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 

Abstract—Several cancer types, including breast cancer, are 

associated with tissue structural changes that yield tissue 

stiffening. Clinical breast examination (CBE) is a physical 

examination of the breast to find palpable breast tumors. This 

test lacks accuracy necessary for effective assessment and 

diagnosis of breast cancer. To develop an effective breast cancer 

diagnostic technique, an imaging method is proposed that maps 

the distribution of breast tissue relative elasticity modulus. 

Unlike CBE, this technique is quantitative, hence it is expected 

that its accuracy is independent of the physician’s experience. 

The proposed technique is a quasi-static elastography technique 

which uses radiofrequency data acquired through ultrasound 

imaging to determine both axial and lateral tissue displacements 

resulting from tissue mechanical stimulation. These 

displacements serve as input data for elastography image 

reconstruction. The reconstruction technique is developed using a 

full inversion framework where elastic tissue deformation 

equations are inverted using an iterative process. Each iteration 

in this process involves stress computation using finite element 

analysis followed by updating elastic modulus until convergence 

is achieved. The proposed technique was validated by two tissue 

mimicking phantom studies before it was successfully applied to 

a clinical case. The two independent phantom studies 

demonstrated the robustness of the proposed method 

demonstrated by reconstruction errors of less than 12%. Elastic 

modulus images of the clinical case were compared to 

corresponding B-modes images where cancerous areas were 

identified as hypo-echoic areas. This comparison indicated 
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marked tissue stiffening in those areas. Results obtained from the 

phantom and patient studies conducted in this study indicate that 

the proposed method is reasonably accurate, hence the technique 

can be potentially used for quantitative assessment of breast 

cancer. The elasticity reconstruction algorithm developed in this 

work can be easily implemented on clinical ultrasound systems 

with no requirement to any additional hardware attachment for 

mechanical stimulation or data acquisition. As such, it can be 

applied as a low cost and potentially widely available technology 

for breast cancer diagnosis. 

 
Index Terms—Breast, ultrasound elastography, data inversion, 

finite element. 

I. INTRODUCTION 

REAST cancer is the most common type of non-dermal 

cancer and the major cause of cancer-related death among 

women globally [1]. North America has one of the highest 

incidence breast cancer rates in the world, making breast 

cancer awareness a high priority. Only in the USA, 527 

women are expected to be diagnosed with breast cancer while 

110 women will die of it per day [1]. Central to the importance 

of breast cancer diagnosis is the fact that almost one-third of 

the latter group could survive if their cancer is detected and 

treated early. In a worldwide context, this translates into 

nearly 400,000 lives who could be saved every year as a result 

of early detection [1]. As such, developing techniques that can 

help to detect and diagnose breast cancer at early stages can 

have a great impact on survival and quality of life of breast 

cancer patients. 

Conventional breast cancer screening and detection 

techniques such as clinical breast examination (CBE) and X-

ray mammography are known to have low sensitivity [2]. 

Breast magnetic resonance imaging (MRI) is a more sensitive 

modality for breast cancer detection. There is an increasing 

interest in using breast MRI for breast cancer screening for 

women with high risk of breast cancer, however, MRI is 

costly and has been shown to have low specificity for breast 

cancer diagnosis [2]. Dynamic contrast-enhanced MRI (DCE-

MRI) has been demonstrated to provide a good sensitivity and 

specificity for differentiation of benign versus malignant 

lesions, due to altered angiogenesis mechanisms in tumours 

[3]. However, in addition to being costly, DCE-MRI requires 

injection of exogenous contrast agents to provide such 

contrast. 
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An alternate imaging technique for breast cancer detection 

