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Abstract—Ultrasound elastography is a prominent non-invasive
medical imaging technique which estimates tissue elastic prop-
erties to detect abnormalities in an organ. A common approx-
imation to tissue elastic modulus is tissue strain induced after
mechanical stimulation. To compute tissue strain, ultrasound
radio-frequency (RF) data can be processed using energy-
based algorithms. These algorithms suffer from ill-posedness to
tackle. A continuity constraint along with the data amplitude
similarity is imposed to obtain a unique solution to the time-
delay estimation (TDE) problem. Existing energy-based methods
exploit the first-order spatial derivative of the displacement
field to construct a regularizer. This first-order regularization
scheme alone is not fully consistent with the mechanics of
tissue deformation while perturbed with an external force. As a
consequence, state-of-the-art techniques suffer from two crucial
drawbacks. First, the strain map is not sufficiently smooth
in uniform tissue regions. Second, edges of the hard or soft
inclusions are not well-defined in the image. Herein, we address
these issues by formulating a novel regularizer taking both
first- and second-order derivatives of the displacement field into
account. The second-order constraint, which is the principal
novelty of this work, contributes both to background continuity
and edge sharpness by suppressing spurious noisy edges and
enhancing strong boundaries. We name the proposed technique
SOUL- Second Order Ultrasound eLastography. Comparative
assessment of qualitative and quantitative results shows that
SOUL substantially outperforms three recently developed TDE
algorithms called Hybrid, GLUE and MPWC-Net++. SOUL
yields 27.72%, 62.56% and 81.37% improvements of signal-to-
noise ratio (SNR) and 72.35%, 54.03% and 65.17% improvements
of contrast-to-noise ratio (CNR) over GLUE with data pertaining
to simulation, phantom and in vivo tissue, respectively. The SOUL
code can be downloaded from code.sonography.ai..

Index Terms—Ultrasound elastography, Second order regular-
ization, Boundary sharpness, Background smoothness, Regular-
ized optimization, Global time delay estimation.

I. INTRODUCTION

Being non-invasive, portable and easy-to-use, ultrasound is
one of the most commonly used medical imaging modalities.
This modality has been employed in the assessment of thyroid,
breast, abdomen, prostate, kidney and vasculature. Ultrasound
elastography is an emerging technique that characterizes tis-
sue elasticity, which has numerous applications in medical
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diagnosis and intervention since certain pathologies lead to
tissue structure alteration that manifest into tumors and benign
lesions that have a significantly different mechanical properties
compared to healthy tissue. Over the last three decades,
elastography has been incorporated in breast tissue classifica-
tion [1]–[4], liver health monitoring [5], guiding ablation [6],
[7], cardiac imaging [8]–[12], and detection of abnormalities in
vessels [13]–[18], prostate [19] and kidney [20]. This work is
aimed at quasi-static elastography, which involves calculation
of displacement field between pre- and post-deformed radio-
frequency (RF) frames acquired during slow deformation of
the interrogated tissue. The displacement map is calculated
using a time-delay estimation (TDE) (alternatively known
as speckle tracking) technique, and is subsequently spatially
differentiated to obtain the strain map. This map is considered
a good approximation to tissue elastic modulus as it can
discern tissue abnormalities by a color contrast between the
healthy and diseased tissues.

The success of ultrasound elastography is highly dependent
on the pivotal task of TDE. Three different lines of works are
available in the literature which accomplish this non-trivial
task of speckle tracking. The mostly used approach is known
as the window-based or block-matching technique [21]–[24]
which entails dividing the RF data into several data segments
and imposing hard constraint of displacement equality among
all samples in a certain window. The time-delay of each
window is calculated using a similarity metric such as normal-
ized cross-correlation (NCC) [24] or zero-phase crossing [23].
Optimal performance of window-based techniques depends on
the proper selection of window size and the degree of overlap
between the adjacent windows. A large window leads to a
smooth displacement map sacrificing the resolution, whereas a
high-resolution TDE can be obtained by incorporating a small
data window [25], [26]. However, a small-sized data window
amplifies the estimation noise which can be handled by post-
processing techniques such as median filtering. However,
such post-processing techniques do not utilize the continuity
constraints to improve TDE in a unified fashion.

Recently, machine learning-based TDE techniques [27]–
[31] have been proposed which require extensive amount of
training data for accomplishing the task of speckle tracking.
In addition, dictionary learning techniques have been investi-
gated for fast and better displacement estimation [32], [33].
Furthermore, robust principal component analysis (RPCA)
has been proposed as a noise-reduction step of ultrasound
elastography [34]. Despite the primary success in TDE, all
proposed machine learning-based algorithms share a common
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Fig. 1: A depiction of the proposed cost function. Blue and
yellow represent RF signal amplitudes of the two images, and
green represents displacement estimates.

drawback which is excessive data-dependency.
The last mainstream class of TDE technique is referred

to as regularized optimization-based or energy-based algo-
rithms [35]–[42]. A penalty function consisting of data and
regularization term is optimized in this line of work to estimate
the time delay. Energy-based algorithms are less-sensitive
to noise due to the regularization constraint incorporated in
the cost function. The assumption of displacement continuity
aligns with the physics of tissue deformation, and is an essen-
tial component in the energy-based approach. Because data
similarity constraint alone yields more than one displacement
solutions for a particular sample due to the non-unique nature
of RF data amplitude. Mathematically, this phenomenon is
linked to the situation of having more variables than equations
which makes TDE an ill-posed problem. The l2 norm of
spatial [5], [37], [38] and temporal [38] continuity terms
have been taken into account in recent works. The l1 norm
regularization which is otherwise known as the total variation
regularization has also been proposed in [43] to tackle the
over-smoothing possibly introduced by earlier techniques. All
of the aforementioned algorithms consider only the first-order
derivative of the displacement field to construct the regular-
ization term. This first-order continuity term often generates
strain image with blurred inclusion-background boundary. In
addition, it fails to sufficiently denoise the displacement or
strain map. One possible solution to this issue is increasing
the continuity weight. However, this aggressive step leads to
substantial degradation of image contrast.

