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ABSTRACT

Quantitative Ultrasound (QUS) techniques aim at quantifying
backscatter tissue properties to aid in disease diagnosis and
treatment monitoring. These techniques rely on accurately
compensating for attenuation from intervening tissues. Var-
ious methods have been proposed to this end, one of which
is based on a Dynamic Programming (DP) approach with a
Least Squares (LSq) based cost function and L2 norm regu-
larization to simultaneously estimate attenuation and parame-
ters from the backscatter coefficient. As a way to improve the
accuracy and precision of this DP method, we propose to use
L1 norm instead of L2 norm as the regularization term in our
cost function and optimize the function using DP. Our results
show that DP with L1 regularization substantially reduces
bias of attenuation and backscatter parameters compared to
DP with L2 norm. Furthermore, we employ DP to estimate
the QUS parameters of two new phantoms with large scatterer
size and compare the results LSq, L2 norm DP and L1 norm
DP. Our results show that L1 norm DP outperforms L2 norm
DP, which itself outperforms LSq.

Index Terms— Quantitative ultrasound, Backscatter, At-
tenuation, Dynamic Programming, L1 norm regularization

1. INTRODUCTION

Ultrasound is recognized as a noninvasive, real-time, and low-
cost imaging modality with broad clinical applications both
in diagnosing and treating stages. As the name describes,
the functionality of this modality is based on the detection
of backscattered acoustic waves within tissue in the mega-
hertz (ultrasound) frequency range. Despite the information-
rich frequency content of these radiofrequency (RF) echo sig-
nals, the conventional utilization of ultrasound is a grayscale
image, titled B-mode image, which is exclusively the enve-
lope of the amplitude of the ultrasound wave. Quantitative
Ultrasound (QUS) methods provide estimates of attenuation
and backscattering properties of the tissue by processing the
raw RF signals. Identifying such quantitative acoustic prop-
erties of tissue is of paramount importance in classification of
pathology.

Characterization and classification of thyroid nodules [1]

and kidneys [2], diagnosis of fatty liver [3], and detection of
preterm birth risk [4] are a few of many clinical applications
of QUS. However, accurately estimating QUS coefficients is
still the challenge of many studies such as [5] and [6]. In
order to address this issue, we recently proposed a Dynamic
Programming (DP) algorithm, [7] which is based on a Least
Squares (LSq) method with L2 norm depth-regularization as-
suming piece-wise continuous tissue properties. This novel
method substantially reduced the bias and variance of estima-
tion compared to previous work with LSq [8]. Nevertheless,
the accuracy of the predicted values at the discontinuities of
acoustic properties in inhomogeneous tissues could still be
improved.

Here we build upon our recent work [7] in two ways. First,
we propose L1 norm regularization instead of L2 norm for DP
optimization to improve parameter estimate accuracy at tissue
boundaries. Second, we estimate backscattering and attenua-
tion coefficients of a tissue-mimicking phantom with marked
difference in the frequency dependence of backscatter, which
is related to the size of diffuse scatterers contributing to the
ultrasound echo signal.

2. METHODS

Quantitative ultrasound often aims at estimating attenuation
and backscattering, and parameters derived from them. The
total attenuation along an RF line is usually modeled as:

Apf, zq “ expp´4αfzq (1)

where A is the total attenuation corresponding to frequency
f and depth z, and α is the effective attenuation coefficient
versus frequency (i.e., the average attenuation from interven-
ing tissues). Backscattering is often parameterized with the
following power-law equation:

Bpfq “ bfn (2)

where b is a constant coefficient and n represents the fre-
quency dependence. Our goal is to find the values of α, b
and n from Eq. 1 and 2.

Let Sspf, zq and Srpf, zq be, respectively, the echo sig-
nal power spectra from the sample and reference phantoms



obtained using the same ultrasound transducer and the same
imaging settings (i.e. frequency, focal properties, etc). Tak-
ing the ratio of the two spectra eliminates any dependence on
the imaging setting, leaving only attenuation and backscatter-
dependent terms:

RSpf, zq “
Sspf, zq

Srpf, zq
“
Bspfq

Brpfq
.
Aspf, zq

Arpf, zq
“

bsf
ns

brfnr
expt´4pαs ´ αrqf.zu

(3)

where the subscripts s and r refer to the sample and the ref-
erence phantoms, respectively. After taking the natural loga-
rithm and some manipulation, we have:

Xpf, zq “ b` n ln f ´ 4αfz (4)

where X is the natural logarithm of RS which is known from
the experimental data, b “ lnpbs{brq, n “ ns ´ nr, and
α “ αs ´ αr. The goal is to estimate α, b and n, which
reveal quantitative properties of the sample. We now show
how these parameters can be estimated using DP.

