
LRR FastLADMAP 0.769 1.903 | NMF NMF-PG 32.465 1.899
RPCA  flip-SPCP-max-QN 102.000 1.835 | RPCA  noncvxRPCA 0.100 1.903
RPCA  flip-SPCP-sum-SPG ~ 230.000 1.835 | RPCA NSAle 0.255 1.902
MC FPC 34.877 1.442 | TD OSTDe* 0.764 1.451
RPCA FPCP* 0.150 1.875 | RPCA PCPo* 9.978 1.842
RPCA FW-To* 0.722 0.370 | NMF PNMF 13.424  1.903
RPCA  GAe 0.028 1.904 | RPCA PRMF 1.336 1.857
RPCA  GoDec 0.096 1.903 | RPCA R2PCPe* 1.269 2.024
RPCA  GreGoDec 0.282 1.903 | RPCA ReglLl-ALM 3.918 1.833
TD HoRPCA-S-NCX 112.090 1.836 | TTD RMAMRe 5.369 1.561
TD HoSVD 4.493 1.903 | LRR ROSL* 0.369 1.830
LRR IALM 1.880 1.903 | MC RPCA-GDo 4.946 1.891
RPCA  IALMo* 0.701 1.840 | NMF Semi-NMF 0.134 1.331
RPCA  IALM-BLWSo* 1.800 1.843 | RPCA SSGoDec 1.206 1.903
MC IALM-MC 5.729 1.848 | RPCA TFOCS-ECe 6.388 1.903
NMF iNMF 1.148 1.770 | TD Tucker-ADAL 74711 1.903
RPCA L1Fe 1.022 0.817 | TD Tucker-ALS 0.118 1.903
LRR LADMAP 0.446 1.903 | RPCA VBRPCA 0.306 0.343

3.4.2 Phantom Experiments

The next set of experimental data used for testing is phantom data. The phantom
data is used to test whether DLSM framework is suitable for ultrasound clutter
suppression with real ultrasound noise and other ultrasound features. The phantom
data also consists of three formats, which are RF phantom data, complex envelope
phantom data, and B-mode phantom data. Except for 11 inapplicable algorithms
due to size limitation, the other 95 algorithms have a huge difference in computing
time ranging from less than 0.1 second to more than 500 seconds.

As for RF phantom data, the order of magnitude of all pixels is firstly adjusted
into the range of 10%3. However, the structured peak pixels that are caused by
bright structure generated at the rebound reflection interface still affect many al-
gorithms. 36 algorithms clearly show the simulated vessel with a pure background
with an average CNR of 3.5. Meanwhile, 43 algorithms only highlight bright edges
as the sparse components with an average CNR of 0.4. The structured peak pix-
els of RF phantom data can compromise the calculation of some algorithms when
these bright edges have a pixel value 103 times larger than the remaining pixel val-
ues. Therefore, the peak values are processed logarithmically to achieve the gray
balance and reduce the dynamic range. After logarithmic processing, 22 additional
algorithms are able to display sparse components correctly excluding bright and
static edges. Among them, 19 algorithms are previously affected by peaks, and 3
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(a)

Figure 11: Three typical output results of phantom experiments. (a) is a

(b)

This image is obtained by RSTD algorithm on original phantom data.

typical good result showing pure sparse components without noise. This
image is obtained by ALM algorithm on original phantom data. (b) is a
typical output affected by bright edge structures. This image is obtained by
APG algorithm on original phantom data. Because the pixel values of bright
edges are 1000 times larger than the pixel values in the rest of the image,
the flow sparse component in the middle of the tube cannot be observed. (c)

is a typical noisy result showing sparse components with indivisible noise.

algorithms are defective on the original data. The results of remaining algorithms
are still noisy, and parameter adjustment should be applied to these algorithms for

better performance. The results of RF phantom experiments are shown in Table 6.

Table 6: The algorithms with good results in RF phantom experiments. The algo-
rithms with o are the 3 new algorithms work on processed data, which are defective
on original data. The algorithms with e are sensitive to structured peak pixels and

work after logarithmic processing.