To resolve the aforementioned issues, in this paper, we
develop a novel energy-based elastography technique where
both first- and second-order derivatives of the displacement
fields have been considered to formulate the penalty function
(see Fig. 1). Our contribution is driven by the fact that the
second-order image derivative enhances the strong boundaries
suppressing the weak edges which often originate from the
acquisition or estimation noise. Therefore, our assumption is
that incorporation of the second-order regularization in the
cost function leads to a higher level of continuity, keeping
the visual contrast intact. The Laplacian of the displacement
field has previously been used in [44] as a post-processing
step. However, this work proposes a unified technique where
the second-order condition is embedded within the penalty
function along with the first-order continuity constraint. It is
worth mentioning that Li et al. incorporated a second-order
continuity constraint in [14]. However, [14] is especially de-
signed for vascular elastography and combines discrete cosine
transform (DCT) based sparsity constraint with optical flow-
based approach to devise a direct strain estimation framework.

On the contrary, we propose a generalized displacement track-
ing scheme which can be used in different applications, while
it efficiently utilizes Gauss-Newton optimization technique to
refine the initial TDE obtained by Dynamic Programming [45].
We name our technique SOUL: Second Order Ultrasound
eLastography. SOUL has been validated with simulation,
phantom and in vivo liver datasets. We have released the SOUL
code at code.sonography.ai similar to our recent work [38],
[46], [47].

II. SIMULATION AND DATA ACQUISITION

A. Simulation Datasets

In this work, we have used five different simulation datasets
for validation. The first dataset was simulated from a uniform
phantom. The second simulation data was generated from
a phantom with four layers representing different elasticity
levels. The third data was generated from a simulated phantom
which contains a thin layer with higher elasticity. The fourth
dataset was produced from a homogeneous phantom contain-
ing a layer with slightly higher stiffness. The last dataset was
obtained from homogeneous phantom with a soft inclusion.
Pre- and post-deformed RF frames from all phantoms were
simulated using the commonly used software package Field
II [48]. A single-focused acquisition scheme was incorporated
setting the center frequency, sampling rate, number of active
elements, transducer height and width to 7.27 MHz, 40 MHz,
64, 5 mm and 0.2 mm, respectively. The transmit focus was
set to 12.5 mm for the uniform and soft-inclusion phantoms
and 20 mm for the other three phantoms.

1) Uniform Phantom: We designed a tissue phantom with
uniform elastic properties. The phantom was compressed axi-
ally using closed form equation of deformation. For this uni-
form phantom, a parabolic displacement field was considered
where the strain linearly decays (from 0.02 to 0) with depth.
This displacement profile was designed to simulate a nonlinear
medium wherein the top layers absorb more displacement.

2) Four-layer Phantom: A homogeneous phantom with a
background elastic modulus of 20 kPa was generated. The
phantom contains two hard homogenous layers with Young’s
moduli of 40 and 80 kPa. The phantom was compressed using
closed form equations so that the bottom surface deforms by
4% of its original height. The equations describing the de-
formation model can be found in the Supplementary material
of [38].

3) Thin-layer Phantom: A homogeneous phantom which
includes a hard layer of 4 mm height was simulated. Young’s
moduli of background and inclusion were set to 20 kPa and
40 kPa, respectively. Closed form equations were used to
compress the phantom so that the bottom surface deforms by
4% of the phantom’s height.

4) Low-contrast Phantom: A homogeneous phantom with
a slightly harder layer was simulated where Young’s moduli of
background and inclusion were set to 20 kPa and 22.86 kPa,
respectively. The phantom was compressed utilizing closed
form equations to achieve a 4% deformation of the bottom
surface.
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Algorithm 1: Workflow of the SOUL algorithm
Input: Pre- and post-deformed RF frames I1 and I2
Output: Axial strain map

1 Estimate a and l: Integer displacement field obtained
by Dynamic Programming (DP) [45];

2 Formulate C: The penalty function consisting of data,
first- and second-order regularization terms (Eq. 4);

3 Analytically optimize the cost function C;
4 Estimate ∆a and ∆l: The refinement displacement

field (Eq. 10);
5 Obtain the final displacement estimate by adding the

refinement field to the DP initial guess;
6 Obtain the axial strain map by taking the spatial

derivative of the axial displacement field

5) Soft-inclusion Phantom: A homogeneous phantom was
designed which contains an easily deformable vein of diameter
8 mm in the middle. The Young’s modulus of the background
was set to 4 kPa. The phantom was compressed axially so
that the bottom surface deforms by 1% of its original height.
The displacements were estimated using the ABAQUS finite
element package (Providence, RI).

