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ABSTRACT

Ultrasound Elastography is an emerging imaging technique that allows estimation of the mechanical characteris-
tics of tissue. Two issues that need to be addressed before widespread use of elastography in clinical environments
are real time constraints and deteriorating e↵ects of signal decorrelation between pre- and post-compression im-
ages. Previous work has used Dynamic Programming (DP) to estimate tissue deformation. However, in case
of large signal decorrelation, DP can fail. In this paper we, have proposed a novel solution to this problem by
solving DP on a tree instead of a single Radio-Frequency line. Formulation of DP on a tree allows exploiting
significantly more information, and as such, is more robust and accurate. Our results on phantom and in-vivo
human data show that DP on tree significantly outperforms traditional DP in ultrasound elastography.
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1. INTRODUCTION

Ultrasound elastography involves imaging mechanical properties of tissue by estimating tissue deformation due
to external or internal sources of deformation.1 Elastography has evolved into many di↵erent variations with
promising results. The focus of this work is on palpation quasi-static elastography, where the probe is hand-held
and tissue is compressed by manually pressing the ultrasound probe. Analyzing the pre- and post-compression
ultrasound images yields a deformation map, which is then used to estimate strain images. Palpation elastography
does not require any special equipment, and as such, it can be conveniently used in both diagnosis and surgical
planning. However, there are challenges to overcome before it can be widely used for clinical purposes. Two
major issues that need to be addressed are real time constraints and e↵ects of signal decorrelation between
pre-compression and post-compression images.

Accurate and robust estimation of the displacement field is an active field of research. A stochastic approach
is taken in Ref. 2 where Kalman filtering based on bio-mechanical properties of the tissue is used to generate
strain images. Rivaz et al. introduced a new method in Ref. 4 for generating strains using three (or multiple)
frames. This was done by deriving constraints on variation of the displacement field and by solving a minimization
problem constructed based on these constraints. Kuzmin et al. have proposed a method in Ref. 3 which uses
three Radio-Frequency (RF) data frames acquired with a force-controlled ultrasound probe. The calculated
displacement from the first two frames is used to improve the accuracy of the displacement calculation of the
first and third frame. A di↵erent approach is taken in Ref. 5 in which a one-prediction-one-correction method
is developed for dynamically choosing the pre- and post-compression images in real-time.

Jiang and Hall6 and Rivaz et al.7 proposed Dynamic Programming (DP) for real-time displacement estima-
tion. In Ref. 8, Rivaz et al. proposed a method using DP and Analytic Minimization (AM) of a cost function
to estimate the displacement field. An integer displacement (ID) field for a single RF-line is first calculated
using DP, which is then refined using the AM step. An issue with this technique is that the DP solution can
be incorrect if there is large decorrelation between pre- and post-compression images. Fleming et al.9 therefore
proposed to improve this work by running DP multiple times and selecting the best outcome. While this work
significantly improves the performance, it only uses single RF-lines for DP optimization, and does not group
multiple RF-lines to utilize their information.

In this paper, we propose a technique where DP is estimated on a tree instead of a single RF-line. DP on a
tree allows us to exploit data from multiple RF-lines to improve the reliability of ID field estimated from DP.
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We call our method Elastography using Dynamic Programming On a Tree (EDPOT). This paper is summarized
as follows. In the next section, we illustrate the technical details of our algorithm. We then show the results on
phantom and in-vivo human data, and provide conclusions and avenues for future work.

2. METHODS

Let I1 and I2 to be pre- and post-compression ultrasound images with the size m⇥n. The goal is to calculate the
matrices A and L such that A

ij

and L

ij

are the axial and lateral displacements for pixel (i, j) of the ultrasound
image. The method used to calculate A and L can be broken down to two main steps. First, for one RF-line
(the seed-line), ID is calculated. In the AM step, sub-integer and accurate displacement is calculated based on
the ID for the seed-line. The displacement of the seed-line is used as an initial estimate for neighboring lines and
is refined using AM. This procedure is then propagated until the displacement of the entire image is estimated.

Erroneous DP results create distinct artifacts in the strain images as shown in Figure 1. Since the displacement
is propagated from the seed-line, the accuracy of the displacement field calculated for that line is crucial. The
outcome of DP for the seed-line itself very much depends on the RF-line chosen as the seed-line; for the seed-lines
whose out-of-plane and lateral motion is large, DP will likely fail.