Group  Abbreviation Time CNR Group  Abbreviation Time CNR
TTD 3WDe 1.826 2.393 | RPCA Lag-SPCP-SPG  31.118 2.626
TTD ADMMe 4.009 2478 | MC LMaFit 0.260 2.651
RPCA ALM 5.456 2.672 | MC LRGeomCG 0.817 2.640
RPCA  APGe 5.585 2.747 | RPCA LSADMe 1.443 2.747
RPCA  APG-PARTIALe 4.690 2747 | TTD MAMR 2.263 2.681
RPCA  AS-RPCA 2.697 2.732 | RPCA  MoG-RPCA 9.156 2.777
RPCA DECOLOR 10.266 4.895 | NMF nmfLS2 0.219 2.672
NMF Deep-Semi-NMF 0.150 2.672 | RPCA NSAle 1.549 2.746
NMF DRMFe 2.723 2.754 | RPCA NSA2e 1.656 2.746
RPCA DUALe 215 2.746 | MC OptSpacee 7.020 2.526
LRR EALM 0.351 2.672 | MC OR1MPe 0.089 2.627
RPCA EALMe 37.360 2.744 | TD OSTDe 70.747  1.799
RPCA  flip-SPCP-max-QNe 119 2.768 | RPCA PCPe 26.791 2.745
RPCA  flip-SPCP-sum-SPGe 431 2.768 | NMF PNMF 16.963 2.684
RPCA  FPCP 0.108 2.672 | RPCA PRMF 1.573 2.623
RPCA FW-To 0.591 2578 | RPCA R2PCP 2.241 2.703
RPCA GA 0.031 3.652 | RPCA RegLl-ALM 4.745 2.774
RPCA GM 0.155 2,775 | TTD RMAMR 9.728 2.545
RPCA  GoDec 0.097 2.674 | LRR ROSL 0.421 2.715
ST GRASTA® 1.394 1.207 | MC RPCA-GD 6.215 2.622
RPCA  GreGoDec 0.237 2821 | TD RSTDo 91.200 1.636
TD HoRPCA-S-NCX 70.134 2.777 | MC ScGrassMC 4.093 2.567
TD HoSVD 0.497 2.672 | NMF Semi-NMF 1.267 2.295
RPCA IALM 0.796 2.748 | RPCA  SSGoDec 1.496 2.736
LRR IALMe 2.003 2.672 | MC SVPe 3.235 2.471
RPCA  |ALM-BLWSe 2.474 2.748 | RPCA TFOCS-EC 9.815 2.188
MC IALM-MC 7.764 2.419 | RPCA TFOCS-IC 9.568 2.197
RPCA L1F 2.680 0.837 | TD Tucker-ADAL 267 2.617
RPCA  Lag-SPCP-QN 15.766 2.684 | TD Tucker-ALS 0.123 2.672
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The complex envelope phantom data is then used for experiments. The number
of good results of the complex envelope phantom data is less than the number of
good results of RF phantom data. 26 algorithms successfully detected the simulated
vessel and 33 algorithms only showed bright edges, which is an intra-venous (IV)
tube representing the vessel wall. The CNR of all results are less than 0.4. After
suppressing the edge brightness logarithmically, 11 of these algorithms that have
been affected by edges can separate pure sparse components. It shows that the
extremely high bright structures can affect the sensitivity to sparse components in
many algorithms. However, there are still some algorithms that give noisy results.
At the same time, 19 algorithms cannot take complex numbers as input. The results
on complex envelope phantom data are shown in Table 7.

Table 7: The algorithms with good results on complex envelope phantom data. The
algorithms with o are the 3 new algorithms work on processed data, which are
defective on original data. The algorithms with e are sensitive to structured peak
pixels and work after logarithmic processing. Two algorithms with * get good results
on original envelope data but are defective on processed data.

Group  Abbreviation Time CNR Group  Abbreviation Time CNR
TTD 3WDe 4.947 0.032 | RPCA  Lag-SPCP-SPG  38.770 0.118
RPCA ALMe 86.748 0.070 | MC LMaFit 0.441 0.063
RPCA  APGe 14.096 0.064 | MC MC-NMF 1.733 0.056
RPCA  APG-PARTIALe 19.703 0.064 | NMF NeNMF 0.179 0.070
NTF bcuNTD 23.042 0.065 | NMF nmfLS2 0.787 0.070
NMF Deep-Semi-NMF 0.275 0.070 | NMF NMF-MU 4.429 0.070
NMF DRMFe 2.467 0.251 | RPCA  noncvxRPCAo 0.239 0.070
LRR EALMe 113.071 0.070 | RPCA NSAle 3.560 0.065
NMF ENMF 56.960 0.070 | RPCA NSA2e 3.704 0.064
RPCA  flip-SPCP-max-QN 194.004 0.110 | RPCA PCPe 29.737 0.064
RPCA  flip-SPCP-sum-SPG  774.004 0.110 | NMF PNMF 32.414 0.072
RPCA FPCP 0.156 0.069 | RPCA R2PCPo 1.410 0.071
RPCA  GoDec 0.164 0.071 | LRR ROSL 1.077 0.070
RPCA  GreGoDec 0.603 0.070 | NMF Semi-NMF 0.184 0.078
MC GROUSE* 2.090 0.123 | RPCA  SSGoDec 4.876 0.071
TD HoRPCA-S-NCX 174.635 0.064 | RPCA TFOCS-ECe 29.885 0.052
TD HoSVD 2.527 0.070 | TD Tucker-ADAL 654.740 0.010
LRR IALMe 6.495 0.070 | TD Tucker-ALS 0.269 0.070
MC IALM-MC 15.723 0.055 | RPCA VBRPCAo 20.913 0.077
RPCA  Lag-SPCP-QN 27.778 0.079 | NMF NMF-PG* 34.973 0.063

The last format of data to be applied is B-mode data. As for B-mode phan-
tom data, 49 algorithms successfully give good results with a CNR higher than
2. However, the results of four of these algorithms contain bright edges which are
considered to be low-rank components. The results of 35 algorithms only show the
edges. Among them, a few sensitive algorithms can also partly detect sparse par-
tition with obvious motion. However, only several bright pixels with motion can
be detected. After reducing the dynamic range, no algorithm is affected by edges
and 75 algorithms give sparse components with pure background. Examples of good
results and noisy results in phantom experiments are shown in Fig 11. The results
of B-mode phantom data are shown in Table 8.

