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Abstract. Ultrasound elastography estimates the mechanical proper-
ties of the tissue from two Radio-Frequency (RF) frames collected before
and after tissue deformation due to an external or internal force. This
work focuses on strain imaging in quasi-static elastography, where the
tissue undergoes slow deformations and strain images are estimated as
a surrogate for elasticity modulus. The quality of the strain image de-
pends heavily on the underlying deformation, and even the best strain
estimation algorithms cannot estimate a good strain image if the under-
lying deformation is not suitable. Herein, we introduce a new method
for tracking the RF frames and selecting automatically the best possi-
ble pair. We achieve this by decomposing the axial displacement image
into a linear combination of principal components (which are calculated
offline) multiplied by their corresponding weights. We then use the cal-
culated weights as the input feature vector to a multi-layer perceptron
(MLP) classifier. The output is a binary decision, either 1 which refers to
good frames, or 0 which refers to bad frames. Our MLP model is trained
on in-vivo dataset and tested on different datasets of both in-vivo and
phantom data. Results show that by using our technique, we would be
able to achieve higher quality strain images compared to the traditional
methods of picking up pairs that are 1, 2 or 3 frames apart. The training
phase of our algorithm is computationally expensive and takes few hours,
but it is only done once. The testing phase chooses the optimal pair of
frames in only 1.9 ms.

Keywords: Ultrasound elastography · Frame selection · Multi-Layer
perceptron (MLP) classifier · Neural networks · Principal component
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1 Introduction

Ultrasound elastography is a branch of tissue characterization that aims to de-
termine the stiffness of the tissue. Elastography has a significant potential in
improving both detection and guiding surgical treatment of cancer tumors since
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tumors have higher stiffness values compared to the surrounding tissue [1]. Elas-
tography can be broadly divided into dynamic and quasi-static elastography [2],
where the former deals with faster deformations in the tissue such that dynamics
of motion should be considered. In this paper, we focus on quasi-static elastog-
raphy, and in particular, quasi-static strain imaging where the final goal is to
estimate strain images. In quasi-static elastography, tissue deformations are slow
and therefore motion dynamics can be ignored.

In spite of the wide range of applications that quasi-static elastography has,
it is highly user-dependent, which has hindered its widespread use. A pure axial
compression yields higher quality strain images compared to a compression that
has both in-plane and out-of-plane displacements. Therefore, the user needs to
be highly skilled in axially deforming the tissue. Even for highly skilled users,
some organs are hard to reach and the probe needs to be held in angles and
directions that make imaging yet more challenging. Therefore, it has become
crucial to develop a method for selecting the frames that result in strain images
of high quality.

In order to make the strain image quality independent of the experience the
user has in applying purely axial compression, Hiltawsky el al. [3] developed a
freehand applicator that can apply purely axial force regardless of the user’s
experience. The transducer could be put on a fixed surface moving vertically in
the range of 1 to 2 mm.

Jiang at al. [4] worked on frame selection by defining a quality metric for per-
formance assessment and maximizing it. This metric depends on the normalized
cross correlation (NCC) between Radio-Frequency (RF) frames and the NCC
between their corresponding strain images.

Another approach by Foroughi et al. [5] used an external tracker that gives
complete information about the location of the RF frame at the time of being
produced, where frames collected from the same plane are selected. Among the
selected frames, they only chose some of them according to a defined cost function
that maximized axial compression.

Although the previously mentioned approaches showed an improvement over
the traditional way of picking up RF frames while maintaining a fixed gap be-
tween them, they also have some drawbacks, such as the need for an external
mechanical applicator [3] or an external tracking device [5]. Other approaches
such as [4] need to calculate the strain before determining whether the pair of
frames is good or not, so we can’t use it in real-time applications, especially
when we have a search range for finding good frames.

Herein, we introduce a novel real-time method for determining good RF
frames used to obtain high-quality strain images, without the need of any exter-
nal hardware. In the training phase, we calculate a set of principal components
for quasi-static elastography. In the test phase, we develop a fast technique to
find any compression as a weighted sum of those principal components. We then
develop a Multi-Layer Perceptron (MLP) Neural Network to classify each pair
of RF data as suitable or unsuitable for elastography.
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2 Methodology

Let two RF frames I1 and I2 be collected before and after some deformation in
the tissue. Our goal is to determine whether or not they are suitable for strain
estimation. However, developing a classifier that takes the RF frames as an input
and outputs a binary decision is not practical, as the number of samples in each
RF frame is approximately one million, and therefore, a large network with a
powerful GPU is required [6,7]. To solve the problem, we calculate N principal
components that describe the axial displacement as the tissue deforms. These
principal components are represented by b1 to bN . Fig. 1 shows some of these
principal components learned from real experiments. We then calculate a coarse
estimation of the axial displacement that occurred to the pixels between the
two frames using Dynamic Programming (DP) [8], where we only get an integer
value of the axial displacement. Due to the computational complexity of DP, we
don’t run it on the whole RF image, it is only run on a very small number of RF
lines to get their displacement. After that we decompose the displacement into
a linear weighted combination of the principal components that we computed
offline. The resulting weight vector corresponds in a one-to-one relationship with
the displacement image, but it has a lower dimensionality, which means that we
can use it as the input to a multi-layer perceptron (MLP) classifier.