The focus of this work is on the first step so to improve the DP estimation of the initial ID. In this section
we will describe the required steps for generating the strain image which can be summarized as following:

1. Calculating Integer Displacement

(a) Designing a tree to calculate the ID

(b) Constructing a recursive cost function for pixels on the said tree

(c) Using DP to find the optimum displacements

(d) Choosing a path on the tree with the most accurate displacement

2. Calculating Sub-sample displacement

(a) Deriving the sub sample displacement of the seed-line by means of AM

(b) Using the sub sample displacement of the seed-line as an estimate for calculating the displacement of
the neighboring RF-lines and propagating the displacement

(c) Calculating the gradient of the displacement map to acquire the strain image
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Figure 1: Strain images of a tissue mimicking phantom. A correct strain image in shown in (a), and two examples
of incorrect strain images are shown in (b) and (c). The long dark band in the top part of (b) and (c) is artifact
and is caused by failure in DP.



2.1 Integer Displacement Calculation

Our underlying goal is to exploit more information in the RF data. To achieve this goal, not only the information
in the potential seed-line is used, but also the information in the neighboring lines is utilized. A general solution
to discrete global optimization of a cost function that considers 4 neighbors of a pixel in the regularization term
is NP-hard10 and therefore is computationally intractable.

To overcome this issue, it has been proposed to formulate DP on a tree to take advantage of more informa-
tion.10 We adopt a similar approach and calculate DP on a tree instead of a single RF-line. Figure 2 shows DP
on a single seed-line in left, and our proposed method that estimates DP on a tree in right. For this study we
have chosen a relatively simple tree topology (Figure 2). It includes three edges E1, E2 and E3: one stretching
from the top of the image to a joint pixel (V1), and two from the joint pixel to the bottom of the image on left
and right (E2 and E3). The parameters involving this structure are the length of E1 and the distance between
E2 and E3.

Figure 2: Calculating DP on a line versus on a tree.

We have empirically chosen l

E1 to be 150 pixels where a good balance is struck between overall improvement
and computational complexity. In our tests, changing this parameter did not result in significant variation in
the results; however optimizing l

E1 can be the subject of a future study. In an extreme case which E1 starts
from the top and finishes at the bottom, the tree will be reduced to one line and we will get the same result as
Ref. 8. In another extreme case where l

E1 is 0, the tree structure will be two parallel lines. Choosing a more
complex tree structure could lead to a more e�cient way of utilizing available information. The next step after
deciding on the tree structure is to calculate the ID on the tree. In this regard, we construct a cost function:
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� is the data term and S is the regularization term of the cost function, C. i and j are integers from 1 to m

and 1 to n respectively. a

i

and l

i

are the axial and lateral displacement at sample i of the seed-line. Also, w is
the regularization weight which determines the smoothness of the calculated displacement function. We use DP
to optimize this cost function on the tree structure and generate the ID estimates of the seed tree.

Assume P1 and P2 to be two paths on the tree: P1 is the path including E1 and E2 and P2 is the path
including E1 and E3. The next step involves choosing the path wherein a more accurate ID can be calculated.
Veksler10 considers the cost value at V1 for each path and chooses the path with smaller cost. However, our result
showed that this approach does not necessarily select the best path in ultrasound images due to the following
reason. The value of C heavily depends on US intensity values, which are highly dependent on tissue echogeneity.
Therefore, we propose an novel approach as following. The optimum ID is first calculated for the pixels on E2

and E3. Let (i2, jmax

) and (i3, jmax

) be the coordinates of the pixels on E2 and E3 which are on the same row
and the calculated ID for them, di↵er the most:

j
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where a
E2 and a

E3 are the calculated axial displacements on E2 and E3 and i2 and i3 are the column indexes for
pixels on E2 and E3. We then calculate NCC2 and NCC3 for the mentioned points on E2 and E3 respectively:
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respectively. The path which contains the point with higher NCC, will be chosen and the ID of this path will
be used for the next steps. An issue is that DP only provides ID, and as such, is not very accurate. RF
data is the result of modulation of a high-frequency carrier signal with an input signal and therefore, NCC
can change significantly even with a small shift of the window (Figure 3). Moreover, presence of small errors
in ID is inevitable due to it being integer. Therefore the changes in NCC with small shifts renders NCC of
RF data ine↵ective, and therefore, we use envelope data in Equation 5. In the final step, the ID on the core
seed-line (dotted line in Figure 2) is estimated based on the displacement calculated on the chosen branch. This
displacement is then used in the next step.
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Figure 3: NCC values of experimental phantom data. (a) shows the NCC for a 9⇥ 5 window with vertical shifts
for pixels of a single row of the envelope data, (b) shows the same for the raw Rf data. The e↵ect of the carrier
wave is clearly visible in (b).