employs tissue stiffness as contrast mechanism. The technique 

is founded on the fact that alterations in breast tissue stiffness 

are frequently associated with pathology [4], [5]. This was 

demonstrated by stiffness measurement studies of ex vivo 

breast tissue samples conducted by Krouskop et al. [6] and 

Samani et al. [7], [8]. Based on their measurements, there is a 

significant difference between the Young’s moduli of breast 

tumor and healthy breast tissues. As such, imaging breast 

tissue stiffness or breast elastography can be potentially used 

as a non-invasive breast cancer diagnosis method with a high 

efficacy. After development of elastography techniques [9], 

breast elastography was introduced as one of the first reported 

clinical applications developed based on the elastography 

concept. Two alternative methods of quasi-static and harmonic 

elastography were proposed. In the quasi-static methods, the 

tissue is mechanically stimulated very slowly and the resulting 

tissue deformation data are acquired using imaging modalities 

such as MR or ultrasound (US). In harmonic elastography, a 

mechanical wave is induced in the tissue and either vibration 

amplitude or wave speed is measured using MRI or US 

imaging techniques. In both cases, acquired data is used to 

estimate the tissue mechanical properties (e.g. Young’s 

modulus). 

Several feasibility studies [10]-[14] aiming at breast cancer 

diagnosis which involved harmonic US elastography were 

reported. Among relevant groups, Sinkus et al. [15], [16] and 

Van Houten et al. [17] proposed harmonic MR elastography 

techniques to measure the viscoelastic shear properties of in 

vivo breast lesions. While harmonic elastography techniques 

provide information related to tissue viscosity properties that 

may potentially carry more diagnostic information to 

characterize a breast lesion, they usually require additional 

hardware attachments for wave generation in addition to ad 

hoc software including specialized pulse sequences for MR 

elastography. These techniques also involve approximations 

which lead to elastic modulus reconstruction formulation 

based on the wave form and propagation characteristics. Other 

groups developed quasi-static elastography methods in the 

form of mechanical imaging [18], strain imaging [19]-[25] and 

full inversion techniques [26], [27] for breast cancer diagnosis. 

In mechanical imaging [18], mechanical parameters of the 

breast lesions were estimated using contact stress patterns on 

breast surface measured through a force sensor array pressed 

against the breast. This imaging approach is based on the 

premise that temporal and spatial changes in the stress pattern 

allow detection of internal structures with different elastic 

properties and assessing their geometrical characteristics. 

Strain imaging is based on a simplifying assumption of 

uniform tissue stress distribution under which tissue stiffness 

is proportional to its strain reciprocal. Since stress spatial 

variation developed within the breast tissue during mechanical 

stimulation is far from uniform, strain imaging does not 

provide reliable quantitative tissue stiffness information 

necessary for high sensitivity and specificity in breast cancer 

diagnosis. Full-inversion based elastography techniques on the 

other hand, account for tissue stress variation, permitting 

reconstruction of quantitative maps of elasticity modulus. One 

difficulty with inversion based quasi-static elastography 

methods is that they are computationally intensive, unstable 

and hard to implement. To reduce the complexity of the 

elastography inversion algorithms, Samani et al. [28] 

developed a MR-based iterative inversion algorithm for breast 

elastography. This technique was later implemented based on 

an ultrasound platform [29] as a step to develop near real-time, 

low cost and widely available imaging system. The algorithm 

was shown to be robust, however, it requires image 

segmentation for healthy and tumor tissue delineation. This 

requirement is not easy to fulfill, especially with US imaging. 

To address these issues, our group [30] proposed an 

unconstrained full inversion algorithm for ultrasound 

elastography. The method was validated by tissue mimicking 

phantom studies before it was applied to clinical prostate data.  

In this paper, we adapt our recently-proposed methodology 

for unconstrained full inversion-based breast elastogaphy. 

Unlike with the prostate, ultrasound is capable of imaging 

only a portion of the breast due to its limited field of view 

(FOV). As such, only a portion of the breast geometry is 

accessible which precludes the possibility of identifying 

boundaries where force and displacement boundary conditions 

are necessary for modulus reconstruction. To deal with this 

issue, Samani et al. [31] approximated the breast geometry 

with various trapezoidal regions while assumed that the stress 

is negligible outside those regions. To assess the accuracy of 

this geometric approximation, they investigated its impact on 

the reconstruction accuracy by conducting a simulation study. 

The simulation study involved comparing the results obtained 

using approximated breast geometries with the results from 

actual geometry. They concluded that the best results will be 

achieved if the breast geometry is approximated with a 

trapezoid of 35 side angle and the same depth as the FOV. 

