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ABSTRACT

Ultrasound (US) beam can be focused at multiple locations to
increase the lateral resolution of the resulting images. How-
ever, this improvement in resolution comes at the expense of
a loss in frame rate, which is essential in many applications
such as imaging moving anatomy. Herein, we propose a novel
method based on generative adversarial network (GAN) for
achieving multi-focus line-per-line US image without a re-
duction in the frame rate. Results on simulated phantoms
as well as real phantom experiments show that the proposed
deep learning framework is able to substantially improve the
resolution without sacrificing the frame rate.

Index Terms— ultrasound imaging, focal point, frame
rate, generative adversarial network, adversarial loss.

1. INTRODUCTION

There are three main US imaging approaches namely: (1)
Classical focused transmission (also known as line-per-line
acquisition); (2) Plane wave transmissions; and (3) Element-
by-element transmission based synthetic aperture imaging.
Focusing can be done through electronic beamforming or a
lens in front of the aperture. In classical focused transmis-
sion, US wave has a complex bowtie shape with sidelobes
and grating lobes. The US image formation is based on the
assumption that received echoes stem from within the main
transmitted US beam. In practice, a strong reflector from
outside of the main lobe may generate detectable echoes
resulting it being falsely displayed. Hence, narrower trans-
mitted beams result in improved resolution and less artifacts.

In classical focused transmission, the quality of recon-
structed image is optimal at the focal point but degrades pro-
gressively away from it. Consequently, to preserve the quality
along the axial direction, several images with different trans-
mit focal depths can be merged together. In this procedure,
the frame rate proportionally decreases with an increase in
the number of focal points.

Using a single transducer element for emission with low
emitted energy, synthetic aperture imaging has a poor signal-
to-noise ratio and a limited depth of penetration. Although
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it has been proved [1] that optimal multi-focus US images
and a high frame rate can simultaneously be achieved by co-
herently compounding plane waves transmitted with different
angels, clinical application of this method needs costly data
acquisition boards, large data transfer bandwidth, and power-
ful parallel processing units.

Inspired by the success of deep learning, we propose a
data-driven method for multi-focus line-per-line US imaging
without a loss of frame rate. More specifically, we train a
Generative Adversarial Network (GAN) [2] to learn propaga-
tion of US waves in the tissue.

Convolutional neural networks are able to extract neces-
sary information (features) from raw data without engineer-
ing hand-drafted features. The main idea of GANs is sur-
rendering the task of defining an objective function for the
system. In particular, GANs consist of generator and dis-
criminator networks, which compete with each other. The
discriminator provides the generator with the quality of gen-
erated data, and the generator tries to fool discriminator by
generating more realistic data [2]. Hence, the discriminator is
the objective function for the generator while itself is also in-
terestingly trained during a single training process. GAN has
been successfully applied in different tasks such as denoising,
super-resolution, and medical image synthesis [3, 4, 5, 6].

Herein, we propose a novel approach generating several
focal points by sending a single focused beam. To this end,
fully convolutional networks are used as generators estimat-
ing other focal points through different GANs. Since US im-
ages are not stationary along the axial direction, the nonlin-
ear propagation equation of the US beam for having a narrow
beam everywhere is estimated through different GANs . Ex-
periments are performed using both simulated and real phan-
tom data. We show that high quality multi-focus US images
can be generated without sacrificing the frame rate.

2. MULTI-FOCUS ULTRASOUND IMAGING

2.1. Focusing

In classic line-per-line imaging, a set of excitation pulses with
proper time delays are applied to crystals in order to focus at
a specific axial depth (zp) shown in Fig. 1. By considering
variations of acoustic potentials along the axial direction, the
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Fig. 1. Electronic focusing of an ultrasound beam.

depth of focus (dz) can be defined as the distance between
two points where the field on axis is 3dB less than at the
focal point. In order to have an optimal multi-focus image
(focused everywhere along the axial direction), the maximum
distance between transmitted focal points has to be equal to
the depth of focus. Therefore, we formulate our problem as
finding a nonlinear function, which transforms the bowtie-
shaped focused beam (with one focal point) to a thin cylindri-
cal beam. As this nonlinear function is nonstationary along
the axial direction, its parameters vary as a function of depth.
As such, different networks corresponding to different depths
need to be trained. Consequently, the method proposed here
is based on partial estimation of a nonlinear function for mul-
tiple depth intervals, which is a common solution for address-
ing nonstationary problems. In other words, we break the im-
age into a number of limited intervals along the axial direction
such that the stationary assumption in training convolutional
neural networks is valid, and subsequently train a GAN for
each interval.