B. Experimental Phantom Datasets

A breast elastography phantom (CIRS: Tissue Simulation
& Phantom Technology, Norfolk, VA) with background and
target elasticity moduli of 33 kPa and 56 kPa, respectively, was
compressed using a linear stage. RF data were acquired from
the aforementioned experimental phantom during compression
with an Antares Siemens research ultrasound machine (Is-
saquah, WA) using a VF 10-5 linear array probe. The transmit
and sampling frequencies were set to 6.67 and 40 MHz,
respectively.

C. In vivo Liver Datasets

The in vivo datasets were acquired from two liver cancer
patients undertaking open-surgical thermal ablation in Johns
Hopkins Hospital. The RF ablation procedure was monitored
by RITA Model 1500 XRF generator (Rita Medical Systems,
Fremont, CA). The tissue compression was performed by
pushing the ultrasound probe against the liver at a rate of
approximately 2 compressions per second. RF frames were
collected using the Antares Siemens research ultrasound sys-
tem with the VF 10-5 linear array probe. The center frequency
and the temporal sampling rate were set to 6.67 and 40 MHz,
respectively. All data acquisition steps were carried out accord-
ing to approved ethics protocol obtained from the Institutional
Review Board. In addition, both patients provided written
consent for this experimental study. Further details regarding
this in vivo study can be found in [5].

III. METHODS

Let I1(i, j) and I2(i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n be
two ultrasound RF frames collected from a tissue which is
being deformed. Here, i and j denote the axial and lateral

positions, respectively. Our aim is to estimate the strain map
between I1 and I2. We first describe three previous techniques
called Hybrid [3], MPWC-Net++ [47] and GLUE [37]. Then
we outline the novelties and mathematical details of SOUL,
the proposed technique.

A. Hybrid
Solid and fluid-filled lesions are detected using NCC and

speckle-tracking techniques, respectively. Hybrid combines
the tracking results obtained by both techniques. Based on
three criteria, the presence and locations of fluid-filled le-
sions are determined. The strain estimates for solid lesions
are obtained using modified direct average spectral strain
estimation (DASSE) algorithm [49]. Neighboring samples are
taken into account during strain estimation for intrinsic noise
suppression. Further denoising is performed by applying a
median filter on the strain image.

B. Modified Pyramidal Network (MPWC-Net++)
MPWC-Net [30] removes stride from PWC-Net [50] and

utilizes this modified version to calculate optical flow between
ultrasound RF frames. MPWC-Net++ [47] utilizes PWC-
Net-IRR [51] and resolves the limitations of MPWC-Net
by increasing the search range and reducing the strides. In
addition, MPWC-Net++ increases the maximum allowance for
displacement by tuning different parameters. Furthermore, it
uses the imaginary part of the RF data instead of B-mode
image as the network input.

C. Global Ultrasound Elastography (GLUE)
In GLUE, the initial axial and lateral displacement fields ai,j

and li,j are obtained from Dynamic Programming (DP) [45].
These initial estimates are refined by the fine-tuning fields
∆ai,j and ∆li,j which are obtained by optimizing a non-linear
cost function Cg consisting of data amplitude similarity and
spatial continuity terms:

Cg(∆a1,1, ...,∆am,n,∆l1,1, ...,∆lm,n) =
n∑

j=1

m∑
i=1

DI(i, j, ai,j , li,j ,∆ai,j ,∆li,j) +Rg
(1)

where DI denotes data amplitude similarity and is defined as
follows:

DI(i, j, ai,j , li,j ,∆ai,j ,∆li,j) =

[I1(i, j)− I2(i+ ai,j + ∆ai,j , j + li,j + ∆li,j)]
2 (2)

Rg denotes a spatial regularization term which penalizes the
first-order derivative of the displacement field, with subscript
g referring to GLUE. Rg is defined as follows:

Rg =

n∑
j=1

m∑
i=1

{α1(ai,j + ∆ai,j − ai−1,j −∆ai−1,j)
2

+ α2(ai,j + ∆ai,j − ai,j−1 −∆ai,j−1)2

+ β1(li,j + ∆li,j − li−1,j −∆li−1,j)
2

+ β2(li,j + ∆li,j − li,j−1 −∆li,j−1)2}

(3)

where α1, α2 and β1, β2 denote the axial and lateral continuity
weights, respectively.
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D. Second Order Ultrasound Elastography (SOUL)

Like GLUE, the proposed technique SOUL obtains the
initial displacement estimate from DP which is refined by
optimizing a penalty function containing echo similarity and
regularization terms. Both GLUE and SOUL share the same
echo amplitude similarity term. As described in the previous
subsection, the cost function in GLUE contains only a first-
order regularization term which penalizes the first derivative
of the displacement field. This first-order continuity constraint
alone does not suffice to represent the mechanics of tissue
deformation and therefore leads to a suboptimal noise sup-
pression. By incorporating a second-order regularization term
in the cost function, we show that substantially smoother strain
image can be obtained without any loss of visual contrast
between different mediums.

The penalty function C associated with SOUL is defined
as:

C(∆a1,1, ...,∆am,n,∆l1,1, ...,∆lm,n) =
n∑

j=1

m∑
i=1

DI(i, j, ai,j , li,j ,∆ai,j ,∆li,j) +Rs
(4)

where Rs denotes the novel regularization term which consists
of three parts and is defined as follows:

Rs =

n∑
j=1

γ[a1,j + ∆a1,j ]
2 +R1 +R2 (5)

The first part of Rs imposes a first-order regularizer on
the first sample of each RF line with an assumption that the
imaginary sample prior to the first sample exhibits a zero
displacement. Here, γ is the spatial regularization weight for
the first sample(s). R1 and R2 are the first and second-order
continuity terms, respectively.

