
   
 

   
 

 Abstract—In brain tumor surgery, the quality and safety of the 
procedure can be impacted by intra-operative tissue deformation, 
called brain shift. Brain shift can move the surgical targets and other 
vital structures such as blood vessels, thus invalidating the pre-
surgical plan. Intra-operative ultrasound (iUS) is a convenient and 
cost-effective imaging tool to track brain shift and tumor resection. 
Accurate image registration techniques that update pre-surgical 
MRI based on iUS are crucial but challenging. The MICCAI 
Challenge 2018 for Correction of Brain shift with Intra-Operative 
UltraSound (CuRIOUS2018) provided a public platform to 
benchmark MRI-iUS registration algorithms on newly released 
clinical datasets. In this work, we present the data, setup, evaluation, 
and results of CuRIOUS 2018, which received 6 fully automated 
algorithms from leading academic and industrial research groups. 
All algorithms were first trained with the public RESECT database, 
and then ranked based on a test dataset of 10 additional cases with 
identical data curation and annotation protocols as the RESECT 
database. The article compares the results of all participating teams 
and discusses the insights gained from the challenge, as well as 
future work. 
 

Index Terms—Registration, brain, ultrasound, MRI, brain 
shift, tumor 

I. INTRODUCTION 
LIOMAS are the most common brain tumors in adults, and 
are categorized into grade I-IV by the World Health 
Organization (WHO). Low-grade gliomas (LGG, grade I 

and II) are less aggressive and have slower progression than 

 
Copyright (c) 2019 IEEE. Personal use of this material is permitted. 

However, permission to use this material for any other purposes must be 
obtained from the IEEE by sending a request to pubs-permissions@ieee.org 

This manuscript was submitted on xx, revised on xx, and accepted on xx. 
The challenge was co-organized by Y. Xiao, H. Rivaz, M. Chabanas and I. 

Reinertsen. M. Fortin participated in the creation of the test dataset.  
Y. Xiao is with the Robarts Research Institute, Western University, London, 

ON, Canada (e-mail: yxiao286@uwo.ca).  
H. Rivaz is with the PERFORM Centre and Department of Electrical and 

Computer Engineering, Concordia University, Montreal, Canada (e-mail: 
hrivaz@ece.concordia.ca). 

M. Chabanas is with University of Grenoble Aples, Grenoble Institute of 
Technology, Grenoble, France (e-mail: Matthieu.Chabanas@univ-grenoble-
alpes.fr). 

M. Fortin is with the Department of Health, Kinesiology & Applied 
Physiology and PERFORM Centre, Concordia University, Montreal, Canada. 

 I. Machado is with the Department of Radiology, Brigham and Women’s 
Hospital, Harvard Medical School, Boston, MA, USA.  

high-grade gliomas (HGG, grade III and IV), but will 
eventually undergo malignant transformation into high-grade 
tumors. Evidences [1, 2] have shown that early tumor resection 
can effectively improve the patient’s survival rate. Image-
guidance can be a useful tool to assist the surgeon in obtaining 
a maximal safe resection of the tumor. Image-guidance based 
on pre-operative MR images is in routine clinical use 
worldwide. These systems, however, do not account for the 
tissue shift and deformations that occur as the resection 
progresses. Due to brain shift, the surgical target and other vital 
structures (e.g., blood vessels and ventricles) will be displaced 
relative to the pre-surgical plan and resulting in inaccurate 
image-guidance. Multiple factors can contribute to brain shift, 
including but not limited to drug administration, intracranial 
pressure change, tissue resection. Often such tissue shift is not 
directly visible by the surgeon. Both intra-operative ultrasound 
(iUS) and intra-operative magnetic resonance imaging (iMRI) 
have been employed to track tissue deformation and surgical 
progress. Intra-operative US has gained popularity thanks to its 
low cost, high portability and flexibility. However, limited field 
of view and challenging image interpretation remain obstacles 
for widespread use. Together with iUS, automatic image 
registration algorithms can be used to update the surgical plan 
based on pre-operative MRI by re-aligning the pre-operative 
images with intra-operative images and offer more intuitive 
assessments of the extent of resection.  
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Previously, a number of algorithms and strategies [3-8] have 
been developed to address iUS-MRI registration for brain shift 
correction. They range from new strategies to map image 
features to similar domains [3, 4] to novel cost function [6, 7], 
and from different deformation models [5, 6] to improved 
optimization procedures [8]. However, partially due to the lack 
of relevant clinical datasets, it has been difficult to directly 
compare different algorithms, thus potentially slowing the 
speed of knolwedge translation to benefit surgeons and patients. 
The MICCAI Challenge 2018 for Correction of Brain shift with 
Intra-Operative UltraSound (CuRIOUS2018) was launched as 
the first public platform to benchmark the latest image 
registration algorithms for the task, and to bring the researchers 
together to discuss the technical and clinical challenges in iUS-
guided brain tumor resection. For the first edition of the 
challenge, we focused on MRI-iUS registration to correct pre-
resection deformation after craniotomy, as it typically sets the 
tone of brain shift for the rest of the surgery. 
 