2.2. GENERATIVE ADVERSARIAL NETWORK

2.2.1. Background

GAN training is a min-max game wherein the generator esti-
mates the input-output function and the discriminator distin-
guishes between real and synthesized data. The optimization
is done in an alternating manner to solve the following adver-
sarial objective function [2]:

mGin max V(D,G) =E,p,ia(a) [log D(z)]
+E.p. (2 [log(1 — D(G(2))]

ey

where x and z are, respectively, the desired and input data.
E denotes the expected value, and D and G are, respectively,
the discriminator and generator. The generator tries to operate
on the input in such a way that output is similar to the desired
output such that D cannot discriminate it. Notation p(.) de-
notes probability of the enclosed parameter. In other words,
the output resides in the manifold of real images and is classi-
fied as real. It has to be mentioned that we used non-saturating
GAN to have stronger gradient for G and prevent saturation.
More specifically, G is trained to maximize log(D(G(z)))
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Fig. 2. The structure of the proposed GAN.

instead of training G to minimize log(1 — D(G(z)). As a
result, much stronger gradients are provided early in learning
while the same fixed point of the dynamics of G and D are
preserved [2].

2.2.2. Proposed network

Our proposed network is shown in Fig. 2. GANs are one of
the most active areas of research in deep learning. Previous
work has culminated in several guidelines to prevent mode
collapse and non-convergence [7, 8], which are taken into ac-
count in our work. The generator in Fig. 2 is a fully convolu-
tional network consisting of 9 layers, where the layers respec-
tively contains 32, 32, 32, 64, 64, 64, 32, 32, and 1 filters with
square kernels of size 9, 3, 3, 3, 9, 3, 3, 7, 3. Each layer also
contains ReL.U activation functions and a batchnorm layer.
The discriminator in Fig. 2 consists of 4 layers containing 32,
64, 128, and 256 convolution filters with the same kernel size
of 3. Each layer also contains LeakyReL.U, batchnorm, and
dropout (rate = 0.25) layers. The last layer is flattening with
sigmoid activation for getting the output label. The number of
filters and layers was chosen to maintain a minimum number
of parameters for preserving the generalization performance
and a more stable training. Kernel sizes were chosen empir-
ically. We did not encounter checkerboard artifacts because
the input and output patches have the same size.

2.2.3. Training

We first normalized the intensity input US images to [-1,1],
and then after shuffling, a patch of input-target pairs of size
5050 were extracted. In each iteration, the discriminator is
trained before the generator. To prevent mode collapse [7],
each patch is split into two parts. First, the discriminator is
trained by the generator output and desired data, and then the
generator is trained by both MSE and adversarial loss. The
patch size is 20, and Adam optimizer with 5; = 0.5 and
learning rate of 10~% is used. The code is implemented us-
ing TensorFlow library, and training was done with a Nvidia
Titan Xp GPU.

The solution to training a GAN network (which is a game
between two players) is a Nash equilibrium. In fact, by having
the optimal discriminator, the global minimum of generator’s
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Fig. 3. Plot of the MSE loss of generator and accuracy of
discriminator versus number of epochs during training.

loss function is achieved if and only if p; = pgata, Which
means that the discriminator gives the same probability of 0.5
to both generated and real data. Although the two players may
suddenly reach an equilibrium, the training process oscillates
between two modes and players repeatedly undo each other.
Here, we used three strategies for gaining the best training
performance. First, we found that the learning rate of the ad-
versarial loss function should be 10~3, which prevents MSE
to be the dominant objective. Second, the learning rate of
all losses are reduced to 10% of corresponding initial values
after 100 epochs in order to better probe the search space. Fi-
nally, we chose the interval of [0.49,0.51] for discriminator
accuracy to stop the training process. Training history is il-
lustrated in Fig. 3, which shows desirable oscillations in the
discriminator and a relatively steady improvement in the gen-
erator.

