

Chapter XII An example of NGN: 3GPP UMTS

Layering in next generation networks

Services (value-added services) also called application / services

Services (Basic service) also called call/session

Transport (Below IP + IP + transport layer) also called bearer

Roch H. Glitho

Layering in next generation networks

Layering in UMTS

UMTS (Universal Mobile Telecommunication Systems)

- An example of 3G system:
 - Evolution of GSM
 - Use of WCDMA
 - Largest footprint
- Another example of 3G system
 - Evolution of CDMA-One
 - Use of WCDMA, but a version incompatible with UMTS
 - Dwindling footprint

Layering in UMTS

UMTS (Universal Mobile Telecommunication Systems)

- UMTS transport:
 - TCP
 - IP
 - Below IP
 - WCDMA
 - Bandwidth (Peak rate: single digit Mbits/s usually lower than 2)

Layering in UMTS

UMTS (Universal Mobile Telecommunication Systems)

- UMTS Service:
 - IP Multimedia Subsystem (IMS)
 - Basic service (call / session or control layer)
 - Value added services (value added service or service layer)
 - Focus of this lecture: IMS

IMS

- 1. Overall view
- 2. Control layer
- 3. Service layer

Overall view

General picture

Simplified picture

Another simplified picture

Control layer

Functional entities

Data bases (just one)

Home Subscriber Server (HSS)

- Evolution of the HLR
- All user related subscription data (e.g. profile)
- A network may contain one or several

- Subscriber Location Function (SLF) maps users to specific HSS

Functional entities

Control entities

Call Session Control Function (CSCF) "The switch" Three types (May be collocated)

- Proxy CSCF
- Serving CSCF
- Interrogating CSCF

Functional entities

Control entities

Proxy-CSCF:

- Location
 - Either visited network or home network
- First contact point in the IM network
- Outbound / In-bound SIP proxy (All requests from/to IMS terminals go through it)
- Forward SIP requests in the appropriate direction (Terminals or IMS network)
 - Several functions
 - Security
 - Generation of charging information
 - Compression and un-compression of messages

Functional entities

Control entities

Interrogating CSCF (I-CSCF):

- SIP proxy located at the edge of an admnistrative domain
 - Listed in the domain name server (DNS)
 - There may be several in the same network for scalability reasons

Functional entities

Control entities

- Serving CSCF (S-CSCF):
- Always located in home domain
- SIP proxy + SIP registrar with possibility of performing session control
 - Binding between IP address (terminal location) and user SIP address
 - Interacts with application servers for value added service purpose
 - Translation services (Telephone number / Sip URIs)
 - Routing

Functional entities

Control entities

Media Resource Function (MRF)

- Source of media (media mixing, announcement playing)
- Two parts

Control part: MRFC Media Part: MRFP

Functional entities

Control entities

Media Gateway Function (MGF): Signaling conversion between PSTN/2G and IMS

Media Gateway (MG) Media conversion between PSTN/2G and IMS

Protocols

Signalling

SIP with extensions

Interactions with HSS

AAA

•

Protocols

Example of SIP extension for IMS

Reliability of Provisional Responses for SIP

PRACK Method

Example of SIP extension for IMS

PRACK

- Bring more reliability by enabling the acknowledgement of provisional responses:
 - Only final responses are acknowledged in standard SIP
 - ACK for OK
 - PRACK plays the same role as OK, but for provisional responses (e.g. 180 ringing) except (100 trying)

Example of SIP extension for IMS

PRACK

- Essential features
 - Normal SIP request with its own response (i.e. OK)
 - Each provisional response is given a sequence number Rseq
 - PRACK contains a header Rack to indicate the sequence of the provisional response being acknowledged
 - Caller indicates if it supports or not PRACK
 - Both parties can indicates if it is required or not

Example of SIP extension for IMS PRACK

• http://www.dialogic.com/webhelp/IMG1010/10.5.1/WebHelp/Description/SIP/SIP_PRACK_Call_Flows .htm

Example of SIP extension for IMS PRACK

• http://www.dialogic.com/webhelp/IMG1010/10.5.1/WebHelp/Description/SIP/SIP_PRAC K_Call_Flows.htm

Example of SIP extension for IMS PRACK

• http://www.dialogic.com/webhelp/IMG1010/10.5.1/WebHelp/Description/SIP/SIP_PRAC K_Call_Flows.htm

Authentication, Authorization and Accounting

- **1. Informal definitions**
- 2. AAA in Internet
- 3. AAA in IMS
- 4. Call cses

Informal definitions

- Authentication
 - Means of verifying that an entity is really what it claims to be
- Authorization
 - Means of ensuring that en entity does only what it is allowed to do
- Accounting
 - Means of keeping track of what an entity does for auditing, billing and other purposes

AAA in Internet

Remote Authentication Dial In User Service (RADIUS) protocol

- RFC 2058, then 2138, 1997
- **RFC 2865, 2000**
 - Possibility for a Network Access Server (NAS) to get authentication, authorization and accounting (AAA) services from a RADIUS server
 - Client/server
 - Runs on top of UDP
 - Example: Computer with a modem, connected to a NAS and NAS connected to a RADIUS server
 - » Very useful when there are several NAS

AAA in Internet

Remote Authentication Dial In User Service (RADIUS) protocol

- Issues
 - Lack of scalability
 - Lack of functionality (e.g. no possibility for unsolicited messages from RADIUS server to NAS)

AAA in Internet

Diameter

- Addresses RADIUS shortcomings
 - Scales
 - More functionality
- Much more complex
 - Base protocol, RFC 33588, 2003
 - Basic commands (e.g. Re-Auth-Request, Re-Auth-Answer, Accounting-Request)
 - Application protocols
 - Extend the basic commands

AAA in IMS

- Interfaces
 - Cx: I-CSCF / HSS and S-CSCF/HSS
 - Dx: I-CSCF / SLF and S-CSCF / SLF
 - Sh: HSS/SIP AS and HSS/OSA SCS
- Protocol
 - Diameter with IMS specific applications

CONCORDIA UNIVERSITY Concordia Institute for Information Systems Engineering

IP Multimedia portion – Registration

IP Multimedia portion – Un-Registration

Roch H. Glitho

Use of Megaco / H.248

- Interworking 3G/2G
 - MGF
 - MG
- Conferencing
 - MRFC
 - MRFP

.

Service layer

Functional entities

Application server (AS) Host services and execute services Communicate with control layer using SIP (i.e. ISC interface) Two types SIP AS: Open Service Architecture – Service Capability Server (OSA/SCS)

Functional entities

Functional entities

SIP AS SIP servlets technology

Open Service Architecture – Service Capability Server (OSA/SCS) Parlay / OSA technology

Protocols

ISC SIP + extensions

References

3GPP

- K. Knightson, N. Morita and T. Towle, NGN Architecture: General Principles, Functional Architecture and Implementation, IEEE Communications Magazine, October 2005, Vol.43, No10
- G. Camarillo and M. Garcia-Martin, The 3G IP Multimedia Subsystem, Wiley, 2004, Part II
- M. Toy, H. Stuttgen and M. Ulema, guest editors, IP Multimedia Subsystems (IMS), IEEE Communications Magazine special issue, March 2007
- M. Toy, H. Stuttgen and M. Ulema, guest editors, IP Multimedia Subsystems (IMS), IEEE Communications Magazine special issue, July 2007