The challenge was divided into the training and testing phases. 
While the publicly available REtroSpective Evaluation of 
Cerebral Tumors (RESECT) database [9] was used in the 
training phase for algorithm development, in the testing phase, 
a private testing database was distributed to assess the 
participating teams. The distances between homologous 
anatomical landmarks between iUS and MRI were used to 
assess and rank the registration quality. The CuRIOUS2018 
challenge received 8 initial submissions [10-17]. Seven teams 
validated their methods on the testing data, and six participated 
in the final ranking. The submissions cover a wide variety of 
approaches, including the latest registration metrics [7, 13], 
optimization approaches [12], and deep learning techniques 
[17].  
 
This paper describes the organization, submitted algorithms, 
and results for the challenge, and further discusses the current 
challenges and potential future directions of tissue shift 
correction in US-guided brain tumor surgery. 

II. MATERIALS 
Two datasets were included for the training and testing phases 
of the CuRIOUS2018 challenge. The RESECT database [9] 
was provided to the participants as the training dataset for 
development and fine-tuning of the algorithms. The database 
contains pre-operative MR and pre-resection iUS images from 
22 patients who have received LGG resection surgeries at St. 
Olavs University Hospital, Trondheim, Norway. The testing 
dataset was comprised of imaging data from 10 additional 
patients with LGG obtained in the same setting as the RESECT 
database. The collection and distribution of both datasets were 
approved by the Regional Committee for Medical and Health 
Research Ethics of Central Norway, and all patients signed 
written informed consent.  
 
For both training and testing databases, Gd-enhanced T1w MRI 
and T2w fluid-attenuated inversion recovery (FLAIR) MRI 
scans were acquired for each patient before surgery. Five 
fiducial markers were glued to the patient’s head prior to 
scanning. The T1w and T2w MRIs were rigidly co-registered, 

and aligned to the patient’s head position on the operating table 
via a fiducial-based image-to-patient registration. The position-
tracked 3D iUS scans were acquired with the Sonowand Invite 
neuronavigation system (Sonowand AS, Trondheim, Norway), 
with either the 12FLA-L linear transducer or the 12FLA flat 
linear array transducer for smaller superficial tumors. 3D 
volumes were reconstructed from the raw iUS data using the 
built-in proprietary reconstruction method in the Sonowand 
Invite system, with a reconstruction resolution in the range of 
0.14×0.14×0.14 mm3 to 0.24×0.24×0.24 mm3 depending on the 
probe types and imaging depth. Both ultrasound transducers 
were factory calibrated and equipped with removable 
sterilizable reference frames for optical tracking. A Polaris 
camera (NDI, Waterloo, Canada) built in the Sonowand system 
was used to obtain the position and pose of the ultrasound 
probe. Therefore, the iUS volumes reveal tissue position and 
deformation in the patient’s head on the operating table. 
 

TABLE I 
DETAILS OF INTRA-MODALITY LANDMARKS FOR EACH PATIENT IN THE 

TESTING DATASET 
Patient ID # of landmarks 

MRI vs. before US 
Mean initial distance 

(range) in mm 
MRI vs. before US 

1 17 15.66 (14.19~16.74) 
3 17 6.36 (3.57~10.23) 
4 17 2.98 (1.17~5.28) 
5 17 13.19 (9.86~17.25) 
6 18 5.52 (4.07~7.24) 
7 18 5.27 (4.28~6.14) 
8 18 3.73 (2.66~5.04) 
9 17 1.80 (0.41~4.15) 

10 17 4.66 (3.76 ~5.74) 
12 17 4.89 (3.58~6.21) 

mean±sd 17.3±0.5 6.41±4.46 
The number of landmarks and mean initial Euclidean distances between 

landmark pairs are shown, and the range (min ~ max) of the distances is shown 
in parenthesis after the mean value. 
 
Homologous anatomical landmarks manually labeled by two 
raters (authors YX and MF as Rater 1 and 2, respectively) were 
provided to assess registration quality, using the software 
‘register’ included in the MINC toolkit (http://bic-
mni.github.io). Typical landmarks include the edge of the 
tumor, deep grooves of sulci, corners of sulci, convex points of 
gyri and the horns of the lateral ventricles. After Rater 1 defined 
the landmarks in the T2w FLAIR MRIs as the references, Rater 
1 and Rater 2 then tagged the corresponding landmarks 
independently within the corresponding US volumes twice. A 
1~2-week interval was ensured between the repetitions. The 
final landmarks in both training and testing database were 
provided as the averaged results of two trials of landmark 
marked by both raters (four 3D points for each landmark). The 
details of the landmarks are listed in Table I for the testing 
datasets. Similar details for the training dataset can be found in 
the original publication for the RESECT database [9]. For both 
sets, a wide range of brain shifts measured as mean initial 
distances between corresponding landmarks were included to 
properly examine the performance of registration algorithms. 
 