2.1 Feature extraction

Let the dimensions of each of the RF frames I1 and I2 be m× l, where m refers
to the number of samples in an RF line and l is the number of RF lines. We
start by choosing p equidistant RF lines (where p << l), then we run DP to get
their integer displacement values, resulting in K estimates (where K = m× p).
We then form a K-dimensional vector c that has the displacement estimates of
only a few sparse points out of the total m× l that we have in the RF image. In
the next step, we form the matrix A such that

A =


b1(q1) b2(q1) b3(q1) . . . bN (q1)
b1(q2) b2(q2) b3(q2) . . . bN (q2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b1(qK) b2(qK) b3(qK) . . . bN (qK)

 (1)

where q1 to qK refer to the 2D coordinates of our K sparse points chosen along
the p RF lines. We then solve the optimization equation below:

ŵ = arg min
w
||Aw–c|| (2)

This means that the linear combination of theN principal components multiplied
by the weight vector w = (w1, ..., wN )T would result in the displacement image
with the minimum sum-of-squared error. Algorithm 1 summarizes the procedure
for feature extraction.
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Fig. 1. Principal components of in-plane axial displacement learned from both in-vivo
and phantom experiments. Top row represent desirable axial deformation principal
components.

Algorithm 1

1: procedure
2: Choose p equidistant RF lines
3: Run DP to get the integer axial displacement of the p RF lines
4: Solve Eq. 2 to get the vector w
5: Pass the vector w as input to the MLP classifier
6: end procedure

2.2 Training the MLP Classifier

We train an MPL classifier that takes the weight vector as the input feature
vector, and outputs a binary decision whether the displacement is purely axial
or not. Figure 2 shows the architecture of the used MLP model, which consists
of an input layer, two hidden layers and an output layer. Our model is relatively
simple due to having a low-dimensional input vector. The training is done by
minimizing the mis-classification error using the cross-entropy loss function, and
backpropagation is used to calculate the gradients. The applied optimization
technique is the Adam optimizer [9] with a learning rate of 1e−3. The MLP
code is written in Python using Keras [10].

2.3 Data Collection

PCA Model For our training data, we collected 3,163 RF frames from 3 dif-
ferent CIRS phantoms (Norfolk, VA), namely Models 040GSE, 039 and 059 at
different locations at Concordia University’s PERFORM Centre using a 12R
Alpinion (Bothell, WA) ultrasound machine with an L3-12H high density linear
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Fig. 2. The architecture of the MLP binary classifier. The network has two hidden
layers and is fully connected.

array probe. The center frequency is 8.5 MHz and the sampling frequency is 40
MHz. We allowed both in-plane and out-of-plane motion during collecting the
data, where the probe could move in the 6 degrees of freedom (DOF). In addi-
tion, we have access to 420 RF frames collected from 4 patients undergoing liver
ablation, where testing is done on only one of them. The choice of the number
of principal components was made so as to represent the displacement image in
a simpler form while keeping most of the variance of the data. We chose N = 12
which captures 95% of the variance present in the original data using only a
12-dimentional feature vector.

MLP Classifier We trained our model using 1,012 pairs of frames from the
in-vivo liver data through different combinations where each frame is paired
with the nearest 16 frames forming 16 different pairs. We used 80% of the data
for training and 20% for validation. Testing was done on a completely different
dataset to ensure generalization. It is important to note that the ground truth
(i.e. high or low quality strain image) was obtained by Abdelrahman Zayed
through manual inspection of the strain image obtained using the Global Ul-
trasound Elastography technique [11]. The criteria for labelling the output as a
good strain image were visual clarity and the ability to distinguish the inclusion
from the surrounding tissue.
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3 Results

We set p = 5 RF lines as trials showed us that choosing a value for p more than
5 would not improve the quality of the strain image [12]. The number of hidden
units in the MLP classifier is a hyperparameter that is chosen in a way so as to
have the highest accuracy on the validation data. The first and second hidden
layers contain 64 and 32 hidden units respectively with a Rectified Linear Unit
(ReLU) as the activation function. The output layer has two neurons with a
softmax activation function.