The first-order regularization term suppresses noise by min-
imizing the first derivative of displacement along two neigh-
boring points, which is not backed by physics. This condition
often leads to an underestimation of the displacement field [5],
[38]. To tackle this issue, we formulate the first-order regular-
izer R1 in an adaptive manner where (dispi−dispi−1−ε)2 is
penalized instead of (dispi−dispi−1)2 [38]. Here, ε indicates
the average difference between the displacement estimates of
two neighboring samples. We define R1 as:

R1 =

n∑
j=1

m∑
i=1

{α1(ai,j + ∆ai,j − ai−1,j −∆ai−1,j − εa)2

+ α2(ai,j + ∆ai,j − ai,j−1 −∆ai,j−1 − εa)2

+ β1(li,j + ∆li,j − li−1,j −∆li−1,j − εl)2

+ β2(li,j + ∆li,j − li,j−1 −∆li,j−1 − εl)2}
(6)

where εa and εl are calculated as:

εa = am−a1

m−1 , εl = ln−l1
n−1 (7)

We define the second-order regularization term R2 as fol-

lows:

R2 =

n∑
j=1

m∑
i=1

{θ1(ai−1,j + ∆ai−1,j + ai+1,j + ∆ai+1,j

−2ai,j − 2∆ai,j)
2

+ θ2(ai,j−1 + ∆ai,j−1 + ai,j+1 + ∆ai,j+1 − 2ai,j

− 2∆ai,j)
2

+ λ1(li−1,j + ∆li−1,j + li+1,j + ∆li+1,j − 2li,j − 2∆li,j)
2

+ λ2(li,j−1 + ∆li,j−1 + li,j+1 + ∆li,j+1 − 2li,j − 2∆li,j)
2}

(8)
where θ1, θ2 and λ1, λ2 denote the axial and lateral regu-
larization parameters for the second-order constraint, respec-
tively. While the adaptive feature of the first-order constraint
encourages the strain to converge to the correct value, the
second-order constraint aligns with tissue deformation physics
and imposes continuity on strain. Therefore, first- and second-
order constraints act complementarily to generate accurate and
spatially smooth strain map.

1) Cost Function Optimization: Although the regularization
term Rs is quadratic in terms of the unknowns, the data
term contains non-linearity since the unknowns appear within
the nonlinear function I2. We perform a 2D Taylor series
expansion of I2(i+ai,j+∆ai,j , j+li,j+∆li,j) around (i+ai,j)
and (j + li,j) to make the cost function in Eq. 4 quadratic:

I2(i+ ai,j + ∆ai,j , j + li,j + ∆li,j) ≈
I2(i+ ai,j , j + li,j) + ∆ai,jI

′

2,a + ∆li,jI
′

2,l

(9)

where I
′

2,a and I
′

2,l stand for the axial and lateral derivatives
of I2, respectively. We optimize the quadratic cost function
in Eq. 4 by setting ∂Ci,j

∂∆ai,j
= 0 and ∂Ci,j

∂∆li,j
= 0. After some

analytic manipulation, we obtain the following linear system
of equations:

(H +D +D2)∆d = H1µ− (D +D2)d+ bs (10)
where d = [a1,1, l1,1, a1,2, l1,2, . . . , am,n, lm,n]T is a
vector of size 2mn × 1 which contains the DP ini-
tial estimates. The refinement displacement estimates are
stacked in ∆d ∈ R2mn×1 which is defined as:
∆d = [∆a1,1,∆l1,1,∆a1,2,∆l1,2, . . . ,∆am,n,∆lm,n]T . Ma-
trices H , H1, D, D2 and vectors µ and bs have been defined
partly in the Appendix and partly in the Supplementary
Material.

The refinement displacement estimates stacked in ∆d are
obtained by solving Eq. 10. The fine-tuning field is added
to the DP initial estimates to obtain the final displacement
tensor. The axial displacement field is spatially differentiated
using a least square estimator [52] to generate the axial strain
image. The steps of the proposed technique have been given
in Algorithm 1.

IV. RESULTS

Five sets of simulation data, experimental phantom data and
two sets of in vivo liver cancer data have been employed to
examine the performance of the proposed technique SOUL
compared to three recently developed elastography algorithms:
Hybrid [3], a window-based technique, MPWC-Net++ [47], a
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machine learning-based algorithm and GLUE [37], an energy-
based technique. Along with qualitative results, four different
quantitative metrics namely the edge spread function (ESF)
over a vertical line, root-mean-square error (RMSE), signal-
to-noise ratio (SNR) and contrast-to-noise ratio (CNR) have
been used for performance assessment. RMSE is defined by
the following equation.

RMSE =

√√√√√ n∑
j=1

m∑
i=1

(ŝi,j − si,j)2

mn
(11)

where ŝi,j and si,j denote the estimated and ground truth
strains corresponding to the sample at (i, j). Elastographic
SNR and CNR are defined as follows [53], [54]:

SNR =
s̄b
σb

CNR =
C

N
=

√
2(s̄b − s̄t)2

σb2 + σt2
(12)

where s̄b and s̄t stand for the mean strain values on back-
ground and target windows, respectively. σb and σt denote the
standard deviations of the strain values corresponding to the
background and target windows, respectively.