   
 

   
 

We employed the mean Euclidean distance between two sets of 
corresponding landmark points for each patient to assess the 
intra- and inter-rater variability. For intra-rater variability, we 
calculated the metric between two trials of landmark picking for 
each rater; for inter-rater variability, the average of two trials 
for each rater was first computed and used to obtain the value 
between two raters. The intra- and inter-rater variability 
evaluations are presented in Table II for both training and 
testing data.  

TABLE II 
INTER- AND INTRA- RATER EVALUATIONS WITH MEAN EUCLIDEAN DISTANCE 

BETWEEN LANDMARK SETS  
Type Intra-rater 

Rater 1 
Intra-rater 

Rater 2 
Inter-rater  
R1 vs. R2 

Training data 0.47±0.10 mm 0.33±0.06 mm 0.33±0.08 mm 
Testing data 0.21±0.10 mm 0.48±0.22 mm 0.42±0.17 mm 
The results are shown as mean±standard deviation. 

III. CHALLENGE SETUP 
The CuRIOUS2018 challenge started on April 1st, 2018 when 
the challenge website went live on curious2018.grand-
challenge.org. In the next few days, several groups who were 
active in the field of MRI-iUS registration were identified by 
literature search and were invited to participate. The challenge 
was also widely advertised on mailing lists and on bulletin 
board of medical imaging conferences held in the first half of 
2018. Another factor that leads to a good participation was the 
incentive of generous support of challenge sponsors, which 
provided a total of 2,100 € for the top three winners. The 
challenge consisted of two phases (see Fig. I).  
 

 
Figure I. Timeline for CuRIOUS 2018 Challenge. 

In phase I, all the teams were required to submit a short paper 
that elaborated the technique and results on the 22 patients in 
the RESECT database. These papers were then peer-reviewed 
and the final camera-ready conference papers were submitted 
in July 2018. 
 
Phase II started in August 2018, when all the participants who 
had submitted reports and results on the training data were 
provided with MRI and iUS data from 10 additional patients 
(test data). These datasets had identical data curation and 

annotation protocols as the RESECT database. The location of 
landmarks in the MRI was provided to the teams, and the teams 
had to return the locations of those landmarks after MRI-iUS 
registration within 13 days of the data release. All teams 
presented their methods and results on the training data at the 
challenge event, which took place in conjunction to MICCAI 
2018 in Granada, Spain. 
 
The RESECT database remains public, and has been 
downloaded 267 times since its release in April 2017. The test 
datasets were only released to the participants, and the locations 
of the ground truth landmarks in these datasets remains private. 
The organizers will continue the challenge in 2019 by adding 
iUS test data collected during and after tumor resection. 

IV. EVALUATION 
The evaluation metric and ranking system are key criteria for 
the success of a challenge. The metric should reflect the overall 
quality of the methods and the ranking system should be as fair 
as possible. It is worth noting that our evaluation method was 
published on the official website before the challenge took 
place and was not modified afterwards. Although such 
transparency in the evaluation process may seem obvious, [18] 
reported that this transparency was not guaranteed in about 40% 
of biomedical challenges, which could lead to controversy. 
 
The first component of the evaluation process is a metric to 
assess the quality of the registration methods. More than 80% 
of the tasks in biomedical challenges concern segmentation, 
with the Dice similarity coefficient as the most common 
evaluation metric [18]. However, challenges with image 
registration, especially from different modalities, are rarer and 
we could not find any standard metrics from these competitions. 
We thus chose to rely solely on the expert-labeled anatomical 
landmark pairs, by computing the Euclidian distances between 
the transformed MRI landmarks, after registration, and the 
ground-truth landmarks defined in the iUS images.  
 
The second component of the evaluation process concerns how 
the results for each test case are aggregated to rank the teams. 
The two main options are 1) aggregate the results on all test 
cases, then rank; or 2) rank by test case, then aggregate the 
ranks. In the first scenario, we would have ranked the teams 
based on the mean distance computed from all landmarks of all 
cases. Instead, we chose the second scenario because it is better 
fitted to handle missing cases. For each case, we also ranked 
fully-automatic methods over semi-automatic methods. To 
aggregate the case-by-case ranks, we simply computed the 
mean rank of each team. 
 
The evaluation system was as follows: 

1. For each test case and for each team, compute the 
Euclidian distances between landmark pairs after 
registration, i.e., between the transformed MRI 
landmarks and the ground truth iUS landmarks. 

2. For each test case, rank teams according to their mean 
distance between landmark pairs. Exceptions include: 

a. If one team could not provide results for a test 
case, or if these results could not be processed 



   
 

   
 

for any reason, then that team is ranked last 
for the test case. 

b. If two mean distances differ by less than 0.5 
mm, a team with a fully-automatic method is 
ranked higher than a team with a semi-
automatic method. 