3.4.3 in vivo Ezrperiments

In the third step, rat data are used to test the performance of these algorithms
on real ultrasound data with small vessels-like tissues. The RF rat data, complex
envelope rat data and B-mode rat data are used to be compared.
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Table 8: The algorithms with good results on B-mode phantom data. The algorithms
with o are the 3 new algorithms work on processed data, which are defective on
original data. The algorithms with e are sensitive to structured peak pixels and
work after logarithmic processing. Three algorithms with ** get good results on
original envelope data but are defective on processed data. The algorithms with *
give pure backgrounds.

Group  Abbreviation Time CNR Group  Abbreviation Time CNR
RPCA LSADMe 1.455 3.582 | MC RPCA-GDe 6.118 3.165
RPCA L1F 2.595 1.038 | MC ScGrassMC 4.123 1.338
RPCA DECOLOR 7.015 2.847 | LRR EALMe 10.899 3.681
RPCA  ReglLl-ALM 4.352 3.700 | LRR IALMe 2.469 3.681
RPCA GAo 0.032 3.680 | LRR ADM** 0.668 0.024
RPCA  GMo 0.153 3.713 | LRR LADMAP 0.363 3.681
RPCA  MoG-RPCA 4.691 3.359 | LRR FastLADMAP 0.802 3.681
RPCA  noncvxRPCAe 0.110 3.681 | LRR ROSL 0.421 3.712
RPCA  NSAle 1.407 3.602 | TTD 3WDe 1.942 2.964
RPCA  NSA2e 1.537 3.568 | TTD MAMR 2.784 3.154
RPCA  flip-SPCP-sum-SPG 276 3.695 | TTD RMAMR 6.776 2.289
RPCA  flip-SPCP-max-QN 138 3.695 | TTD ADMMo* 3.627 0.794
RPCA  Lag-SPCP-SPG* 5.010 1.598 | NMF NMF-MU 2.143 3.681
RPCA  Lag-SPCP-QN* 7.219 0.685 | NMF NMF-PG 8.774 3.565
RPCA  FW-T* 0.715 3.073 | NMF NMF-ALS 2.406 3.681
RPCA BRPCA-MDe 283 3.724 | NMF NMF-ALS-OBS 2.710 3.681
RPCA BRPCA-MD-NSSe 201 3.511 | NMF PNMF 16.815 3.681
RPCA VBRPCA 4.627 3.692 | NMF ManhNMF 2.292 3.662
RPCA PRMF 1.522 3.522 | NMF NeNMF 0.066 3.681
RPCA  TFOCS-ECe 9.131 3.349 | NMF LNMF** 0.204 0.279
RPCA  GoDec 0.095 3.681 | NMF ENMF 13.546  3.681
RPCA  SSGoDec 1.459 3.679 | NMF nmfLS2 0.320 3.681
RPCA  GreGoDec 0.229 3.681 | NMF Semi-NMF 0.154 2.604
ST GRASTA 1.321 1.156 | NMF Deep-Semi-NMF  0.156 3.681
MC FPC 49.672 2.454 | NMF iNMF 1.482 3.650
MC GROUSE** 1.580 0.068 | NMF DRMFe* 2.461 3.497
MC IALM-MC 6.992 3.690 | TD HoSVD 0.532 3.681
MC LMaFit 0.314 3.300 | TD HoRPCA-S-NCX  89.622  3.693
MC LRGeomCG 0.757 3.723 | TD Tucker-ADAL 258 3.573
MC MC-NMFo 0.585 3.423 | TD Tucker-ALS 0.130 3.681
MC OR1MPo 0.096 3.365

In terms of RF rat data, 82 algorithms give very good and similar results, 7 algo-
rithms show noisy and meaningless results. The other 17 algorithms are restricted
due to the size limitation or non-negative limitation. The complex envelope rat
data remains to share similar results with RF rat data. As for B-mode rat data, 92
algorithms successfully detected vessel-like tissues and only 3 algorithms failed to
show any part of the sparse components. Examples of good results and noisy re-
sults in in vivo rat experiments are shown in Figure 12. Since most algorithms give
results with similar SNR and CNR, the evaluation of results combines subjective
observations and numerical analysis. Due to the unknown in vivo structure, we lack
ground truth for the accuracy of the assessment results. Only algorithms with pure
backgrounds are shown in Table 9 due to similar results and limited space.

4 Discussion

A total of 106 algorithms were tested in this paper. Analyzing the results obtained
from simulation, phantom and ¢n vivo experiments, we found that 11 algorithms
require huge memory (7.9 GB for frame size 250 x 125, 20 frames) due to the singular
value decomposition or QR decomposition process. Since typical ultrasound frames
are large in size, the left unitary matrix in full singular value decomposition demands
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(a)

Figure 12: The examples of the results of rat experiments. (a) is the B-

mode image of rat data for comparison. (b) is obtained by ALM algorithm
on original rat data. The dynamic background and noise are filtered out
relatively well. (b) is obtained by APG algorithm on original rat data. Large
areas of dynamic tissue are classified as sparse components. Since there is no
ground truth for in vivo rat data, the results are described using relatively

good and relatively noisy.