3. EXPERIEMENTS

3.1. Evaluation setting

For evaluation, we place three real equispaced focal points in
the axial direction of the US image, and blend the resulting
three images by weighted spatial averaging as in commercial
US machines. As such, the multi-focus image (desired) has
3 layers with 2 blended regions (Fig. 4 (b)). One of the im-
ages (Fig. 4 (a)) with the middle focal point is the input of
our model. Therefore, the middle layer of output (Fig. 4 (c))
comes exactly from the input, and two other layers are esti-
mated from related layers of input through two GANs. Each
layer is broken into 50x50 patches and fed to the network.
During the test phase, we do not break the image, and each
layer is fed to the generator to prevent the blocking artifact.
For quantitative analysis, peak signal to noise ratio (PSNR),
normalized root mean square error (NRMSE), and structural
similarity (SSIM) index are calculated between ground truth
and both of the output of proposed network and input.
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Fig. 4. Results of the proposed method on simulated phantom
data. (a) Input image with a single focal point. (b) Desired
image with 3 focal points. (c) Output of the proposed model.

3.2. Dataset

Our dataset contains two groups of simulated and real phan-
tom US images. US images were simulated using the Field II
program [9]. The simulated phantoms consisted of a collec-
tion of point targets, five cyst regions, and five hyperechoic
regions. The total number of simulated phantoms was 750,
which were obtained from independent realizations of the
scatterers within the phantom. For each realization (i.e., each
phantom), three different images were simulated by changing
the location of the focal point.

Real phantom data was collected from Multi-Purpose
Multi-Tissue Ultrasound Phantom (CIRS model 040GSE,
Norfolk, VA) using an E-CUBE 12 Alpinion machine with
L3-12H high density linear array and a centre frequency of
8.5 MHz. The sampling frequency of the radio-frequency
(RF) data is 40MHz, and 384 RF lines were collected for
each image. 20 images were collected at different locations
of the phantom. At each location, three images with different
focal points were collected, while the probe was held with
a mechanical arm to prevent any probe movement during
changing the transmit focus point. This ensured that im-
ages with different focal depths were collected at the same
location.
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Fig. 5. Results of the proposed method on real phantom data.
(a) Input image with a single focal point. (b) Desired image
with 3 focal points. (c) Output of the proposed model.



Table 1. Performance indexes for input-desired and output-desired pairs.

data input estimated
index PSNR NRMSE SSIM PSNR NRMSE SSIM
mean 2434  0.0304 0.6157 25.53 0.0271  0.8098
std 0.79 0.0028  0.0212 1.934 0.0062 0.029
min 21.82  0.0223  0.5061 20.72 0.0144  0.7042
max 2699  0.0405 0.6653 30.78 0.046 0.8684
median  24.3 0.0305 0.616 2593 0.0252  0.8146

4. RESULTS

The entire database was broken into three sets of training,
validation, and test groups with sizes of 70, 15, and 15 per-
cent of the total size of images, respectively. The final model
of training was saved and applied to the test set. For sim-
ulated images, Fig. 4 shows the output of the algorithm on
a sample of the test set. As it can be seen, input, output,
and desired images have the same quality in the middle ax-
ial region. However, the input image quality deteriorates in
the shallow and deep regions, whereas the output and de-
sired images have good quality throughout the images. It is
clearly evident that the output of the proposed method even
has better quality than desired around cyst regions and high
scatterers. This improvement stems from our method of fi-
nal model selection. In fact, as we never reach the perfect
case (in which p; = pgatq), the model which has the best
structural similarity to desired on validation dataset is cho-
sen as final model among models within the accuracy interval
of [0.49,0.51]. Table 1 summarizes the quantitative results.
The PSNR, NRMSE, and particularly SSIM fully confirm the
better quality of GAN output as was perceived in visual com-
parison of results (Fig. 4). It is worth mentioning that bet-
ter perceptual quality was achieved through adversarial loss
function. Fig. 3 shows that after epoch 40, there is no notice-
able change in the MSE loss function and the discriminator
mainly tunes the generator parameters to have a comparable
output as desired.

For real phantom data, we used transfer learning because
the number of images was limited. To this end, the final model
of simulated data was used as the starting point of training on
the training set of real phantom data, and the rest of precess is
the same as before. Fig. 5 depicts the results on a sample test
image of real phantom data. Fig. 5 shows the sharp boarders
of cyst as well as the hyperechoic are preserved in the output
of the model as the desired image. It has to be mentioned that
in this experiment two first layers are estimated from the input
and the last layer is the same as the input.

5. CONCLUSIONS

Increasing the number of focal points and breaking the US
image to narrower axial layers is commonly used to preserve
the depth of focus and lateral resolution throughout the image.

This solution, however, substantially reduces the frame rate.
In this paper, we proposed a novel GAN-based approach for
having multi-focus US image in line-per-line imaging without
a loss in frame rate. This approach can potentially be used in
several applications that require both high resolution and high
frame rate US imaging.
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