For both GLUE and SOUL, the regularization weights {α1,
α2, β1, β2} were set to {30, 6, 30, 6}, {5, 1, 5, 1}, {5,
1, 5, 1}, {5, 1, 5, 1}, {5, 1, 5, 1}, {5, 1, 5, 1}, {20, 1,
20, 1} and {0.25, 0.003, 0.2, 0.002} for uniform simulation
phantom, four-layer simulation phantom, thin-layer simulation
phantom, low-contrast simulation phantom, soft-inclusion sim-
ulation phantom, CIRS breast elastography phantom, in vivo
liver datasets 1 and 2, respectively, unless otherwise specified.
The second-order regularization parameters of the proposed
technique SOUL namely {θ1, θ2, λ1, λ2} were selected
as certain multiples of the first-order weights {α1, α2, β1,
β2}. For the uniform, four-layer, thin-layer and low-contrast
simulation phantoms, the multiplying factor was set to 1000
which was reduced to 500 for the soft-inclusion simulation
phantom. For all experimental datasets, the multiplying factor
was set to 100. γ was set to 0.8 for the uniform simulation
data, whereas it was set to 0.1 for the other four sets of
simulation data and the experimental phantom data. For the
in vivo experiments, γ was considered to be 0. The nearest
neighbor factors were set to 3 for generating the results of
the Hybrid method. For all four algorithms under discussion,
the qualitative results corresponding to different settings were
compared visually to obtain the optimal set of parameters.

A. Simulation Results

1) Uniform phantom: Fig. 2 shows the strain profile over
one vertical line of the simulated uniform phantom. Both
Hybrid and MPWC-Net++ follow the trend of the ground
truth. However, they exhibit extensive variance around the
true strain. Although the variance in GLUE is substantially
less than that in Hybrid and MPWC-Net++, the issue is not
fully resolved. To further reduce the variance, we increase
the regularization in GLUE by 10 times. As expected, this
strong regularization reduces the estimation variance. How-
ever, this improvement in variance is achieved by sacrificing
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Fig. 2: Strain plot over a vertical line of the simulated uniform
phantom with linearly decreasing strain profile.

TABLE I: RMSE associated with the strain images obtained
from the simulated layer phantom with different realizations
of scatterer position and amplitude.

Realization 1 Realization 2 Realization 3
Hybrid 6.2× 10−3 5.7× 10−3 5.9× 10−3

GLUE 3.8× 10−3 3.8× 10−3 3.8× 10−3

MPWC-Net++ 7.2× 10−3 6.5× 10−3 1.68× 10−2

SOUL 3× 10−3 3× 10−3 3× 10−3

some accuracy as the curve flattens and deviates substantially
from the ground truth. Another interesting observation about
GLUE is that it underestimates the strains corresponding to
the first few samples of an RF line. This might stem from the
suboptimal regularization of the first sample. As it is evident
from the strain profile, SOUL yields the highest resemblance
to the ground truth by resolving both of the issues pertaining
to variance and underestimation of the border strains.

2) Four-layer phantom: The ground truth and the strain
estimates corresponding to the four-layer simulation phantom
have been reported in Fig. 3. The Hybrid method shows several
artifacts, especially in stiff layers. This shows that the several
post-processing steps in this method (including a median filter)
have not been able to correct for errors in TDE. In addition,
this method fails to clearly define the boundaries between
tissue regions with different elastic properties. MPWC-Net++
underestimates the strain values in soft layers. Although GLUE
strain corresponds well with the ground truth, it is noisy. To
reduce the noise, we penalize the displacement variability 15

TABLE II: RMSE corresponding to the strain images obtained
from the thin-layer and low-contrast phantoms.

Thin-layer Low-contrast
Hybrid 1.37× 10−2 5× 10−3

GLUE 3.5× 10−3 2.7× 10−3

MPWC-Net++ 3.5× 10−3 2.9× 10−3

SOUL 2.3× 10−3 9.21× 10−4
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Fig. 3: Strain images obtained from the simulation phantom with four layers. Columns 1 to 5 show the ground truth and the
axial strain images for Hybrid, GLUE, MPWC-Net++ and SOUL, respectively.
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Fig. 4: Strain profile over a vertical line of the simulated
phantom with four layers.

times stronger than before. Although the uniform regions ex-
hibit lower variance with this strong regularization, the edges
become blurry (Fig. 1(a) of Supplementary Material). SOUL
obtains substantially higher quality strain image with smoother
background and sharper edges. Due to the short differentiation
kernel of length 3 samples only (i.e. 0.06 mm), GLUE strain
suffers from noticeable horizontal stripes which are mostly
resolved by SOUL. Further reduction of such artifacts can
be achieved by increasing the differentiation window size.
However, a large differentiation kernel often oversmoothes the
strain estimate. To obtain a concrete interpretation of different
techniques’ performance, in Fig. 4, we plot the ESFs over
a vertical line of the ground truth and the estimated strain
images. The Hybrid method exhibits slight underestimation
of strain in the lower elasticity regions whereas in the region
with high elasticity, the deviation from the ground truth is
notably large. MPWC-Net++ yields noticeable deviation from
the ground truth in the soft layers. The estimation variance
of GLUE is evident from the strain plot. SOUL displays the
closest match with the ground truth by obtaining a smooth
strain profile in the uniform regions and sharp transitions in
the boundaries.

