

Chapter X Quality of SERVICE

Quality of Services

- 1. Terminology
- 2. Technologies

Terminology

Quality of service

- Ability to control network performance in order to meet application and/or end-user requirements
- Examples of parameters
 - Packet loss
 - End-to-en delay (latency)
 - Delay variation (jitter)
 - Availability (Uptime)
 - Data transfer rate (throughput)

Terminology

Quality of service

- Recommendations for acceptable voice conversation over the Internet
 - Packet loss ratio: below 1 percent
 - End-to-en delay (latency): below 200 ms
 - Delay variation: about 30 ms

Note:

Average packet loss in Internet is 2 percent

Conclusion:

Internet as it currently stands is not suitable for voice conversation (QoS technologies are needed)

Terminology

Class of service and grade of service

- Class of service (CoS)
 - Set of priority levels
 - Flow aggregates of the same class are assigned the same priority
- Grade of service (GoS)
 - Used to categorize services with respect to higher level requirements
 - Examples of parameters
 - Survivability
 - Availability
 - Note:
 - "Carrier grade" is considered the highest grade

Terminology

Service Level Agreement (SLA)

- Negotiated agreement between a customer and a service provider on levels of service characteristics and the associated set of metrics
- Content varies depending on the service offering and includes the attributes required for the negotiation of the agreements
- Usually signed between corporate users and their ISPs

Terminology

Service Level Agreement (SLA) - An example (Ref. 2)

- Agreement between Nimsoft and its ISP. On a weekly basis ISP must ensure 98% of:
 - Connection to hosted server does not exceed 1.5 s
 - Web site home page download does not exceed 8s.

Terminology

Subscription based QoS vs. On-demand QoS

- Subscription based
 - Resource (e.g. bandwidth) allocated to subscriber
 - Subscriber pays even if resource is not used
 - Not suitable for sporadic traffic
- On-demand QoS
 - Resources allocated according to actual needs
 - Pay per use

Terminology

Soft QoS vs. hard QoS

- Soft QoS
 - No guarantee to get required QoS during abnormal network conditions (e.g. large scale attacks, major network failures)
- Hard QoS
 - Guarantee to always get required QoS
 - Very hard to put in practice in Internet

Terminology

- Explicit QoS vs. Implicit QoS
- Explicit QoS
 - Customer explicitly requires a specific service level
- Implicit QoS
 - QoS is embedded in the service and there is no special QoS fe

Technologies

IP Precedence and Type of Service

Type of service octet

Precedence: Indicate the priority

- O: lowest
- 7: highest

Type of service

- Low delay
- High throughput
- And others

Never got widely deployed: only anecdotal, ad hoc and experimental implementations

Technologies

Integrated Service Architecture - IntServ Two classes of services

1. Guaranteed service

- Hard guarantee on delay and bandwidth
- Parameters provided by application
 - Peak rate
 - Packet size
 - Burst size

Technologies

Integrated Service Architecture - IntServ

Two classes of services

2. Controlled load

- Softer version of guaranteed service
- Guarantee that the QoS is equivalent to what it would have been if the network is not overloaded
- May not meet some of the hard requirements (e.g. delay)

Technologies

Integrated Service Architecture - IntServ

- Requirements on each router in the path:
 - 1. Policing
 - 2. Admission control
 - 3. Classification
 - 4. Queuing and scheduling

Technologies

Integrated Service Architecture - IntServ

Resource Reservation Protocol (RSVP): Soft state signaling protocol used in InServ for uni-directional resource reservation

Rely on two messages:

- 1. PATH
 - Propagated from sender to receiver
- 2. RESV
 - Propagated in the opposite direction

Technologies

Integrated Service Architecture - IntServ

Disadvantages

- Require major new software and firmware in routers
- Major overhead due to flows management
 - Flows are quite similar to telephone calls
 - Set up
 - Tear down

Technologies

Differentiated Services – DiffServ

Aim at addressing IntServ drawbacks by focusing on traffic aggregates instead of individual flows:

Scalability

- No need for router to maintain flow states
- No for refreshment messages due soft-state

Lack of general applicability

- Work even if every router in the path does not support it
- No need for applications to support new APIs

Technologies

Differentiated Services – DiffServ

Fundamental principle:

A code point – Differentiated service code point (DSCP) to tell routers how to treat a packet relatively to other packets

Technologies

Differentiated Services – DiffServ

Per hop behaviour (PHB)

- Default
- Expedited forwarding
- Assured forwarding

Routers use PHB to drop/ prioritize packets on their output queue

Technologies

Differentiated Services – DiffServ

- The two approaches:
- 1. Absolute service differentiation
- Try to meet IntServ goals, but:
 - Without per-flow state
 - With static / semi-static resource reservation
- 2. Relative service differentiation
- Lower level of ambition
- Just ensure that relative priorities are respected

References

1. J. Gozdecki et al., Quality of Service Terminology in IP Networks, IEEE Communications Magazine, March 2003

2. A. Meddeb, Internet QoS: Pieces of the Puzzle, IEEE Communications Magazine, January 2010

3. B. Carpenter and K. Nichols, Differentiated Services in the Internet, Proceedings of the IEEE, Vol. 90, No9, September 2002