3. Compute the mean rank of every team, which gives the 
final ranks of the challenge. 

V. CHALLENGE ENTRIES 

A. Team cDRAMMS 
Machado et al. [13] extended the Deformable Registration via 
Attribute Matching and Mutual-Saliency Weighting 
(DRAMMS) algorithm [19], a general-purpose algorithm [20], 
specifically for the US-MRI registration problem, which they 
termed as correlation-similarity DRAMMS or cDRAMMS. 
They released it at https://www.nitrc.org/projects/dramms/ 
(version 1.5.1). The original DRAMMS has two good 
properties for US-MRI registration. First, representing each 
voxel with multi-scale and multi-orientation Gabor attributes in 
DRAMMS offers a richer information than purely image 
intensities. This helps to establish more reliable voxel 
correspondences despite the different image protocols and 
different intensity profiles between US and MRI images. 
Second, the mutual-saliency module in DRAMMS 
automatically assigns low confidence or weights to regions that 
cannot establish reliable or cannot find counterparts across 
images. This potentially reduces the negative effects of the 
missing correspondences between US and MRI images. 
Different from the original DRAMMS, which uses the sum of 
square differences (SSD) between attributes for matching, the 
modified cDRAMMS uses correlation coefficient (CC) [21] 
and correlation ratio (CR) [22] on attributes for voxel matching. 
CC and CR on voxel attributes in cDRAMMS establish voxel 
correspondences at a higher accuracy and higher reliability than 
SSD in DRAMMS. Free-form deformation and discrete 
optimization are chosen as the deformation and optimization 
strategy, respectively. 

B. Team DeedsSSC  
Heinrich et al. [14] used DeedsSSC, which comprises a linear 
and a non-rigid registration that are both based on discrete 
optimization and modality-invariant image features. 
Specifically, self-similarity context features (SSC) are extracted 
for both MRI and ultrasound scans that are matched based on a 
dense displacement sampling. First, the similarity maps for 
each considered control point are used to extract 
correspondences for fitting a linear transform using least 
trimmed squares, similar as done in block-matching 
approaches. Second, new similarity maps are calculated for 
linearly aligned images and an efficient graphical model based 
discrete optimization (deeds) is used to estimate a nonlinear 
displacement field that avoids implausible warps and further 
improves the registration quality. All computations are 
performed for scans resampled to isotropic 0.5 mm resolution 
and using the default parameters 
(see https://github.com/mattiaspaul/deedsBCV) with an 
optimization over multiple grid-scales. Finally, the nonlinearly 
warped landmarks are again constrained to follow a rigid 6-

parameter transform for improved robustness. The algorithm is 
executed within less than 10 seconds per scan pair on a multi-
core CPU and ongoing work considers the huge potential for 
further speed-ups through parallelized GPU computations. 

C. Team FAX 
Zhong et al. [17] proposed a learning-based approach to resolve 
intraoperative brain as an imitation game. This point-based 
approach predicts the deformation vectors of key points to 
compensate the non-rigid brain-shift. For each key point, they 
extract a local 3D patch in iUS and model the key point 
distribution as the encoding of the current observation. A 
demonstrator is constructed providing the optimal deformation 
vector based on the current key point location and the ground 
truth. An artificial neural network is trained to imitate the 
behavior of the demonstrator and to predict the optimal 
deformation vector given current observation. To increase 
robustness, the proposed technique uses a multi-tasking 
network with a rigid transformation as auxiliary output. In 
addition, we use non-rigid deformations to augment the 3D 
volume and 3D key points to facilitate the training. 

D. Team ImFusion 
The method [16] is based on the multi-modal similarity metric 
LC2 [7] and has recently been used in a first live evaluation 
during surgery [23] (data NOT overlapping with challenge 
data). The similarity metric was maximized using a non-linear 
optimization algorithm with a parametric transformation 
model. In a pre-processing step specific to the challenge data 
set (cartesian 3D ultrasound volumes compounded by the 
SonoWand system), the volume sides facing the ultrasound 
probe is estimated and the outermost 4mm of content are 
cropped accordingly. The registration algorithm is 
implemented using GPU acceleration. For registration, the US 
volume was employed as the fixed image, and was resampled 
to 0.5mm, which is half of the MRI resolution. The final 
selected patch-size for computing similarity metric is 7×7×7 
voxels, which was optimized in their prior work [23]. The 
algorithm employs a two-stage non-linear optimization strategy 
that successively operates on the transformation parameters. In 
the first stage, a global DIRECT (DIviding RECTangles) sub-
division method [24] searches on translation only, and is 
followed by a local BOBYQA (Bound Optimization BY 
Quadratic Approximation) algorithm [25] on all six rigid 
transformation parameters. Afterwards, the local optimizer 
conducts another search on full affine parameters in order to 
accommodate shearing and non-uniform scaling of the data. 