2.1. Dynamic Programming (DP)

We proposed DP [7] to solve for α, b and n using the follow-
ing cost function:

C “ D `R (5)

where D and R were respectively the data and regularization
terms. The data term was defined as a least squares cost func-
tion based on Eq. (4) as:

D “
K
ÿ

i“1

pXpfi, zq ´ b´ n ln fi ` 4αfizq
2 (6)

and R was set to L2 norm regularization:

R “ wαpαj´αj´1q
2`wbpbj´bj´1q

2`wnpnj´nj´1q
2 (7)

with subscripts j and j ´ 1 referring to axial positions at the
current and previous rows, and wα, wb, and wn are the reg-
ularization weights for each unknown. The Least Squares
(LSq) proposed by [8] considered only the minimization of
eq. 6.

In this work, we propose to use the L1 norm as follows:

R “ wα|αj ´ αj´1| `wb|bj ´ bj´1| `wn|nj ´ nj´1| (8)

Let u encapsulates the unknowns as follows:

u “ rα, b, ns (9)

To find the global optimum of this cost function, we use the
efficient DP framework, and formulate the following recur-
sive cost function:

Cpj,ujq “ min
u
tCpj ´ 1,uj´1q `Rpuj´1,uqu `D (10)

The minimization is performed on three unknowns u at each
location. The term Cpj ´ 1,uj´1q indicates that we need to
take into account value of the cost functions from the previous
axial row. So, in order to find the Cpj,ujq value at the current
axial position, we have to evaluate R at α, b, and n and add it
to the C matrix of the previous axial row. Then, we must find
the minimum value of this summation, add the data value D
to it, and finally store it in the corresponding element of the
cost function matrix.

In the process of finding the minimum value, we also
have to store the values of uj for which this minimization
occurs (technically known as memoization). These locations
are stored in M , a 4D matrix with the same size as C.

The DP cost function must be calculated for every axial
row. After that, starting from the last axial row, we trace back
the minimum points to the first row using the memoization
matrix M .

3. DATA ACQUISITION

Three pairs of tissue mimicking phantoms, each pair includ-
ing a sample and a reference, were used to compare the per-
formance of LSq, DP L1 and DP L2. The first pair consisted
of homogeneous blocks of agarose-based gels. The sample
and reference contained 75–90 µm diameter and 5–40 µm di-
ameter glass beads, respectively, creating backscatter coeffi-
cients with different frequency dependence. The sample of
the second pair was composed of three layers of an emulsion
of ultrafiltered milk and water-based gelatin with 5–43 µm
diameter glass beads as sources of scattering (3000E, Pot-
ters Industries, Valley Forge, Pennsylvania), where the cen-
tral layer was more attenuating than the outer two. Finally
the last sample had three layers of uniform attenuation in
which the central layer was of 6 dB higher backscatter than
the other two layers. The reference of two layered phantoms
was the top layer of each scanned from its side. All phantoms
were scanned with a Siemens Acuson S2000 using linear ar-
ray transducers as described in our previous paper[7].

Both LSq and DP were implemented on the RF data
frames using custom-built MATLAB routines. Echo-signal
power spectra were computed at different axial and lateral
locations by raster-scanning a 4ˆ4mm2 spectral estimation
window with a 85% overlap ratio and using a multitaper ap-
proach with NW=3 [9]. This approach produced a power
spectrum array with 74 rows and 40 columns for the homoge-
neous phantom and an array with 108 rows and 86 columns
for the layered phantoms, which correspond to different axial
and lateral locations, respectively. Each cell contained a vec-
tor of normalized power spectrum estimates. The LSq and
DP estimators were fed with the normalized power spectra in
the frequency range from 3.7 MHz to 7 MHz corresponding
to the spectral band with power content at least 10dB above
the noise floor measured at 15MHz.

We applied L1 and L2 norm DP, as well as LSq to four
different lateral positions from 10 different frames of RF data,



(a) Attenuation Coefficient α of ho-
mogeneous phantom

(b) Backscatter Coefficients of ho-
mogeneous phantom

Fig. 1. LSq, DP L1 and DP L2 estimation of (a) attenuation
coefficient and (b) backscatter coefficients of Eq. 2 in the ho-
mogeneous phantom with. DP L2 (red) collapsed on DP L1
(green) as both regularization norms result in same estima-
tions for constant coefficients.