2.2 Subsample Displacement Calculation

In this step, subsample displacement (SD) is first calculated for the core seed-line and propagated to the left
and right using SD of the previous RF-line as the initial displacement. Therefore, for one line at a time, the
goal is to find the optimum �a
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i

which make the duple (a
i

+�a

i

, l

i

+�l

i

) the optimum solution for the
following function:

C(�a1, . . . ,�a

m

,�l1, . . . ,�l

m

) =
P

m

i=1{[I1(i, j)� I2(i+ a

i

+�a

i

, j + a

j

+�l

j

)]2}+
↵(a

i

+�a

i

� a

i�1 ��a

i�1)
2+

�

a

(l
i

+�l

i�1 ��l

i�1)
2 + �

0
l

(l
i

+�l

i

� l

i,j�1)
2},

(6)

where l

i,j�1 is the lateral displacement of the previous line and ↵, �
a

and �

0
l

are the regularization terms. Con-
sidering the cost is calculated for each RF-line separately, we have dropped the index j . Hence a

i

, l
i

, �a

i

and
�l

i

are in fact a
i,j

, l
i,j

, �a

i,j

and �l

i,j

.

Using this cost function, the SD is calculated first for the core seed-line by choosing the ID as the initial
estimate. Next, the same procedure will be carried out for the line on the left and on the right of the core seed-
line and like so for every other line; except the SD of the previous line is used as the initial estimate. In the end,
the strain image can be calculated by taking the gradient of the displacement fields and applying appropriate
filtering technique to increase the quality.

3. RESULTS

We tested EDPOT on phantom and in-vivo human data. The human data is composed of RF data of the liver
from patients with liver cancer, as well as B-mode images of patellar tendon. These datasets are further described
in corresponding sections below.
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Figure 4: Images of the experimenting data sets. (a) shows the B-mode ultrasound image of the Phantom. (b)
shows the axial strain where the DP method has not failed and in (c), the MSE of DP and EDPOT are compared.
�/10 is used in error bars to ease comparison.

The main part of the program, i.e. performing DP on the tree and calculating displacements, was written
in C++ and used as a Matlab MEX function. The data processing was done on a 3.40 GHz Core i7 quad
core computer. For a 1000 ⇥ 100 ultrasound image, EDPOT takes approximately 0.070 seconds to run on this



Table 1: The MSE and the standard deviation of the squared error for the Phantom, Patient 1 and Patient 2
Phantom

w 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
DP 15.35± 110.81 13.77± 105.62 12.95± 97.90 14.00± 103.89 14.98± 106.77 17.11± 112.36 20.43± 117.92 23.51± 121.08 30.03± 134.84

EDPOT 2.71± 13.43 1.54± 9.88 1.03± 5.37 0.83± 4.23 0.85± 4.47 1.04± 6.10 1.52± 8.76 3.40± 32.95 5.55± 37.82

Patient 1
w 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
DP 0.49± 3.37 0.43± 1.99 0.40± 1.75 0.40± 1.76 0.41± 1.80 0.42± 1.85 0.42± 1.89 0.43± 1.90 0.43± 1.91

EDPOT 0.32± 1.20 0.29± 1.03 0.28± 1.01 0.27± 0.97 0.26± 0.86 0.27± 0.87 0.26± 0.85 0.26± 0.86 0.26± 0.86

Patient 2
w 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
DP 4.35± 11.23 4.84± 11.58 5.52± 12.61 5.95± 13.00 6.39± 13.44 6.67± 13.57 7.37± 14.66 8.11± 15.82 9.18± 17.84

EDPOT 4.17± 11.44 4.45± 11.68 4.74± 12.32 4.97± 12.66 5.25± 13.29 5.28± 13.24 5.59± 13.88 5.93± 14.61 8.50± 31.17

machine, which is approximately 48.5% more than that of the previous method. Our implementation can be
further optimized to reduce this time.