E. Team MediCAL 
Multimodal deformable registration between the MRI and intra-
operative 3DUS was achieved with a weighted version of the 
locally linear correlation metric (LC2), correlating MRI 
intensities and gradients with ultrasound, while adapting both 
hyper-echoic and hypo-echoic regions within the cortex. The 
method [15] was initialized with a global rotation of the US 
volume to match the orientation observed on the MRI. This was 
achieved using a PCA of the extracted inferior skull region, 
identifying the principal orientation vectors of the head, 
followed by a scaling and translation correction. This fusion 
step uses a patch-based approach of the US voxels, comparing 



   
 

   
 

intensity and gradient magnitudes extracted from the MRI with 
a linear relationship. The registration applies sequentially a 
rigid and non-rigid step, with the later integrating a weighting 
term and controlled by a cubic 5×5×5 B-Spline interpolation 
grid, distributed uniformly in the fan-shaped US volume. The 
weighting term uses pre-annotated labels on the MRI, 
representing both the hypoechoic (fluid cavities) and the 
hyperechoic (ex. choroid plexus) areas observed on ultrasound. 
This term is added only at the non-rigid step as it is highly 
specific to the internal areas in US such as the lateral ventricles, 
requiring a rigid pre-alignment. Registration optimization was 
performed using BOBYQA, which avoids computing the 
metric’s derivatives. 
F. Team NiftyReg 
Drobny et al. [12] suggest a method which uses a block-
matching approach to automatically align the pre-operative 
MRI with the iUS image. The registration algorithm is part of 
the NiftyReg open-source software package [26]. Their block-
matching registration technique iteratively establishes point 
correspondences between the fixed image and the warped 
floating image, and finally determines the transformation 
parameters through least trimmed squares (LTS) regression. A 
two-level pyramidal strategy was used for coarse-to-fine image 
registration. For block-matching, both fixed and floating 
images were divided into uniform blocks of 4 voxel edge 
length. The top 25% of blocks with the highest intensity 
variance in the fixed image were used while the rest were 
discarded. Each of these image blocks was then compared to all 
floating image blocks that have an overlap of at least one voxel. 
The best match between the blocks from the fixed and floating 
images was determined as the pair with maximum absolute 
normalized cross-correlation (NCC). After establishing the 
point-wise correspondences, the second step was the update of 
transformation parameters via LTS regression. At every 
iteration, the composition of the block-matching 
correspondence and the transformation of the previous step 
determined the new transformation by LTS regression. 

TABLE III 
SUMMARY OF THE CHALLENGE RESULTS. 

Team Distances between landmark pairs 
after registration	

Mean ± std, in mm 
Training set / Test set 

Mean 
case-by-

case 
rank 

Final 
challenge 	

rank 

cDRAMMS 3.35 ± 1.39 2.18 ± 1.23 3.4 3 = 
DeedsSSC 1.67 ± 0.54 1.87 ± 0.93 2.4 2 

FAX 1.21 ± 0.55 5.70 ± 2.93 5.3 5 = 
ImFusion 1.75 ± 0.62 1.57 ± 0.96 1.5 1 
MedICAL 4.60 ± 3.40 6.59 ± 2.89 5.3 5 = 
NiftyReg 2.90 ± 3.59 3.21 ± 3.57 3.1 3 = 

Hong et al. 5.60 ± 3.94 6.65 ± 4.55 - - 
*Sun et al. 3.91 ± 0.53  - - - 

     
Initial 

distances 
5.37 ± 4.27 6.38 ± 4.36 - - 

For each team, the first columns give the mean distances between landmark 
pairs after registration, computed over all landmark of all cases, for the training 
and test sets. The mean case-by-case rank, computed on the test set only, and 
the final challenge rank are then given. For comparison, the last line contains 
the mean initial distances, before registration. Teams cDRAMMS and NiftyReg 
were eventually ranked tied at third (=). Hong et al. sent results on the test data 
but did not attend the challenge event. Sun et al. sent only partial results (*) on 
the training set, but did not participate to the second phase of the challenge. 
These two teams were thus not ranked. 

VI. RESULTS 

A. Phase I: distances on the training data 
The results obtained on the training dataset were reported by 
each team in their respective contribution to the challenge 
proceedings [27]. Most authors reported their distances 
obtained after registration for each case, although some 
reported only averaged values. Table III summarizes the mean 
distance between landmark pairs after registration, over all 
landmark of all cases, computed by each team. All teams but 
one improved from the initial distances, with three teams 
achieving a mean distance under 1.75 mm and two more under 
3.35 mm. Team cDRAMMS initial reported a mean distance 
between landmarks of 3.35 ± 1.39mm. With an updated version 
of their method, this error was later reduced to 2.28 ± 0.71mm. 
Sun et al. [11] provided partial results on 4 cases only, since the 
other 18 cases were used to train their neural network. This team 
eventually did not participate to the second phase. 

B. Phase II: distances on the test data 
This section presents the results of the 6 teams that completed 
phase II of the challenge, on the test dataset. Figure II first 
shows the results per test case, aggregated across all teams. Test 
cases with the largest initial errors (cases 1, 5, and 3) were the 
most difficult to treat. Results for test cases with the smallest 
initial error (4 and 9) were improved on average, but several 
teams also obtained larger distances after registration. Finally, 
results were consistently improved for all other cases with an 
initial error in the 4-6 mm range. 
 

 
Figure II. Results per test case: box plot distribution of the distances 
between landmark pairs. For each test case, the left box plot (blue) shows 
the initial distances before registration. while the right box plot (orange) 
shows the distribution after registration, aggregated over all teams. 