For the PCA model, the unoptimized MATLAB code takes 5 hours to train
the model, but it is only done once. During test time, extracting the features for
two very large RF images of size 2304 × 384 using the procedure in Algorithm
1 takes 262 ms on a 7th generation 3.4 GHz Intel core i7. As for the MLP
classifier, training takes 5.57 seconds after extracting the features from all the
training dataset. For testing, our model takes only 1.9 ms to choose the best
frame by searching in a window composed of the nearest 16 frames (8 frames
before and 8 frames after the desired frame), assuming that feature extraction
is already done for the test dataset.

Our model is tested on both tissue-mimicking phantom data and in-vivo liver
data. In order to be able to accurately measure the improvement in the quality
of the strain image, we use two quality metrics which are the signal to noise ratio
(SNR) and contrast to noise ratio (CNR) [13], calculated as follows:

CNR =
C

N
=

√
2(s̄b − s̄t)2
σ2
b + σ2

t

, SNR =
s̄

σ
(3)

where s̄t and σ2
t are the strain average and variance of the target window (as

shown in Figures 3 and 5), s̄b and σ2
b are the strain average and variance of

the background window respectively. We use the background window for SNR
calculation (i.e. s̄=s̄b and σ=σb). The background window is chosen in uniform
areas. For the target window, we selected a window that lies completely inside
the inclusion to show the contrast.

3.1 Phantom Results

We used data acquired from the CIRS elastography phantom Model 059 at a
center frequency of 10 MHz and sampling frequency of 40 MHz using the 12R
Alpinion E-Cube ultrasound machine. Fig. 3 shows the B-mode image as well as
the axial strain images calculated using both our method and the fixed skip frame
pairing. Fig. 4 shows the SNR and CNR of the axial strain images calculated from
the same experiment. It is clear that our automatic frame selection substantially
outperforms simply skipping one, two or three frames. Table 1 summarizes the
data in Fig. 4 by computing the average and standard deviation of the SNR and
CNR.
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(a) B-mode (b) Strain from Skip 1 method

(c) Strain from Skip 2 method (d) Strain from Skip 3 method

(e) Strain from our method

Fig. 3. The B-mode ultrasound and axial strain image for the phantom experiment.
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Fig. 4. A comparison between the SNR and CNR of the automatic frame selection and
the fixed skip frame pairing for the phantom experiment. Rows 1 to 3 show the results
for skipping 1 to 3 frames respectively.
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(a) B-mode (b) Strain from Skip 1 method

(c) Strain from Skip 2 method (d) Strain from Skip 3 method

(e) Strain from our method

Fig. 5. The B-mode ultrasound and axial strain image for the in-vivo experiment.

3.2 In-vivo data

Our in-vivo results were obtained from one patient undergoing open surgical
radiofrequency thermal ablation for primary or secondary liver cancers. The data
was acquired at Johns Hopkins Hospital, with full details of the data collection
protocol outlined in [14]. Fig. 5 shows the B-mode image as well as the axial
strain images using both our method and the fixed skip frame pairing. Table 2
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shows the average and standard deviation of the SNR and CNR of the axial
strain images computed from the same experiment. As observed in the phantom
experiment, automatic frames selection substantially improves the quality of the
strain images.

Table 1. A comparison between SNR and CNR of the automatic frame selection and
the fixed skip frame pairing for the phantom experiment. The numbers for each method
show average ± standard deviation.

Method used SNR CNR

Skip 1 12.27 ± 13.31 10.11 ± 11.36
Skip 2 3.54 ± 11.78 3.80 ± 8.92
Skip 3 5.24 ± 7.45 6.34 ± 9.09
Our method 22.15± 0.79 19.77 ± 0.9

Table 2. A comparison between the SNR and CNR of the automatic frame selection
and the fixed skip frame pairing for the in-vivo experiment. The numbers for each
method show average ± standard deviation.

Method used SNR CNR

Skip 1 13.87 ± 6.23 12.92 ± 5.21
Skip 2 13.60 ± 7.11 5.30 ± 20.68
Skip 3 13.54 ± 8.74 11.05 ± 8.52
Our method 21.25 ±2.23 17.12 ± 3.22

4 Conclusion

In this work, we presented a novel approach for real-time automatic selection
of pairs of RF frames used to calculate the axial strain image. Our method is
easy to use as it does not require any additional hardware. In addition, it is very
computationally efficient and runs in less than 2 ms, and as such, can be used to
test many pairs of RF frames in a short amount of time. Given that ultrasound
frame rate is very high, and that there exist many combinations of two frames,
this low computational complexity is of paramount practical importance. Our
method can be used commerially where for each input RF frame, we choose the
best possible frame to be paired with it among the collected frames.
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