Table 9: The algorithms with pure backgrounds on in vivo data.

Group Abbreviation CNR
RF in vivo data

TTD ADMM 0.306
Envelope in vivo data

RPCA Lag-SPCP-SPG  0.258
RPCA R2PCP 0.153
NMF DRMF 0.510
B-mode in vivo data

RPCA R2PCP 0.416
RPCA Lag-SPCP-QN 0.519
RPCA Lag-SPCP-SPG  0.502
TTD ADMM 0.453
TD RSTD 0.449
TD OSTD 0.521

an excessive amount of memory, e.g. ADM. There are two possible solutions to this
problem. First, the approximate SVD can be calculated and stored in every iteration
instead of full SVD [55, 113]. Second, small overlapping patches from the ultrasound
frames can be considered to formulate the data matrix which will substantially
reduce the size of the Casorati matrix and eventually the memory footprint. Another
advantage of using this windowing technique is that it can automatically equalize
uneven noise distribution by normalizing the power locally [51]. The 11 algorithms
with size limitation are listed in Table 10.

Moreover, there are 6 algorithms that require non-negative input. Since ultrasound
RF data usually contains both positive and negative values, these algorithms are
not suitable for working with RF data for clutter suppression. 20 algorithms giving
good results on RF simulation data are tested with the absolute value of RF data to
confirm the impact of non-negative requirements on ultrasound clutter suppression.
Although all of these 53 algorithms are still capable of showing show high contrast
vessel structures, the SNR obtained with absolute value RF data (0.81) is slightly
greater than the original SNR (0.76) showing a significant increase of background
noise in sparse components. At the same time, the CNR obtained with absolute
value RF data (1.69) is slightly lower than the original CNR, (1.73), which proves
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Table 10: The 11 algorithms with size limitation

Group Abbreviation Algorithm Name

RPCA IALM-LMSVDS  IALM with LMSVDS

RPCA ADM Alternating Direction Method

ST GOSUS Grassmannian Online Subspace Updates with Structured-sparsity

ST pROST Robust PCA and subspace tracking from incomplete observations using
LO-surrogates

ST ReProCS Provable Dynamic Robust PCA or Robust Subspace Tracking

ST MEDRoP Memory Efficient Dynamic Robust PCA

MC PG-RMC Nearly Optimal Robust matrix Completion

MC MC-logdet Top-N Recommender System via Matrix Completion

MC  OP-RPCA Robust PCA via Outlier Pursuit

MC  SVT A singular value thresholding algorithm for matrix completion

TD t-SVD Tensor SVD in Fourrier Domain

that non-negative requirement has only limited effect on the accuracy of the DLSM

decomposition. The 6 algorithms with size limitations are listed in Table 11.

Table 11: The algorithms with non-negative requirement

Group Abbreviation Algorithm Name

MC  MC-NMF Nonnegative Matrix Completion

NMF NMF-MU NMF solved by Multiplicative Updates

NMF NMF-ALS-OBS  NMF solved by Alternating Least Squares with Optimal Brain Surgeon
NMF LNMF Spatially Localized NMF

NMF iNMF Incremental Subspace Learning via NMF

TD CP-APR PARAFAC/CP decomposition solved by Alternating Poisson Regression

Another type of restricted algorithms is affected by complex inputs. From the
experiment results, it is obvious that complex envelope data is not suitable for
ultrasound clutter suppression since it takes longer calculation time and gives poor
performance. Also, 13 algorithms are affected by complex value and cannot separate
low-rank and sparse components well. Among them, 13 algorithms cannot take
complex numbers as input, and some algorithms are stuck in a longer loop that
requires more than 300 seconds. Algorithms which failed due to complex numbers
are listed below in Table 12. In addition, the extremely small CNR obtained from
the envelope data is only one-hundredth of the ones obtained from other datasets
which indicates that envelope data is not suitable as an input form of ultrasonic
clutter suppression.

Table 12: The 13 algorithms that cannot take complex numbers as input

Group Abbreviation Algorithm Name

RPCA DECOLOR Contiguous Outliers in the Low-Rank Representation
RPCA MoG-RPCA Mixture of Gaussians RPCA

RPCA FW-T SPCP solved by Frank-Wolfe method

MC LRGeomCG Low-rank matrix completion by Riemannian optimization
MC RPCA-GD Robust PCA via Gradient Descent

LRR ADM Alternating Direction Method

LRR LADMAP Linearized ADM with Adaptive Penalty

LRR FastLADMAP Fast LADMAP

TTD MAMR Motion-Assisted Matrix Restoration

TTD RMAMR Robust Motion-Assisted Matrix Restoration

TD HoRPCA-IALM HoRPCA solved by IALM

TD HoRPCA-S HoRPCA with Singleton model solved by ADAL

TD RSTD Rank Sparsity Tensor Decomposition

Among the remaining algorithms, 17 algorithms are easily affected by outliers.