 
Regarding team-by-team results, mean distances between 
landmark pairs after registration are summarized in Table III 
while the distribution of these distances is detailed in Figure III. 
Team ImFusion and DeedsSSC obtained a mean distance 
between landmark pairs well below 2 mm, respectively of 1.57 
and 1.87 mm. These excellent results are consistent across all 
test cases, with a standard deviation around 1 mm for both 
teams, which confirmed the results reported on the training data 
set. Team cDRAMMS also consistently obtained very good 



   
 

   
 

results, with a mean error of 2.18 mm and a single large residual 
error of 4.3 mm for case 5. Results of team NiftyReg are more 
varied. As can be seen on the lower panel of Figure III, they 
obtained excellent results for all cases but two, cases 1 and 5, 
where the distance was reduced from 15.7 to 5.9 mm and 13.2 
to 12.8 mm, respectively. Without these two outliers, the mean 
distance over all cases would be reduced from 3.21 ± 3.57 mm 
to 1.70 ± 0.91 mm. Team FAX reported the best results on the 
training set, with a mean distance between landmark pairs of 
1.21 ± 0.55 mm. However, this distance leaped to 5.70 ± 0.55 
mm on the test data, which potentially shows their deep learning 
method overfitted the data during the training phase. Finally, 
team MedICAL obtained few or no improvements from the 
initial distances between landmark pairs. 

 
Figure III. Distribution of the distances between landmark pairs obtained 
by each team after registration, on the test set. For comparison, the last 
column contains the initial distances before registration. The upper panel 
shows the global results computed over all landmarks of all test cases. In 
the lower panel, these results are split by test case. 

 

C. Phase II: complementary criteria 
All submitted methods were fully automatic. Although it was 
not a factor in the evaluation, the average computational time 
per case (excluding image preprocessing) for each team is 
reported in Table IV, and each team’s choice of software 
implementation and hardware set-up vary. These values range 
from 1.8 sec for team FAX with a trained neural network to 
approximately 450 sec for team cDRAMMS using singe-thread 
CPU implementation.  

TABLE IV 
SUMMARY OF AVERAGE COMPUTATIONAL TIME PER CASE FOR EACH TEAM. 

Team Mean computational 
time per case  

Implementation with 
GPU/CPU 

cDRAMMS 450 sec CPU 
DeedsSSC 25 sec CPU 

FAX 1.8 sec CPU 
ImFusion 20 sec GPU 
MedICAL 103 sec CPU 
NiftyReg 115 sec GPU 

 

D. Qualitative results 
 

 
Figure IV. Qualitative comparison of registration results for Training Case 
25 across different teams. For each team, the ultrasound and deformed 
FLAIR MRI scan is overlaid together. The mTRE values for each team is 
listed at the right bottom corner of each image overlay. The arrows point 
to the sulcus patterns with varied registration quality among teams. 
 

 
Figure V. Qualitative comparison of registration results for Test Case 3 
across different teams. For each team, the ultrasound and deformed 
FLAIR MRI scan is overlaid together. The mTRE values for each team is 
listed at the right bottom corner of each image overlay. The arrows point 
to the sulcus patterns with varied registration quality among teams. 



   
 

   
 

To demonstrate the data and the registration task, MR and iUS 
volumes of one patient was chosen from each of the training 
and test datasets, and are shown in Figures IV and V, 
respectively. The selected cases have a relatively large initial 
mTRE and a substantial variability between the teams. Also, 
note that these two cases do not necessarily directly reflect the 
overall ranking of the challenge, which was based on averaged 
rankings of all cases. As no quantitative measures of 
registration quality are available in a clinical setting, visual 
inspection of the images is important to obtain an impression of 
the registration quality. As shown in Figures IV and V, the 
registration accuracy can be evaluated by adapted visualization 
and identification of homologous features such as sulci, gyri 
and ventricles in the images. 
 

E. CuRIOUS2018 Challenge ranks 
Following the description in Section IV, all teams were ranked 
independently for each test case, based on the mean distances 
between landmark pairs. These case-by-case ranks are 
summarized in Figure VI, with the number of times each team 
was ranked at the ith place, with i from 1 to 6. 
 
The winner and runner-up are teams ImFusion and DeedsSSC, 
which are perfectly consistent with their respective results 
reported in Figure III. Note that ImFusion obtained the best 
registration for 6 of the 10 tests cases. Despite a larger mean 
registration error, team NiftyReg was ranked third before team 
cDRAMMS as it obtained a better case-by-case rank (3.1 vs 
3.4). However, team cDRAMMS also had very good results, 
but more consistently handled all cases, including the extreme 
ones. This specific situation pointed out the fact that the 
challenge metric favors accuracy over precision, with a limited 
penalty when low quality results are obtained on a single case 
or two. To overcome this limit, since we consider precision as 
a crucial factor for the surgeons' acceptance of a method, the 
challenge’s organizers decided to declare a tie for third place. 
Both NiftyReg and cDRAMMS thus received the same third 
place prize. Finally, both teams FAX and MedICAL obtained a 
mean case-by-case rank of 5.3, and were ranked tied at the 5th 
place in the challenge. 
 