To assess the techniques’ robustness to scatterer position and
amplitude, we report the results for this four-layer phantom
corresponding to three random realizations of scatterer posi-
tion and amplitude. Fig. 5 shows the results for Realization 1.
Since the strain images corresponding to all three realizations
are similar, we report the results for Realizations 2 and 3 in
Fig. 5 of the Supplementary Material. For each case, random
Gaussian noise with a Peak SNR (PSNR) value of 20 dB has
been added to the RF data. The strain images obtained by
Hybrid are extensively noise-corrupted. GLUE suffers from
estimation variance in all three cases. MPWC-Net++ yields
lower estimation variance than GLUE. However, it fails to
recover the true strain in deep tissue regions. SOUL yields
consistent performance in all three cases and generates high-
quality strain images. The visual superiority of SOUL over
other techniques is substantiated by the RMSE values reported
in Table I.

3) Thin-layer phantom: Fig. 6 shows the ground truth and
axial strain images corresponding to the simulated phantom
containing a thin stiff layer. All four techniques successfully
identify the stiff layer. Hybrid overestimates strain in the soft
layers and exhibits high estimation noise around the stiff
layer. Although GLUE strain suffers from several artifacts
around the boundary of the stiff layer, it corresponds well
with the ground truth. Also, while MPWC-Net++ obtains a
smooth strain map, it produces noticeable artifacts in deep
tissue regions. Finally, SOUL strain substantially outperforms
those obtained by the other three techniques and yields the
best visual correspondence with the ground truth which is
corroborated by the quantitative values of RMSE reported in
Table II.

4) Low-contrast phantom: The axial strain images and
the ground truth for the simulated phantom with low elastic
contrast between different layers have been reported in Fig. 7.
Hybrid fails to recover the stiff layer in this case. GLUE and
MPWC-Net++ show good contrast between different layers.
However, GLUE exhibits large estimation variance whereas
MPWC-Net++ slightly overestimates the strain in certain
regions. SOUL yields the best performance in terms of contrast
and background smoothness. RMSE values in Table II support
this visual interpretation.
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Fig. 5: Strain images obtained from Realization 1 of the simulated layer phantom. Columns 1 to 4 correspond to strain images
produced by Hybrid, GLUE, MPWC-Net++ and SOUL, respectively. The results for Realizations 2 and 3 are shown in Fig.
5 of the Supplementary Material.
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Fig. 6: Strain images obtained from the simulation phantom with thin layer. Columns 1 to 5 depict the ground truth and strain
images generated by Hybrid, GLUE, MPWC-Net++ and SOUL, respectively.
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Fig. 7: Strain images corresponding to the simulated phantom with low elastic contrast. Columns 1 to 5 show the ground truth
and axial strain images obtained from Hybrid, GLUE, MPWC-Net++ and SOUL, respectively.
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Fig. 8: Axial strain images obtained from the soft-inclusion simulation phantom. Column 1 shows the ground truth strain image
obtained from FEM. Columns 2 to 5 depict strain images from Hybrid, GLUE, MPWC-Net++ and SOUL, respectively.
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Fig. 9: Axial strain images generated from the experimental breast elastography phantom. Columns 1 to 5 represent the B-mode
image and the strain images from Hybrid, GLUE, MPWC-Net++ and SOUL, respectively.

5) Soft-inclusion phantom: Fig. 8 depicts the strain im-
ages obtained from the soft-inclusion simulation phantom.
Although the Hybrid method succeeds in discerning the inclu-
sion, the strain image is mostly corrupted by noise. Visually,
GLUE outperforms Hybrid by generating a better quality
strain image. However, the strain image still shows substantial
variability in the uniform tissue regions and the inclusion-
background boundary is not satisfactorily defined. MPWC-
Net++ obtains smoother strain image than GLUE. However, it
exhibits slight distortion of inclusion boundary. SOUL resolves
the issues associated with other three techniques and yields
the lowest variance estimate of the strain map with a clearly
defined edge. The SNR and CNR values reported in Table III
corroborate the visual superiority of the proposed technique. It
is worth noting that the strain image obtained by SOUL closely
resembles the ground truth strain generated using FEM. To
investigate whether GLUE achieves a performance similar to
SOUL with stronger regularization, we increase the regular-
ization parameter values of GLUE by 10 times. However, this
strong regularization over-smoothes the strain image where the
boundary is washed-out (Fig. 1(b) of Supplementary Material).
In addition, the visual contrast between different elastic areas
decreases noticeably.

To represent the quantitative performance of the entire
strain image, we select 6 target windows and 20 background
windows. For 120 combinations of the target and background
windows, we calculate the CNR values which have been
employed to obtain the histogram depicted in Fig. 11(a). The

TABLE III: SNR and CNR for the soft-inclusion simulation
phantom. CNR is calculated from blue colored target and
red colored background windows shown in Fig. 8(a). SNR
is calculated on the red colored background window.

SNR CNR
Hybrid 3.30 7.81
GLUE 5.52 16.82

MPWC-Net++ 6.03 21.25
SOUL 7.05 28.99

histogram shows that SOUL exhibits high frequencies corre-
sponding to the high CNR values. Hybrid, GLUE, MPWC-
Net++ and SOUL methods achieve average CNR values of
8.99, 12.22, 15.62 and 19.47, respectively.