Also for good results, the sonographer should move the probe 

around the breast surface until she/he captures an image where 

the tumour is positioned approximately in the center of the 

FOV. Mei et al. [32] developed a full inversion based 

elastography technique which requires displacement data 

measured on the boundary of the domain only. They evaluated 

their method using numerical phantom case studies. 

In this work, we followed a different approach whereby the 

FOV axial and lateral displacements measured using 

ultrasound are used as prescribed boundary conditions in the 

modulus reconstruction. The proposed method was validated 

with two tissue mimicking phantom studies, one with a simple 

geometry and one with a more complex geometry mimicking 

the breast shape. The methods was also applied to clinical 

breast data and results were compared to the B-modes images 

where cancerous areas were identified as hypo-echoic areas. 

This preliminary clinical study demonstrated a good potential 

for clinical utility of the proposed method. 

II. METHODS 

Samani et al. [28] presented a full inversion breast 

elastography technique where the breast Young’s modulus 
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(YM) is reconstructed for cancer assessment. The proposed 

method was developed assuming that the tissue is linear elastic 

and isotropic undergoing small deformation. As such, the 

following equation, which is derived from Hooke’s law, 

governs each point in the tissue domain: 
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In this equation  and  denote the tissue strain and stress 

developed under mechanical stimulation, respectively. Also, 1, 

2 and 3 represent three orthogonal directions, and   is the 

tissue’s Poisson's ratio. The tissue was assumed to be a near-

incompressible material, hence 49.0  was employed in the 

reconstruction. The reconstruction technique is iterative as the 

YM followed a )(1 ii EfE    recursive formulation used in 

each iteration, where f  involves stress calculation using finite 

element method. Their approach followed a constrained 

reconstruction strategy by assuming that the YM is constant 

throughout the volume of each of the normal and pathological 

tissues, hence it required image segmentation to find each 

tissue volume. Although the assumption of tissue elasticity 

uniformity is reasonably good, accurate image segmentation 

necessary for accurate YM reconstruction is feasible with only 

high quality imaging modalities (e.g. MRI) and is not feasible 

with US imaging. To address this shortcoming, the same 

group proposed an unconstrained modulus reconstruction 

algorithm that does not require image segmentation. Their 

strategy of 2D YM reconstruction involves dividing the finite 

element model into subsets of n×n finite element windows. 

The Young’s modulus within each window is calculated 

iteratively as follows: 

1- Starting with an initial YM value distribution, the stress 

field is computed using FE analysis. 

2- With the axial strain filed known from US imaging, the 

Young’s modulus reciprocal value of each element is 

computed using: 
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3- The average Young’s modulus reciprocal value of each 

n×n element window is assigned to all elements in the 

window.  

4- A Gaussian smoothing filter is applied to the FE domain 

to achieve a smooth distribution of the YM reciprocal values.  

5- For each element the YM reciprocal is inverted to obtain 

the updated Young’s modulus of the element. 

6- Return to step 2 where the stress field is recomputed 

using the updated YM distribution. 

This iterative process is repeated until the difference 

between two consecutive relative YM (Etumor/Ebackground) is less 

than a preset small value. The small value considered to 

ensure convergence in this work was set to 0.01 which was 

determined to achieve a compromise between reaching a 

plateau and clarity of tissue regions. The flow diagram of the 

proposed method is shown in Fig. 1. 

A. Finite Element Modeling 

The proposed method requires calculating the stress field in 

the breast tissue while undergoing mechanical stimulation 

induced by the US probe. FE modeling was used for this 

purpose. FE modeling requires the geometry, tissue 

biomechanical properties and boundary conditions. In Samani 

et al. methodology [28], the whole breast geometry was 

acquired using MRI which facilitated finding the boundary 

conditions. With US imaging, however, only a portion of the 

breast can be imaged due to its limited FOV, precluding the 

possibility of finding free and fixed boundary conditions. To 

address this issue here, following a similar approach as 

applied in Oberai et al. [33], the reconstruction algorithm was 

modified by considering the acquired displacement data as 

prescribed boundary conditions along the boundaries of 

corresponding US images. These displacement boundary 

conditions included axial and lateral tissue displacements 

obtained using an US-based motion tracking technique. 