These algorithms cannot denoise the peak values when the dynamic range is roughly
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greater than 11.5bits, which is the natural logarithm of difference between max-
imum and minimum. These 17 algorithms have performed well on pre-processed
data and showed good results in simulation experiments and phantom experiments.
However, they are not robust to outliers. In the simulation experiments, these al-
gorithms divided the background peak pixels into sparse components, resulting in
a noisy background. Similarly, they are not robust to large shaped structured out-
liers and divide bright static edges into sparse components in phantom experiments.
These 17 algorithms that are susceptible to outliers are listed in Table 13. Since
complex envelope data is not suitable for ultrasonic clutter suppression, the perfor-

mance of the algorithms on complex envelope data has not been considered.

Table 13: The algorithms not robust to the outliers
Group Abbreviation Algorithm Name
RPCA PCP Principal Component Pursuit
RPCA IALM-BLWS IALM with BLWS
RPCA APG-PARTIAL Partial Accelerated Proximal Gradient

RPCA APG Accelerated Proximal Gradient

RPCA DUAL Dual RPCA

RPCA LSADM LSADM

RPCA GA Grassmann Average

RPCA GM Grassmann Median

RPCA NSA1 Non-Smooth Augmented Lagrangian vl
RPCA NSA1 Non-Smooth Augmented Lagrangian v2
RPCA FW-T SPCP solved by Frank-Wolfe method
RPCA TFOCS-EC TFOCS with equality constraints

LRR EALM Exact ALM

LRR IALM Inexact ALM

TTD 3WD 3-Way-Decomposition

NMF DRMF Direct Robust Matrix Factorization

TD OSTD Online Stochastic Tensor Decomposition

In addition, a pure background (0 dB) is of great significance for vascular image
segmentation and process and analysis of other medical images [46, 114]. However,
this is a difficult goal due to the probe jitter, dynamic backgrounds, noise, shadows,
and many other reasons. Therefore, only a few results have pure background on
simulation data and phantom data. Furthermore, no result has pure background on
in vivo rat data because of the complex tissue motions and the harsh conditions.
Some algorithms have a strong ability dealing with these challenges and give pure
backgrounds on simulation data and phantom data. These algorithms are listed in
Table 14.

Table 14: The algorithms with the potential to give a pure background.
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Group Abbreviation Algorithm Name

RPCA PCP Principal Component Pursuit

RPCA FPCP Fast PCP

RPCA R2PCP Riemannian Robust Principal Component Pursuit
RPCA IALM Inexact ALM

RPCA IALM-BLWS IALM with BLWS

RPCA APG-PARTIAL Partial Accelerated Proximal Gradient

RPCA APG Accelerated Proximal Gradient

RPCA DUAL Dual RPCA

RPCA Lag-SPCP-SPG Lagrangian SPCP solved by Spectral Projected Gradient
RPCA Lag-SPCP-QN Lagrangian SPCP solved by Quasi-Newton

RPCA FW-T SPCP solved by Frank-Wolfe method

LRR ROSL Robust Orthonormal Subspace Learning

NMF DRMF Direct Robust Matrix Factorization

TD HoRPCA-S-NCX HoRPCA with Singleton model solved by ADAL (non-convex)

TD

OSTD

Online Stochastic Tensor Decomposition
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Overall, in terms of calculation time, DLSM algorithms take the longest time to
run complex envelope data in comparison with RF data and B-mode data. Due to
its large amount of calculations, complex envelope data takes twice as long as RF
data does to run. This confirms again that complex envelope data is not suitable
for ultrasound clutter suppression. Meanwhile, RF data requires slightly less com-
putation time than B-mode data. This may be caused by the extra information RF
data contains. Meanwhile, we can find that DLSM algorithms use a slightly longer
time on preprocessed data than on original data. However, the algorithms separate
sparse components more accurately. Table 15 lists the average time taken by the
fastest 20 algorithms on different data-sets and different data formats.

Table 15: The average time taken by the fastest 20 algorithms
RF data  Complex envelope data  B-mode data

original simulation data 0.19 s 0.67 s 0.28 s
original phantom data 0.31s 0.58 s 0.30s
original rat data 0.31s 0.50 s 0.29 s
preprocessed simulation data 1.05s 1.21s 0.30 s
preprocessed phantom data 0.69 s 218 s 0.33s
preprocessed rat data 0.77 s 181ls 0.61s

The experimental results prove that ultrasound data is very different from ordi-
nary video surveillance frames. All DLSM algorithms can be successfully applied to
surveillance images. However, some of them are not suitable for ultrasound data.
There are quite a few algorithms that are not suitable for ultrasound RF data and
complex envelope data, which may due to the complexity of the RF data and the
complex space of complex envelope data. The simulation experiments prove that
some algorithms are still not robust to ultrasonic clutter and are not sensitive to
the data with overall small pixel values (< 1072). As for these algorithms, the low-
rank components of the results often contain inseparable background flicker, noise,
and tiny motion. These algorithms have been listed in Table 13. Meanwhile, the
phantom experiment results prove that some DLSM algorithms are not robust and
stable with a high dynamic range greater than 10 bits. For ultrasound data, an area
with small values often exists in a uniform tissue. Edges that are much brighter
than other tissues are also common due to the strong reflections at the interface.
The CNR after preprocess the ultrasound data is generally higher than the CNR of
raw data. The result of the data that removed the peak is also significantly better
than the results of raw data. Therefore, it is necessary to preprocess the ultrasound
image when applying the DLSM algorithm. Moreover, parameter adjustment or
other math improvements is necessary when applying some DLSM algorithms on
ultrasound data in order to get the best filtering performance.