B. Experimental Phantom Results

The B-mode and the strain images obtained from the CIRS
breast elastography phantom have been reported in Fig. 9.
All four techniques successfully distinguish the hard inclusion
from the background. The Hybrid method yields unrealistically
uniform strain in the shallow regions whereas the other areas
are extensively corrupted by noise stemming from estimation
variance. Although GLUE does not suffer from the issue in the
shallow regions, it estimates a moderately noisy strain image.
In addition, the boundaries of the inclusion are not sharp. We
investigate the performance of GLUE with 10 times stronger
regularization. In our experience, this high regularization leads
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TABLE IV: SNR and CNR for the breast elastography phan-
tom. CNR is calculated using blue colored target and red
colored background windows indicated in Fig. 9(a). SNR is
calculated using the red colored window on the background.

SNR CNR
Hybrid 7.72 1.49
GLUE 54.24 6.20

MPWC-Net++ 37.93 8.93
SOUL 88.17 9.55

to a low-variance estimate by deteriorating the edge sharpness
(see Fig. 1(c) of Supplementary Material). Another important
observation is that higher regularization leads to a lower visual
contrast by decreasing the darkness in the high-elasticity re-
gion. MPWC-Net++ obtains a smooth strain map with clearly
defined inclusion boundary. However, it underestimates strain
in certain tissue regions. SOUL estimates a substantially higher
quality strain map than other three techniques by minimizing
the variance in the background and maximizing the visual
contrast. The quantitative values of SNR and CNR presented in
Table IV substantiate our visual assessment of the performance
of different techniques. It is worth mentioning that both GLUE
and SOUL yield slight stretching of the inclusion in the
lateral direction. This might be an effect of the first-order
regularization in the lateral domain.

The histogram of CNR values (see Fig. 11(b)) obtained us-
ing 120 combinations of 6 target and 20 background windows
shows that the high CNR values belong mostly to SOUL. Here,
Hybrid exhibits the highest frequency of the low CNR values.
Quantitatively, the four techniques under consideration namely
Hybrid, GLUE, MPWC-Net++ and SOUL yield average CNR
values of 4.42, 9, 8.16 and 12.87, respectively.

C. In vivo Liver Cancer Results

Fig. 10 depicts the B-mode and the strain images generated
using the in vivo datasets from two patients with liver cancer.
For Patient 1, GLUE, MPWC-Net++ and SOUL show good
contrast between the tumor and normal tissue. However, the
tumor is hardly visible in the strain image obtained by the
Hybrid method. In case of Patient 2, all four techniques
succeed in distinguishing the tumor from the healthy tissue.
Hybrid exhibits better performance in Patient 2 than that in
Patient 1. This discrepancy in performance of Hybrid might
be caused by the presence of a blood vessel in the field-of-view
of the first in vivo data. The easily deformable blood vessel
yields notably higher strain than the surrounding tissue. Due to
the consideration of neighboring samples during displacement
estimation, the surrounding tissue strains are affected by the
samples representing the vessel. This mutual effect results
in an irregular distribution of high strain values, yielding a
noisy appearance of the strain image. Although GLUE visually
outperforms Hybrid, it still suffers from variability in the
background where the edges are not satisfactorily defined.
Increasing the regularization weights by 10 times smoothens
the background by further reduction of the boundary sharpness
while sacrificing tumor darkness (see Figs. 1(d) and 1(e)

TABLE V: SNR and CNR of the strain images obtained from
in vivo liver datasets. CNR values are calculated between blue
colored target and red colored background windows depicted
in Figs. 10(a) and 10(f). SNR values are calculated on the red
colored background windows.

Patient 1 Patient 2
SNR CNR SNR CNR

Hybrid 4.71 2.62 12.89 7.15
GLUE 18.25 14.73 23.28 8.77

MPWC-Net++ 29.35 18.98 18.58 7.33
SOUL 33.10 24.33 37.60 14.35

of Supplementary Material). MPWC-Net++ exhibits extensive
background noise in case of Patient 1 whereas it distorts the
tumor boundary of Patient 2. Besides, it underestimates the
strain in deep tissue regions of Patient 1. In both patient cases,
SOUL substantially outperforms Hybrid, GLUE and MPWC-
Net++ by presenting lowest variance in the background and
highest clarity of edges. It is worth mentioning that SOUL ex-
hibits high level of smoothing in certain regions of Fig. 10(j).
This might happen due to low echogenicity in certain regions
of the RF data where regularization dominates data similarity.
However, SOUL manifests notably better target-background
contrast than the other techniques. This visual inference is
quantitatively validated by the SNR and CNR values reported
in Table V.

The histograms of CNR values across the entire strain
images corresponding to Patients 1 and 2 have been reported
in Figs. 11(c) and 11(d), respectively. In both cases, SOUL
exhibits the highest frequency in high CNR values. Aligned
with the visual interpretation, the Hybrid method shows higher
frequency in low CNR values. Hybrid, GLUE, MPWC-Net++
and SOUL methods yield average CNR values of 2.86, 14.02,
11.40 and 21.61 for Patient 1 and 7.37, 7.80, 9.89 and 10.35
for Patient 2, respectively.