The FE model was constructed based on 2D breast B-mode 

images. An example of such image is shown in Fig. 2(a). For 

FE analysis, a finite size rectangular model was considered 

mimicking the breast B-mode image. As the boundaries of the 

tumor tissue are unknown, the whole block was uniformly 

meshed as shown in Fig. 2(b). The size of finite elements was 

chosen to achieve a compromise between the accuracy and 

computational time. It was set to twice the distance between 

two consecutive ultrasound beams. Plane strain assumption 

was used in the finite element model of the reconstruction 

algorithm. Rivaz et al. [34] proposed an US-based motion 

tracking algorithm for calculating both axial and lateral 

displacements with reasonably high accuracy. All points on 

the four edges of the FOV were assigned prescribed 

displacement boundary conditions consistent with the axial 

and lateral displacements estimated using this US-based 

motion tracking method. 

 

 
Fig. 1. Flowchart illustrating the unconstrained YM reconstruction procedure. 
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(a) (b) 

Fig. 2. Example of breast B-mode image (a) and corresponding finite element 
model with prescribed boundary conditions assigned to the FOV outline (b). 

B. Estimation of Axial and Lateral Displacements and Axial 

Strain Field 

Ultrasound B-mode images, radiofrequency (RF) data, and 

clinical strain images were acquired using a Sonix RP 

ultrasound imaging system (Ultrasonix Medical Corporation, 

Richmond, BC, Canada). The axial strain fields used as 

“measured strain” in the flow chart and axial and lateral 

displacements used as boundary conditions to drive stress 

calculation were estimated using the method developed by 

Rivaz et al. [34]. In this method, the displacement values are 

calculated using two frames of ultrasound RF data 

corresponding to the pre- and post-compression states of 

tissue. The displacement values are calculated by minimizing 

a cost function that includes both amplitude similarity (data 

term) and displacement continuity (regularization/prior 

information). The minimization is performed through the 

following two steps [35]: 

1- Dynamic programming (DP) is used to estimate integer 

displacement maps in both axial and lateral directions [35]. 

2- Continuous optimization is performed to obtain refined 

sub-sample displacement maps in both axial and lateral 

directions [34]. 

The axial strain map is then estimated by applying least-

square minimization and Kalman filtering on the calculated 

displacement maps. Two attributes of this algorithm lead to 

high-quality displacement and strain maps and alleviates the 

effect of signal decorrelation. First, the prior information of 

displacement continuity helps guide the solution in regions 

with noisy data term. Second, the optimization is performed 

for an entire RF line wherein the displacement map of all 

samples is calculated simultaneously whereas in classical 

correlation-based methods, displacement of each window is 

calculated independently which may fail in decorrelated 

windows. 

C. Tissue mimicking Phantom Study 

The proposed elastography method was validated with two 

tissue mimicking phantom studies. In these studies the 

phantoms consisted of two parts which mimic the breast and 

tumor tissues. The phantom used in the first study had a 

simple block-shape geometry while the one used in the second 

study had a more complex breast-like geometry. These two 

phantoms are illustrated in Fig. 3. 

The first phantom was manufactured by the Computerized 

Imaging Reference Systems (CIRS; Pacific Northwest X-ray 

Inc., Gresham, USA). A mechanical device along with the US 

probe was used for compressing the phantom with 0.1 inches 

steps. The second phantom was constructed in our lab using 

gelatin and agar dissolved in water. Table I shows the amount 

of each material used to construct the inclusion and 

background parts. A few drops of formaldehyde were added to 

the dissolved gelatin and agar to increase the melting point of 

the mixture and increase the phantom’s resistance against 

developing mould. Also, glycerol was added to the mixture to 

regulate the ultrasound wave speed in both the normal and 

tumor areas such that the wave speed is approximately 1540 

m/s [36]. All the materials used to construct the phantom were 

manufactured by Sigma-Aldrich Co. LLC. To have better 

image contrast between normal and tumor areas, different 

concentrations of Sigmacel were added to the batch prepared 

for each tissue type to create nonuniform backscattering. For 

validation, a cylindrical sample was constructed from each 

batch. These samples were set to solidify under the same 

conditions for each tissue mimicking gelatin-agar material. 