 
Figure VI. Case-by-case ranks for each team. For example: over the ten 
test cases, team ImFusion was ranked first six times, second three times, 
and third one time. 

 

VII. DISCUSSION 
In this challenge, the focus has been on MR-iUS registration in 
the context of brain tumor surgery. As both the training and test 
datasets exclusively contain data from LGG surgeries, there has 
been a special focus on this tumor type. The resection of LGGs 
is particularly challenging as the tumor tissue can be very 
similar to normal brain tissue. In LGG surgery, there are also 
fewer options for additional guidance as tools like 5-ALA 
fluorescence are not available. Intraoperative ultrasound is 
therefore an attractive solution in these cases. The optimization 
and benchmarking of available registration algorithms on data 
from these tumors is therefore particularly important for 
successful future clinical translation. Even though the emphasis 
has been on LGG, the results from the challenge will generalize 
well to other tumor types such as HGGs and metastasis as these 
tumors are more distinct from normal brain tissue and depict 
clearer boundaries than LGGs in ultrasound images. 
 
An important obstacle for the widespread use of iUS is the 
challenging and unfamiliar image interpretation. The 
integration of iUS into the navigation system and the 
visualization of corresponding slices in pre-operative MR and 
iUS makes this interpretation considerably more intuitive. With 
accurate MR-iUS registration, the surgeon can perform the 
resection based on the MR images even after brain shift, which 
makes the neuronavigation accurate and easy to interpret.  MR-
iUS registration also enables correction of other types of pre-
operative MR data such as fMRI and DTI [28]. 
 
Image registration techniques tailored for MRI-iUS registration 
in this challenge were landmark-, intensity- or learning-based. 
The performance of landmark-based methods in non-linear 
image registration depends on both finding enough landmarks 
that cover the entire volume, and correctly finding their 
corresponding landmarks in the second volume. The voxel-wise 
attribute-based method of Machado et al. [13] (team 
cDRAMMS) did relatively well despite the fact that iUS and 
MRI have drastically different salient features, and ranked third 
in a tie with Drobny et al. [12] (team NiftyReg). The top three 
algorithms in this challenge [12-14] were all intensity-based 
techniques, which calculated a dense transformation map by 
utilizing intensity values at all locations. 
 
Deep learning has been successfully applied to image 
registration [29, 30], but in nonlinear image registration tasks 
with high accuracy requirement, such as brain shift correction, 
further exploration is still needed [31]. The two submissions 
that used DL in this challenge were from Sun et al. [11], who 
did not participate to the second phase, and Zhong et al. [17] 
(team FAX), who ranked first in the results reported on the 
training database. However, their method did not work well on 
the test database. A common culprit for such behavior is 
overfitting, where the model overfits the training data and 
therefore performs poorly on the unseen test data. As more 
training data becomes available, this type of method is expected 
to perform better in the future. 
 
Symmetric image registration techniques provide unbiased 
estimates of the transformation field and are known to generally 



   
 

   
 

outperform their asymmetric counterparts [32]. Two of the top 
three methods in this challenge [12, 14] compared the 
performance of their techniques in symmetric and asymmetric 
settings. They both concluded that asymmetric transformations 
lead to a superior performance in this challenge. This is an 
interesting finding and is likely due to the vast differences in 
physics of US and MR imaging modalities. 
 
It was also noticed by some of the challenge participants and 
discussed during the event that in some cases affine 
transformations outperformed non-linear elastic 
transformations. This might seem surprising as brain shift is 
often described as a non-uniform deformation. However, before 
resection a large component of the experienced mismatch 
between MRI and iUS is often due to inaccurate patient-MRI 
registration. This is a rigid registration most often based on 
anatomical landmarks, fiducials, surfaces or a combination of 
these. Consequently, an affine transformation might be 
sufficient to correct for most of the misalignment. After 
resection, the situation will be different with larger and highly 
non-linear deformations and affine transformations will likely 
not be sufficient to register the images. Some teams initialize 
their nonlinear registration with affine alignments first. This 
approach can ensure the overall registration robustness when 
only focusing on relatively local tissue deformation. However, 
in cases of updating other intra-operative data, such as pre-
operative tractography [28], direct estimation of nonlinear 
deformation may be preferred. 
 