We compare the results of EDPOT with those of Ref. 8 (DP). In order to measure the improvement of
EDPOT over DP, a ground truth displacement field is required. As mentioned before, failure in DP primarily
depends on the choice of seed-line: if shadowing artifact, large out-of-plane or lateral motion, blood vessels or
cysts are present at the seed-line, DP will likely fail. Failure in DP results in distinct errors in the displacement
and strain images (Figure 1), and as such, is easy to detect by visual inspection. Therefore, to generate the ground
truth, we run DP on multiple seed-lines and visually select a correct strain image. We use this displacement
image as a ground truth displacement estimate. Note that while this ground truth is not perfect, it provides
su�cient accuracy for our purpose of finding large displacement errors (Figure 1).

In the next step, for every RF-line, ID was calculated with that RF-line as the seed-line. With the ground
truth at hand, we measured the error for both methods in terms of Mean Squared Error (MSE). We then report
the mean and the standard deviation of the squared error for all seed-lines.

As stated in the Methods Section, the impact of the regularization term on the cost function is governed by
w. Thereby, we calculated the displacements for a range of w ; from 0.1 to 0.5 with 0.05 increments. It is worth
mentioning that due to the low lateral resolution of ultrasound images, we do not show lateral displacement
results. Experimental results are provided below.

3.1 Phantom Experiments

The phantom data was acquired from a CIRS (Norfolk, VA) breast phantom. The data was collected with an
Antares Siemens system (Issaquah,WA) at a center frequency of 6.67 MHz using A VF10-5 linear array with a
40MHz sampling rate. A B-mode image, a strain sample of the phantom data along with a strain can be seen in
Figure 4. The MSE and standard deviation for a range of w is depicted in Figure 4c, and the numerical values
are reported in Table 1.

3.2 Results On Patients With Liver Cancer

The data was collected from two patients with primary or secondary liver cancer who underwent open surgical
radio-frequency thermal ablation. Data collection was performed at Johns Hopkins Hospital and was approved
by its ethics board. These patients had unresectable disease and were recommended for RF ablation after review
from Johns Hopkins University multidisciplinary conference. The RF data was acquired from an Antares Siemens
system (Issaquah, WA) at the center frequency of 6.67 MHz with a VF10-5 linear array at a sampling rate of
40 MHz. Further details of the data acquisition are available in Ref. 8. B-mode images, strain images without
any artifact and with artifact for Patient 1 and Patient 2 are depicted in Figure 5. The comparison of DP and
EDPOT is also presented in Figure 6.

3.3 Estimating Tendon Displacement

Analyzing motion pattern of the tendons during passive motion or active contraction can provide invaluable
tissue properties and is therefore of significant clinical interest. B-mode images of the patellar tendon of a
healthy volunteer was collected using an Aplio 500 ultrasound machine with a 14 MHz frequency linear probe
(Toshiba Medical Systems, Tokyo, Japan). This study is approved by the ethics boards of both McGill University



Health Center and Concordia University. The probe is hand-held, and is used to slowly push the tendon (visible
at the top part of Figure 7a) down. Axial and lateral displacements are shown in parts (b) and (c) and depict
an expected motion pattern. It is important to note that these high quality motion patterns are estimated from
B-mode data, and are expected to significantly improve with RF data.

4. CONCLUSION

In this work we proposed a new method wherein the integer displacement is calculated for pixels on a tree,
contrary to the previous work which was calculated on a single vertical line. This resulted in utilizing more
information and thus improved the accuracy of the integer displacement field. This was confirmed with testing
on RF data acquired from a phantom and also in-vivo human data. The proposed method was shown to
significantly outperform the traditional DP. Lastly, a new application for estimation of tissue displacement using
ultrasound was proposed for patellar tendon, which can lead to improved classification of tendon pathology and
might help assess the healing process.
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(f) Failed DP strain, patient 1

Figure 5: In-vivo images of human data. (a) and (d) show the B-mode ultrasound images of patient 1 and
patient 2. (b) and (e) show the axial strains where the DP method has not failed and (c) and (f) show where
DP has failed.
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Figure 6: Comparing the result of DP and EDPOT. In (a) and (b) the MSE of DP and EDPOT are compared
for Patient 1 and 2 respectively. For better comparison, �/10 is shown.
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Figure 7: Results of in-vivo patellar tendon. (a) shows the B-mode of the patellar tendon which itself can be
seen in the upper half of the image. (b) and (c) show the axial and lateral displacement during contraction
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