These samples, underwent indentation tests to measure their 

YM values independently. Indentation was conducted using an 

apparatus consisting of a load cell along with a linear servo 

actuator and a computer controller. The actuator was equipped 

with a circular plane-ended indenter. The indenter, indented 

the cylindrical samples in steps with sinusoidal cycles of 0.1 

Hz frequency while the indentation amplitudes and 

 

 

 

 

 

 

 

 

 

 

  

Fig. 3. Block-shape (left) and cylindrical (right) tissue mimicking phantoms consisting of an inclusion (indicated with 3 arrows) mimicking the tumor. 
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corresponding forces were saved for offline processing which 

involved inverse finite element modeling to calculate the YM 

of each sample. Unlike the first phantom, the second phantom 

was mechanically stimulated manually. 
TABLE I 

AMOUNTS OF DIFFERENT MATERIALS USED FOR CONSTRUCTING DIFFERENT 

REGIONS OF THE SECOND (CYLINDRICAL) PHANTOM 

 Gelatin 

(g) 

Agar 

(g) 

Water 

(cc) 

Glycerol 

(cc) 

Sigmacel 

(g) 

Formaldehyde 

(drop) 

Background 

Tissue 
24 5 400 20 2 1 

Inclusion 12 4 200 10 2 1 

D. Clinical Study 

The proposed method was further evaluated using clinical 

data acquired from a breast cancer patient. The data were 

acquired in accordance with research ethics approval from 

Sunnybrook Health Sciences Centre, Toronto, ON, Canada. 

The patient underwent routine clinical imaging and biopsy to 

confirm a cancer diagnosis. Magnetic resonance imaging 

(MRI) of the breast was conducted as part of clinical care to 

measure the tumor size, using a 1.0 Tesla scanner (GE 

Healthcare, Waukesha, WI). The patient was confirmed with 

two tumors with measured sizes of 2.3 × 2.5 × 2.5 cm and 1 × 

1 × 0.7 cm (AP × CC × TV) based on MRI. Ultrasound 

imaging was performed by a trained sonographer following 

standardized protocols for data acquisition. Ultrasound B-

mode images and radio-frequency (RF) data were acquired 

from the affected breast using a Sonix RP system  at a rate of 

12 frames per second, utilizing a 6-cm-wide L14-5 transducer 

with a nominal centre frequency of 10 MHz. The RF data 

were collected prior to and after a quasi-static stimulation by 

probe for elastography. Ultrasound scan planes were acquired 

over the entire breast in 1-cm increments under the guidance 

of a physician. 

III. RESULTS  

A. Tissue mimicking Phantom Study 

The YM values of the inclusion and the background tissue 

for the first phantom were 56 kPa and 33 kPa (Einc/Ebkg = 

1.70), respectively. The proposed unconstrained elastography 

method was applied to reconstruct this ratio. Fig. 4 illustrates 

acquired B-mode ultrasound image, axial and lateral 

displacement images, strain image and reconstructed elasticity 

image of this phantom. Based on the strain image, the tissue 

YM ratio was obtained at 1.82, indicating an error of 7% for 

the tumor’s relative elasticity. The YM ratio obtained from the 

reconstructed elasticity image is 1.86, indicating an error of 

9%. It is noteworthy that the stress uniformity assumption for 

this simple phantom’s geometry is a reasonably good 

approximation, which justifies the observed comparable 

errors. 

Based on the indentation tests conducted to measure the 

YM of each tissue mimicking part in the second study with the 

cylindrical phantom, the YM values of the inclusion and the 

background were 25 kPa and 40 kPa (Einc/Ebkg = 1.60), 

respectively. Fig. 5 illustrates acquired B-mode ultrasound 

image, axial and lateral displacement images, strain image and 

the reconstructed YM image of this phantom. The tissue YM 

ratio was obtained at 1.83 based on the strain image, 

indicating an error of 14% for the tumor’s relative elasticity. 

The YM ratio obtained from the reconstructed YM image was 

1.49, indicating an error of only 7% for the tumor tissue. In 

this case, the accuracy achieved by the proposed method is 

significantly higher than that of the strain imaging. 