In both the training and test databases, we selected landmarks 
that cover a large part of the iUS volume with sufficient 
distance between neighboring landmarks. This strategy 
provides a good benchmark for comparing image registration 
techniques. However, the quality of the alignment closer to the 
tumor is more clinically important as it better helps the 
neurosurgeon to optimize the resection size and location. To 
further investigate the registration performance, registration 
errors per landmark for each case are analyzed for the testing 
dataset. More specifically, the registration errors per landmark 
across all teams for each case were plotted in Figure VII. As 
expected, a higher variance of registration errors was observed 
for Case 1 & 5 with large brain shift (>10mm). Case 12 (initial 
mTRE=4.89mm) also exhibits a relatively high variance in 
registration errors. This is likely due to blurry sulci patterns in 
MRI in comparison to iUS. Furthermore, we also computed the 
medians, minimums, and variances of the registration errors per 
landmark across all teams for each clinical case from the testing 
dataset, and the results are show in Figure VIII. With Tukey’s 
method, we identified outlier landmarks based on the computed 
statistical measures. In general, there are only very small 
amount of outlier landmarks (<10 out of 173). While the 
minimums and medians generally point to the same outlier 
landmarks, variances did not show any. Based on visual 
inspection, these landmarks are typically anatomical features, 
which are relatively close to the interface of tissue and 
transducer and border of the iUS volume, as well as sulcus 
patterns that are less distinguishable in MRI scans in 
comparison to the iUS due to differences in resolution. 
 

The distance between corresponding landmarks in the two 
images before and after registration is a well-established metric 
for evaluation of registration results in the absence of a ground 
truth. Despite being widely used, this metric has some 
limitations. First, as there is only a limited number of landmarks 
associated with each image, the registration error is only 
evaluated at a limited number of locations and will therefore not 
capture local displacements and deformations in other 
locations. Thus, the number of landmarks and their distribution 
in the image volume are important. The landmarks in both the 
training and test sets have been carefully placed in order to 
capture the displacements and deformations as good as 
possible. However, we noticed that in Test Case 5, the 
registration results were not accurate by visual inspection even 
though the mTREs indicated successful alignment. This 
emphasizes the need for both quantitative and qualitative 
assessment of registration results. Another limitation of this 
metric is the localization error associated with manual 
placement of points. For the landmarks to be valid for 
evaluation of registration results, this localization error has to 
be significantly lower than the expected registration errors. We 
have measured the inter- and intra-rater variability in both the 
training and test data and shown that these are indeed 
significantly lower than the registration errors. Even though the 
landmarks do not represent the absolute ground truth, they are 
valid for the evaluating the registration outcomes.  
 
The use of landmarks as the only metric for the challenge also 
represent a limitation. For implementation in a clinical setting, 
for example, other characteristics would also be of critical 
importance, such as registration precision, accurate mapping of 
tumor boundaries, smoothness of deformation field (no 
vanishing tissues), and ease of use. However, some of the 
factors can be very complex and difficult to quantify, and in the 
challenge setting, the use of a single well-defined metric is 
advantageous. A single metric enables a straightforward, 
comprehensible ranking scheme and an open, fair competition. 
With the use of multiple metrics, there will always be a 
discussion on the weighting of the different criteria and how to 
aggregate them. The rules for aggregation of the ranks in this 
challenge were outlined before the challenge and were not 
changed at any point. Still, the system used favors accuracy 
over precision. As discussed during the challenge event, for the 
clinical users, high precision and high accuracy are equally 
important and precision can even be more important than 
accuracy. This point should be re-designed and improved in 
future editions of the challenge. 

VIII. FUTURE WORK 
In the first edition, the registration task solely focused on MRI-
iUS registration before dura-opening and after craniotomy. 
However, with the progress of tumor resection, tissue 
deformation is an on-going process, and accurate tracking can 
ensure the complete removal of cancerous tissues, preventing 
any additional surgeries. Intended as a recurrent open challenge 
to further improve the registration algorithms, we expect to 
introduce multiple sub-challenges in future CuRIOUS 
challenges to target brain shift correction at different stages of 
the surgery, especially during and after resection. 



   
 

   
 

 
For clinical practices, besides accuracy and robustness, 
processing speed is an imperative factor. In the inaugural 
edition of the challenge, performance speed was not 
emphasized in scoring the teams because it can be affected by 
multiple factors, including implementation platforms, for 
prototype algorithms. In future challenges, we aim to place 
discussions and emphasis on this topic, as well as optimization 
algorithms to direct the results of the challenge towards more 
realistic clinical implementations. 
 

 
Figure VII. Registration errors per landmark across all teams shown as 
boxplots for each case from the testing dataset. The error is measured as the 
Euclidean distance between the deformed landmark in MRI and the 
corresponding one in ultrasound, and the landmarks are ordered from the left 
to the right for each case according to their number provided. 

 

 
Figure VIII. The medians, minimums, and variances of registration errors 
for each landmark across all teams, and the results are plotted as boxplots 
for each case from the testing dataset. 

 

IX. CONCLUSION 
Holding great clinical values, MRI-iUS registration for 
correcting tissue shift in brain tumor resection is still a difficult 
task. As the first public image processing challenge to tackle 
this clinical problem, the CuRIOUS2018 Challenge provided a 
common platform to evaluate and discuss existing and 
emerging registration algorithms on this topic. The results of 
CuRIOUS2018 provided valuable insights for the current 
developments and challenges from both the technical and 
clinical perspectives. This is an important step forward to help 

translate research-grade automatic image processing into 
clinical practice to benefit the patients and clinicians. 
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