On the other hand, in terms of ultrasound data formats, experiments show that
B-mode ultrasound data can make more algorithms successful for vascular detec-
tion. The B-mode ultrasound data may lose information. However, the outliers
that may affect DLSM algorithms may also be weakened by Hilbert transform an
absolute process. This might be the reason why more DLSM algorithms work for
B-mode data. Although B-mode data has more good results than RF data, RF data
requires slightly less average calculation time and is more suitable for real-time re-
quirements. The algorithms in table 16 are relatively stable in all three data-sets.
These algorithms all require less than 1 second for computation while giving the
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correct sparse components. Experiments show that they may be more suitable for

ultrasonic clutter suppression.

Table 16: The algorithms require less than 1 second calculation time

Group Abbreviation

Algorithm Name

LRR
LRR
LRR
LRR

ADM
LADMAP
FastLADMAP
ROSL
GROUSE
LMaFit
LRGeomCG
nmfLS2
Semi-NMF
Deep-Semi-NMF
FPCP

L1F
noncvxRPCA

RPCA VBRPCA
RPCA GoDec
RPCA GreGoDec

Tucker-ADAL
Tucker-ALS

Alternating Direction Method

Linearized ADM with Adaptive Penalty

Fast LADMAP

Robust Orthonormal Subspace Learning
Grassmannian Rank-One Update Subspace Estimation
Low-Rank Matrix Fitting

Low-rank matrix completion by Riemannian optimization
Non-negative Matrix Factorization with sparse matrix
Semi Non-negative Matrix Factorization

Deep Semi Non-negative Matrix Factorization

Fast PCP

L1 Filtering

Robust PCA via Nonconvex Rank Approximation
Variational Bayesian RPCA

Go Decomposition

Greedy Semi-Soft GoDec Algorithm

Tucker Decomposition solved by ADAL

Tucker Decomposition solved by ALS

Finally, 22 algorithms which are most robust to noise with the best performance

in all the experiments are listed in Table 17. These algorithms may have a strong

ability for ultrasound clutter suppression.

Table 17: The most robust algorithms with the best performance

Abbreviation

Algorithm Name

FPCP

L1F
DECOLOR
ReglL1-ALM
MoG-RPCA
Lag-SPCP-SPG
Lag-SPCP-QN
PRMF

GoDec
SSGoDec
GreGoDec
IALM-MC
LMaFit
LRGeomCG
ROSL

MAMR

PNMF

nmfLS2
Semi-NMF
Deep-Semi-NMF
HoSVD
HoRPCA-S-NCX
Tucker-ADAL
Tucker-ALS

Fast PCP

L1 Filtering

Contiguous Outliers in the Low-Rank Representation
Low-Rank Matrix Approximation under Robust L1-Norm
Mixture of Gaussians RPCA

Lagrangian SPCP solved by Spectral Projected Gradient
Lagrangian SPCP solved by Quasi-Newton

Probabilistic Robust Matrix Factorization

Go Decomposition

Semi-Soft GoDec

Greedy Semi-Soft GoDec Algorithm

Inexact ALM for Matrix Completion

Low-Rank Matrix Fitting

Low-rank matrix completion by Riemannian optimization
Robust Orthonormal Subspace Learning
Motion-Assisted Matrix Restoration

Probabilistic Non-negative Matrix Factorization
Non-negative Matrix Factorization with sparse matrix
Semi Non-negative Matrix Factorization

Deep Semi Non-negative Matrix Factorization
Higher-order Singular Value Decomposition

HoRPCA with Singleton model solved by ADAL (non-convex)
Tucker Decomposition solved by ADAL

Tucker Decomposition solved by ALS

In this paper, we adapted different techniques originally proposed for natural im-

ages in the field of computer vision for ultrasound color flow imaging. As ultrasound

images have unique characteristics due to the physics of sound propagation, these

images have the so called “speckle noise”. We believe that the results of this paper

can be generalized to other imaging modalities that are affected by diffraction, such

as optical coherence tomography (OCT).
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5 Conclusion

The performance of 106 established low-rank and sparse decomposition algorithms
for clutter filtering has been tested in this work. Our results show that few robust
matrix decomposition techniques are suitable for solving the limitations of SVD-
based ultrasound clutter suppression methods such as sensitivity to large noise. In
addition, several matrix decomposition techniques show the potential for real-time
implementation on commercial ultrasound machines due to their low computational
complexity. Furthermore, some preprocessing is necessary when applying this frame-
work to ultrasound data. Finally, some of the algorithms studied in this work can
automatically estimate the optimal power Doppler images without requiring ex-
tensive manual tuning, which may pave the way for easier commercial and clinical

translation of ultrasound clutter suppression.
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Group Abbreviation Algorithm name Authors