B. Clinical Study 

Fig. 6 shows a B-mode image acquired from the breast 

cancer patient, and the corresponding axial and lateral 

displacement images, strain image and the reconstructed YM 

image obtained. The hypo-intensity region in the B-mode 

indicates the tumor. The reciprocal strain ratio of this region 

relative to the background tissue was 1.4. The YM ratio of the 

tumor relative to the background tissue was calculated at 2.1 

using the proposed reconstruction technique. 

Fig. 7 illustrates a B-mode image, and the corresponding 

axial and lateral displacement images, strain image and 

reconstructed YM image acquired for the second tumour 

region of the patient. This scan showed a bigger hypo-

intensity region indicating the tumor. The strain ratio of this 

region with respect to the surrounding background tissue was 

2.7 whereas the corresponding YM ratio was calculated at 1.8 

which is more reasonable. 

 

 
                   (a)                                          (b)                                                (c)                                                  (d)                                             (e) 

Fig. 4. B-mode Image (a), axial displacement image (b), lateral displacement image (c), axial strain image (d) and YM image (e) constructed using the 

proposed method. The ratio of the average strain value of the background (blue boxes) to the average strain value of the inclusion (red box) is 1.82. The ratio 
of the average YM value of the inclusion (red box) to the average YM value of the background (blue boxes) is 1.86. The true YM ratio is 56/33 = 1.70. 
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                  (a)                                          (b)                                               (c)                                                 (d)                                             (e) 
Fig. 5. B-mode image (a), axial displacement image (b), lateral displacement image (c), axial strain image (d) and YM image (e) constructed using the proposed 

method. The ratio of average strain value of the background (blue boxes) to average strain value of the inclusion (red box) is 1.83. The ratio of the average YM 

value of the inclusion (red box) to the average YM value of the background (blue boxes) is 1.49 while the true YM ratio is 40/25 = 1.60. 

 
(a) 

  
                                                    (b)                                                   (c) 

 
                                                    (d)                                                   (e) 

Fig. 6. B-mode image acquired from a breast cancer patient (a) and the corresponding images of axial displacement (b), lateral displacement (c), axial strain 

(d) and YM reconstructed using the proposed technique (e). The red circle encircles a tumor which appears harder than the surrounding tissue in the 
reconstructed YM image (YM ratio = 2.1). 
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(a) 

  
(b) (c) 

 
(d) (e) 

Fig. 7. B-mode image acquired from a second tumour region of the breast cancer patient (a) and the corresponding images of axial displacement (b), lateral 

displacement (c), axial strain (d) and YM reconstructed using the proposed method. The red circle encircles a tumor which appears harder than the 
surrounding tissue in the reconstructed YM image (YM ratio = 1.8). 

IV. DISCUSSION AND CONCLUSIONS 

A full inversion quasi-static technique was introduced in 

this paper for breast US elastography. The technique takes into 

account realistic boundary conditions and stress non-

uniformity, leading to a reliable YM reconstruction. It only 

requires US RF signals at pre- and post-compression states 

that can be acquired using a clinical ultrasound system, with 

no additional hardware attachment. As such, it has the 

potential to be implemented as an add-on into standard 

ultrasound systems for effective breast cancer assessment. The 

advantage of the method compared to constrained 

elastography techniques [28], [29] is that it does not require 

image segmentation for YM image reconstruction. This is 

critical for US elastography since exact tumor boundaries are 

frequently not clear in B-mode images. Eliminating the 

segmentation step also reduces computational complexity of 

the reconstruction. Compared to strain imaging, the method is 

more accurate especially with realistic clinical cases where 

tissue stress uniformity is a very poor assumption. However, 

the reconstruction algorithm is computationally more complex 

than strain imaging as it involves stress analysis using FE 

modeling. As such, in contrast to strain imaging, the method is 

not suitable for real-time applications unless parallel 

computing using GPU programming [37] is used. 

Based on the tissue mimicking phantom studies, the 
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proposed US elastography method can reconstruct relative 

YM values with errors less than 10%. While the first phantom 

study showed that strain imaging led to better estimation of 

the inclusion’s YM ratio, the difference is insignificant. The 

second phantom study demonstrated that the YM ratio 

accuracy is significantly higher than that of the strain imaging. 