D. Computation Time

Hybrid, GLUE and SOUL have been implemented on
MATLAB R2018b platform using an 8th generation Intel
core-i7 CPU clocked at 3.2 GHz. MPWC-Net++ have been
executed on an NVIDIA TITAN V GPU with 12 GB memory.
Times required by Hybrid, GLUE, MPWC-Net++ and SOUL
to calculate the displacement field between two RF frames of
size 1000× 100 are reported in Table VI. Hybrid requires the
highest execution time. The runtime of SOUL is higher than
that of GLUE due to the additional blocks stemming from
the second-order continuity constraint. An optimized imple-
mentation on a GPU can expedite the execution of SOUL.
MPWC-Net++ requires the lowest running time. However, this
technique demands extensive amount of memory and time in
the training phase.

V. DISCUSSION

The proposed regularization term based on the second-
order derivative of the displacement does not penalize affine
changes in the displacement field. As such, it leads to a much
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Fig. 10: In vivo results obtained from the liver patients. Rows 1 and 2 correspond to Patients 1 and 2, respectively. Column 1
shows the B-mode images. Columns 2 to 5 represent the axial strain images corresponding to Hybrid, GLUE, MPWC-Net++
and SOUL, respectively.
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(a) Soft-inclusion simulation phantom
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(c) In vivo liver data, Patient 1
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(d) In vivo liver data, Patient 2

Fig. 11: Histograms of the CNR values obtained using 120 combinations of target and background windows. Columns 1 to 4
depict the histograms corresponding to the simulated phantom with soft inclusion, experimental breast elastography phantom,
in vivo liver data from Patients 1 and 2, respectively.

TABLE VI: Runtime for calculating displacement between RF
frames of size 1000×100. MPWC-Net++ runs on a GPU and
the rest of the methods run on a CPU.

Time (seconds)

Hybrid 21.80

GLUE 0.58

MPWC-Net++ 0.09
SOUL 1.28

smaller estimation bias compared to GLUE, which enforces
the displacement field to be constant. This is confirmed in our
simulation and experimental results.

In certain cases, the strain in the tissue gradually decreases
with depth due to stress dissipation, where top layers undergo

maximum amount of stress while the stress decreases with
depth as a result of stress propagation over increasingly larger
areas with depth. The first-order continuity constraint alone
fails to optimally estimate the strain in such situations (see
Fig. 2). With moderate regularization, the estimated strain
shows extensive variability around the true strain whereas the
curve tends to flatten with increasing regularization. As the
results suggest, a combination of first- and second-order spatial
derivative constraints handle this situation well and obtains a
strain profile close to the ground truth.

In different examples presented in this investigation, the
continuity weights of GLUE were set to different values
to determine whether GLUE can achieve the performance
of SOUL depending on the level of regularization. It was
observed that strong regularization smoothens the strain image
with a substantial loss of both visual contrast and bound-
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ary sharpness. In contrast, SOUL imposes both second and
adaptive first-order continuity constraints which fully align
with tissue deformation physics. This realistic model of the
deformation field drives SOUL strain to converge to the correct
value. As a result, SOUL obtains a spatially smooth strain
map maintaining edge clarity and visual contrast. Since SOUL
takes advantage of higher-order spatial continuity, it yields
better noise suppression than previous techniques. However,
this higher level of noise suppression might introduce over-
smoothing to the estimated strain. This potential drawback
can be mitigated by utilizing l1 norm of the second-order
continuity terms instead of l2 norm. In addition, sample-
wise regularization scheme can be adopted to maintain proper
balance between displacement continuity and discontinuity.
However, these extensions are beyond the scope of this work
while being interesting avenues of future work. SOUL takes
only the amplitude constancy into account to construct the
data term. However, amplitude constancy alone is not sufficient
to oversee the outlier RF samples. An adaptive combination
of amplitude and gradient similarity constraints [40] can
potentially make the data function robust to outliers.

Different factors might affect the optimality of the regular-
ization parameter values. Optimal combination of the conti-
nuity weights is mainly controlled by the organ’s quantitative
properties such as attenuation coefficient, the size and distri-
bution of the scatterers, etc. In addition, imaging parameters
such as transmit and temporal sampling frequencies also play a
crucial role in determining the optimal parameter set. Further-
more, the level of acquisition noise and temporal characteris-
tics of the deformation field also affect the parameter values. In
this work, the optimal regularization parameters were obtained
using an ad hoc method where the quality of the strain
images corresponding to different parameter sets were assessed
visually to select the best one. Another option involves using
the well-known L-curve [55] technique for their automatic
selection. It is important to note that these optimal values do
not need to be tuned for every pair of images. They should be
tuned with new organs imaged with a different imaging setting.
However, due to the presence of more than one continuity
weights, the L-curve technique will involve extensive amount
of calculation. Another potential approach can be generating
displacement images using different sets of parameters and
devising a feature-based classifier to choose the displacement
of each sample individually from different options stemming
from different weights. However, this machine learning-based
option would require extensive amount of training datasets. It
is noteworthy that the TDE results are minimally sensitive to
even a 50% increase in all regularization weights.

VI. CONCLUSION

A novel regularized-optimization based ultrasound elastog-
raphy technique called SOUL is proposed in this paper. We
have formulated a cost function containing the data term,
and the first- and second-order continuity terms. The newly
introduced second-order regularization term leads to a sub-
stantially better quality strain image with smooth background
and sharp edges. We analytically optimize the aforementioned

non-linear penalty function in an efficient manner and obtain
a system of linear equations which is solved for more than
a million variables in less than 1.5 seconds while working
with conventional ultrasound RF frames. Extensive validation
against simulation, phantom and in vivo liver cancer datasets
proves the proposed technique’s potential in high quality strain
imaging.
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