1 RPCA RPCA Robust Principal Component Analysis De la Torre and Black [115]

2 RPCA  PCP Principal Component Pursuit Candes et al. [56]

3 RPCA  FPCP Fast PCP Rodriguez and Wohlberg [116]

4 RPCA  R2PCP Riemannian Robust Principal Component Pursuit Hintermiiller and Wu [109]

5 RPCA  AS-RPCA Active Subspace: Towards Scalable Low-Rank Learning  Liu and Yan [117]

6 RPCA ALM Augmented Lagrange Multiplier Tang and Nehorai [85]

7 RPCA  EALM Exact ALM Lin et al. [83]

8 RPCA  IALM Inexact ALM Lin et al. [83]

9 RPCA IALM-LMSVDS IALM with LMSVDS Liu et al. [118]

10 RPCA IALM-BLWS IALM with BLWS Lin and Wei [119]

11 RPCA  APG-PARTIAL Partial Accelerated Proximal Gradient Lin et al. [83]

12 RPCA  APG Accelerated Proximal Gradient Lin et al. [83]

13 RPCA DUAL Dual RPCA Lin et al. [83]

14 RPCA  SVT Singular Value Thresholding Cai et al. [120]

15 RPCA ADM Alternating Direction Method Yuan and Yang [121]

16 RPCA LSADM LSADM Goldfarb et al. [122]

17 RPCA  LIF L1 Filtering Liu et al. [81]

18 RPCA  DECOLOR Contiguous Outliers in the Low-Rank Representation Zhou et al. [123]

19 RPCA ReglL1-ALM Low-Rank Matrix Approximation under Robust L1- Zheng et al. [124]
Norm

20 RPCA GA Grassmann Average Hauberg et al. [125]

21 RPCA GM Grassmann Median Hauberg et al. [125]

22 RPCA TGA Trimmed Grassmann Average Hauberg et al. [125]

23 RPCA  STOC-RPCA Online Robust PCA via Stochastic Optimization Feng et al. [126]

24 RPCA  MoG-RPCA Mixture of Gaussians RPCA Zhao et al. [79]

25 RPCA noncvxRPCA Robust PCA via Nonconvex Rank Approximation Kang et al. [127]

26 RPCA  NSA1l Non-Smooth Augmented Lagrangian v1 Aybat et al. [128]

27 RPCA  NSA2 Non-Smooth Augmented Lagrangian v2 Aybat et al. [128]

28 RPCA  PSPG Partially Smooth Proximal Gradient Aybat et al. [129]

29 RPCA  flip-SPCP-sum-SPG Flip-Flop version of Stable PCP-sum solved by Spectral  Aravkin et al. [130]
Projected Gradient

30 RPCA  flip-SPCP-max-QN Flip-Flop version of Stable PCP-max solved by Quasi- Aravkin et al. [130]
Newton

31 RPCA Lag-SPCP-SPG Lagrangian SPCP solved by Spectral Projected Gradient  Aravkin et al. [130]

32 RPCA  Lag-SPCP-QN Lagrangian SPCP solved by Quasi-Newton Aravkin et al. [130]

33 RPCA  FW-T SPCP solved by Frank-Wolfe method Mu et al. [131]

34 RPCA BRPCA-MD Bayesian Robust PCA with Markov Dependency Ding et al. [77]

35 RPCA  BRPCA-MD-NSS BRPCA-MD with Non-Stationary Noise Ding et al. [77]

36 RPCA  VBRPCA Variational Bayesian RPCA Babacan et al. [78]

37 RPCA  PRMF Probabilistic Robust Matrix Factorization Wang et al. [132]

38 RPCA  OPRMF Online PRMF Wang et al. [132]

39 RPCA  MBRMF Markov BRMF Wang and Yeung [133]

40 RPCA  TFOCS-EC TFOCS with equality constraints Becker et al. [134]

41 RPCA  TFOCS-IC TFOCS with inequality constraints Becker et al. [134]
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63

64

65
66
67
68
69
70
71
72
73
74
75
76
7
78

79

80
81
82
83
84
85
86
87
88
89
90

91

92

93

94

95

RPCA
RPCA
RPCA
ST

ST

ST

ST

ST
MC
MC

MC
MC
MC
MC

MC
MC
MC
MC
MC

MC
MC

MC

MC

LRR
LRR
LRR
LRR
LRR
LRR
TTD
TTD
TTD
TTD
NMF
NMF
NMF
NMF

NMF

NMF
NMF
NMF
NMF
NMF
NMF
NMF
NMF
NMF
NTF
NTF

NTF

NTF

NTF

NTF

TD

GoDec
SSGoDec
GreGoDec
GRASTA

GOSUS
pROST
ReProCS

MEDRoP
PG-RMC
FPC

GROUSE
IALM-MC
LMaFit
LRGeomCG

MC-logdet
MC-NMF
OP-RPCA
OptSpace
OR1MP

RPCA-GD
ScGrassMC

SVP
SVT

EALM

IALM

ADM
LADMAP
FastLADMAP
ROSL

3WD

MAMR
RMAMR
ADMM
NMF-MU
NMF-PG
NMF-ALS
NMF-ALS-OBS

PNMF

ManhNMF
NeNMF
LNMF
ENMF
nmfLS2
Semi-NMF
Deep-Semi-NMF
iNMF
DRMF
betaNTF
bcuNTD

bcuNCP
NTD-MU
NTD-APG
NTD-HALS

HoSVD

Go Decomposition

Semi-Soft GoDec

Greedy Semi-Soft GoDec Algorithm

Grassmannian Robust Adaptive Subspace Tracking Al-
gorithm

Grassmannian  Online
Structured-sparsity
Robust PCA and subspace tracking from incomplete ob-
servations using LO-surrogates