Moreover, in both cases, qualitative assessment of the images 

indicates that the YM images are better representations of the 

known phantom geometries, including the tumor size and 

location. The comparable accuracy achieved by the proposed 

method compared to that of strain imaging in the phantom 

studies underestimates the improvement achieved by the 

proposed method considerably. This is due to the fact that with 

the phantom studies, the stress uniformity assumption is not as 

poor as it is in clinical cases. In fact, the significantly higher 

accuracy observed with the second phantom study can be well 

attributed to the fact that the second phantom has a more 

complex geometry which renders the stress uniformity 

assumption less valid compared to the first phantom.  This was 

clearly observed in the clinical study where strain imaging in 

the second tumour region indicated YM ratio of 2.7 compared 

to 1.8 obtained from the proposed method. The latter is 

consistent with the YM ratio obtained for the first tumour 

region which showed YM ratio of 2.1. The small difference in 

the YM ratio obtained through the two different planes can be 

attributed to tumor inhomogeneity or systematic 

reconstruction errors. Overall, comparison of the reconstructed 

elasticity images with the clinical breast B-mode images 

indicate that the proposed method can detect cancerous 

regions reasonably accurately, with an extra benefit that it 

provides additional valuable information pertaining to the 

tumor relative stiffness which can serve as a quantitative 

biomarker for cancer diagnosis. Sources of YM reconstruction 

errors include errors in the estimated axial and lateral 

displacements used as boundary conditions. They also include 

stress calculation errors arising from idealizing the breasts 3D 

geometry into 2D geometry. While the phantom studies 

indicated that these errors are not of major magnitude, more 

advanced tissue motion tracking methods can be used to 

improve the accuracy of boundary conditions estimation. To 

further improve the stress calculation model, 3D automatic US 

breast imaging can be utilized [38], [39]. 

Among researchers working in the breast US elastography 

area, Goenezen et al. [40] applied a similar technique to 

distinguish fibroadenoma (solid benign lesions) from invasive 

ductal carcinomas (malignancies). For the boundary 

conditions of the tissue FOV, they applied measured axial 

displacements as prescribed boundary conditions. For lateral 

displacement boundary conditions, in contrast to our method 

which uses reasonably accurate lateral displacements 

measured using the RF data, they assumed that the tissue is 

free to move laterally along the four boundaries. As the 

authors stated, the latter free motion assumptions is inaccurate 

and can lead to artifacts in the constructed image. Based on 

their method nine out of ten studied tumors were correctly 

classified as either benign or malignant. In another breast 

elastography clinical study which included 939 breast masses, 

Berg at al. [41] investigated the efficacy of elastography 

implemented in a prototypic US system equipped with shear-

wave elastography (RUBI, prototype for Aixplorer, 

SuperSonic Imagine, France). Their aim was assessing the 

improvement of specificity of breast tumor detection with this 

system. Although quantitative, it was observed that the 

reproducibility of the method was low and the results were 

highly dependent to the operator. In our proposed system, we 

attempted to formulate the elasticity reconstruction problem 

based on reasonably solid physics as we considered both of 

the accurately measured axial and lateral displacements as 

boundary conditions. The results of the tissue mimicking 

phantom studies indicated that method is both accurate and 

reproducible. However, a larger clinical study including 

different lesion types is required to validate its efficacy in 

clinical setting. A potentially important application of the 

proposed breast elastography method is monitoring breast 

cancer degeneration in response to treatment [42]-[44]. 

Response to anti-cancer therapies including chemotherapy 

frequently alter biomechanical properties of tumor. Another 

interesting future study can be testing a hypothesis of having 

correlation between tumor stiffness and level of invasiveness. 

   Overall, the method proposed in this article involves a 

standard ultrasound imaging system with accessibility to its 

RF data. Unlike some other elastography systems, it does not 

involve extra hardware elements for mechanical stimulation or 

data acquisition. Moreover, the proposed elastography image 

reconstruction algorithm can be easily implemented, leading 

to a low cost system that can be potentially utilized as an 

effective clinical tool for breast cancer diagnosis or treatment 

response monitoring. 
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