Table 1. The DP regularization weights for each variable.

DP L1 DP L2

wα wb wn wα wb wn

UniformPh 108 108 108 108 108 108

UniformBSC 103 100 100 106 103 103

UniformAtt 106 50 50 5 ˚ 106 10 10

i.e 40 sample positions in total for each phantom. The weight
of the regularization term in DP was set to a fixed value given
in Table 1 in all 40 sample positions of the homogeneous
phantom (UniformPh), the layered phantom with uniform
backscatter coefficients (UniformBSC) and the layered phan-
tom with uniform attenuation (UniformAtt). The weights for
L2 regularization are the same wights used in [7] and those
for L1 are determined similarly based on the thresholding
method represented in [7] too. The following search ranges
were used for both LSq and DP:

αsMin ´ 0.5 ď α ď αsMax ` 0.5

10´1bsMin ď b ď 101bsMax

nsMin ´ 2 ď n ď nsMax ` 2

where αsMin, bsMin, and nsMin refer to the minima of the
ground truth values in three layers of the layered phantoms
and the ground truth values for the homogeneous phantoms
for the coefficient α, b, and n, respectively, and αsMax,
bsMax, and nsMax correspondingly refer to the maxima of
the ground truth values in three layers of the layered phan-
toms for the coefficient α, b, and n.

4. RESULTS

Figs. 1-3(a) show the DP L1 (green), DP L2 (red) and the LSq
(blue) estimates of attenuation vs axial distance for the homo-
geneous sample of large scatterers, the layered phantom with
constant backscatter, and the layered phantom with constant
attenuation, respectively. Fig.1 (b) and Figs. 2 and 3 (b)–(d)

Table 2. The STD and bias in the Layered Phantom with
Uniform Attenuation. In each layer, the smallest values are
highlighted in bold font.

Layer 1 Layer 2 Layer 3

DP L1 DP L2 DP L1 DP L2 DP L1 DP L2

STD

α (dB/cm-MHz) 2.24e-16 3.92e-16 1.15e-16 2.30e-16 1.14e-16 2.84e-16
b (1/cm-sr-MHzn) 3.86e-09 3.52e-07 2.92e-07 8.75e-07 8.08e-09 4.46e-07

n 0.0584 0.0856 0.1392 0.0500 0.2666 0.1860

Bias

α (dB/cm-MHz) 0.0393 0.0547 0.0409 0.0562 0.0454 0.0608
b (1/cm-sr-MHzn) 5.61e-07 6.44e-07 2.25e-06 1.18e-06 1.39e-06 2.21e-06

n 0.4489 0.4599 0.3006 0.0647 0.2143 0.4281

show the reconstructed sample BSC from estimates of param-
eters bs and ns. Black dashed lines indicates expected values.
DP L1 and L2 substantially outperforms LSq in estimation
of all three parameters. In Fig.1, the DP L2 (red) collapsed
on DP L1 (green) plot as both regularization norms result in
same estimations for constant coefficients.

As demonstrated in the figures, DP L1 outperforms DP L2
in terms of reducing bias error in layered phantoms. Except
for the bias of estimated value for backscatter coefficients,
other results by DP L1 were improved compared to DP L2
and LSq.

The quantitative comparison in terms of bias and STD for
DP L1 and DP L2 are given in Table 2 and Table 3 which de-
scribe the figures better. Although DP L2 estimates backscat-
ter coefficients individually better than DP L1, the constructed
backscatters for DP L1 fit better to the constructed backscatter
with expected values.

5. CONCLUSIONS

We proposed employing Dynamic Programming (DP) with an
L1 norm regularization term to estimate the backscatter and
attenuation coefficients of radiofrequency signals obtained
from the ultrasound machine. The L1 norm regularization
improved the accuracy of the estimation mainly in the discon-
tinuities of the layered phantoms. This substantially reduced
the bias in the attenuation estimation of layered phantoms and
slightly improved the accuracy of the backscatter estimations.
We also applied the algorithm to a uniform phantom with
n markedly different from the reference and compared the
results of L1 and L2 norm to LSq. Because of the continuity
of the coefficients along the phantom, L1 and L2 result in
the same estimation which is profoundly more precise than
LSq. We are currently testing the performance of both L1 and
L2 regularization in DP when there are sources of coherent
scattering present, such as strong scatterers or specular tissue
boundaries.
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