Provable Dynamic Robust PCA or Robust Subspace
Tracking

Memory Efficient Dynamic Robust PCA

Nearly Optimal Robust matrix Completion

Fixed point and Bregman iterative methods for matrix
rank minimization

Grassmannian Rank-One Update Subspace Estimation
Inexact ALM for Matrix Completion

Low-Rank Matrix Fitting

Low-rank matrix completion by Riemannian optimiza-
tion

Top-N Recommender System via Matrix Completion
Nonnegative Matrix Completion

Robust PCA via Outlier Pursuit

Matrix Completion from Noisy Entries

Orthogonal rank-one matrix pursuit for low rank matrix
completion

Robust PCA via Gradient Descent

Scaled Gradients on Grassmann Manifolds for Matrix
Completion

Guaranteed Rank Minimization via Singular Value Pro-
jection

A singular value thresholding algorithm for matrix com-
pletion

Exact ALM

Inexact ALM

Alternating Direction Method

Linearized ADM with Adaptive Penalty

Fast LADMAP

Robust Orthonormal Subspace Learning
3-Way-Decomposition

Motion-Assisted Matrix Restoration

Robust Motion-Assisted Matrix Restoration
Alternating Direction Method of Multipliers

NMF solved by Multiplicative Updates

NMF solved by Projected Gradient

NMF solved by Alternating Least Squares

NMF solved by Alternating Least Squares with Optimal
Brain Surgeon

Probabilistic Non-negative Matrix Factorization un-

Subspace  Updates  with

known

Manhattan NMF

NMF via Nesterov's Optimal Gradient Method
Spatially Localized NMF

Exact NMF

Non-negative Matrix Factorization with sparse matrix
Semi Non-negative Matrix Factorization

Deep Semi Non-negative Matrix Factorization
Incremental Subspace Learning via NMF
Direct Robust Matrix Factorization
Simple beta-NTF implementation
Non-negative  Tucker Decomposition
coordinate update

Non-negative CP Decomposition by block-coordinate
update

Non-negative Tucker Decomposition solved by Multi-
plicative Updates

Non-negative Tucker Decomposition solved by Acceler-
ated Proximal Gradient

Non-negative Tucker Decomposition solved by Hierar-
chical ALS

Higher-order Singular Value Decomposition (Tucker De-
composition)

by  block-
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Zhou and Tao [135]
Zhou and Tao [135]
Zhou and Tao [136]
He et al. [137]

Xu et al. [138]
Hage and Kleinsteuber [139]
Narayanamurthy and Vaswani [140]

Narayanamurthy and Vaswani [141]
Cherapanamijeri et al. [142]
Ma et al. [143]

Balzano et al. [144]

Lin et al. [83]

Wen et al. [145]

Bart Vandereycken, 2013 [146]

Kang et al. [147]

Xu et al. [148]

Xu et al. [87]
Keshavan et al. [149]
Wang et al. [150]

Yi et al. [151]
Ngo and Saad [152]

Meka et al. [153]
Cai et al. [102]

Lin et al. [83]

Lin et al. [83]

Lin et al. [154]
Lin et al. [154]
Lin et al. [154]
Shu et al. [155]
Oreifej et al. [156]
Ye et al. [157]

Ye et al. [157]
Parikh and Boyd [158]
unknown
unknown
unknown
unknown

Guan et al. [159]

Guan et al. [159]

Li et al. [160]

Gillis and Glineur [161]
Ji and Eisenstein [162]
unknown

Trigeorgis et al. [163]
Bucak and Gunsel [164]
Xiong et al. [165]
Antoine Liutkus []

Xu and Yin [166]

Xu and Yin [166]
Zhou et al. [167]
Zhou et al. [167]
Zhou et al. [167]

unknown



Zhang et al.

96
97
98

99

100
101
102

103
104
105
106

TD
TD
TD

TD
TD
TD
TD

TD
TD
TD
TD

HoRPCA-IALM
HoRPCA-S
HoRPCA-S-NCX

Tucker-ADAL
Tucker-ALS
CP-ALS
CP-APR

CP2

RSTD
t-SVD
OSTD

HoRPCA solved by IALM

HoRPCA with Singleton model solved by ADAL
HoRPCA with Singleton model solved by ADAL (non-
convex)

Tucker Decomposition solved by ADAL

Tucker Decomposition solved by ALS

PARAFAC/CP decomposition solved by ALS
PARAFAC/CP decomposition solved by Alternating
Poisson Regression

PARAFAC2 decomposition solved by ALS

Rank Sparsity Tensor Decomposition

Tensor SVD in Fourrier Domain

Online Stochastic Tensor Decomposition
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Goldfarb and Qin [94]
Goldfarb and Qin [94]
Goldfarb and Qin [94]

Goldfarb and Qin [94]
unknown

unknown

Chi et al. [168]

Bro et al. [169]

Yin Li [95]

Zhang et al. 2013 [170]
Sobral et al. [171]




