UNIVERSITE

Q/T’Concordla

UNIVERSITY

Virtualization Technologies

Roch Glitho, PhD
Full Professor

Ericsson / ENCQOR-5G Senior Industrial Research Chair

Cloud and Edge Computing for 5G and Beyond
My URL - http://users.encs.concordia.ca/~glitho

\./f Concor dia University

Engineering and
Computer Science
y . Concordia Institute for
Information Systems Engineering

Outline

1. Hypervisor based —
virtualization

2. Containers

3. Uni-kernel

4. Virtualization and serverless
computing

hvrr!_ | © Concordia
[]

On Virtualization

= Key concepts

= Type I (bare metal) vs. Type 2 (hosted)

= Solutions for non virtualizable CPUs
= Binary Translation
= Para-virtualization

g — sty
[]

Basic concepts

1. On operating systems

2. Virtual machine, hypervisor

4. Examples of benefits

IIIIIIIIII

IIIIIIIIII

Operating systems
Some of the motivations

= Only one single tread of CPU can run at a time on any single
core consumer machine

= Machine language is tedious

Operating systems

Operating systems bring a level of abstraction on which
multiple processes can run at a time — Deal among other
things with:

= Multiplexing
» Hardware management issues

However only one operating system can run on a bare single
core consumer machine

[]

virtual machines and hypervisors

» Systems virtualization dates back to the 60s

= |[BM experimentation with “time sharing systems”

virtual machines and hypervisors

= Why virtual machines?

= How to develop software that run on different operating systems
without the purchase of several servers

= How to run legacy applications that run on legacy operating
systems

= Job migrations

virtual machines and hypervisors

Virtual machine (VM)

= Software that provides same inputs / outputs and behaviour

expected from hardware (i.e. real machine) and that supports
operations such as:

= Create

= Delete

= Migrate

= |ncrease resources

Hypervisor

= Software environment that enables operations on virtual
machines (e.g. XEN, VMWare) and ensures isolation

IIIIIIIIII

h_ MANE
[]

virtual machines and hypervisors

Hypervisors (earlier known as Virtual Machine Monitor (VMM)

= Software environment that enables operations on virtual

machines (e.g. XEN, VMWare) and meeting the following
requirements:

* Virtual machines identical to physical machines (same input /
same output)

= Efficiency

= |solation

IIIIIIIIII

h_ MANE
[]

virtual machines, hypervisors

1. M. Pearce et al., Virtualization: Issues, Security, Threats, and Solutions, ACM
Computing Survey, February 2013

From reference [1] — Note: There is a small error in the

figure S — :
v . WConcordia
[]

Examples of Benefits

All benefits are due to the possibility to manipulate virtual
machine (e.g. create, delete, increase resources, migrate), e.g.

= Co-existence of operating systems
= Optimization of hardware utilization

= Job migration

g — s
[]

Advanced concepts

1. Bare metal vs. hosted hypervisor

2. Full virtualization vs. Para-virtualization

3. Binary translation

IIIIIIIIII

IIIIIIIIII

Type | vs Type Il Hypervisor

Some concepts

= Hardware

= Host OS
» Runs on the hardware (Type 2)

= Guest OS
= Runs on top of the hypervisor

Note: Type Il hypervisor is sometimes called “Hosted Hypervisor”

IIIIIIIIII

B Gconcerdle
[]

Type | vs Type Il Hypervisor

AS Tanembaum an H Bos, Modern Operating Systems, 5th edition, Published by Pearson (May 29,

2022) © 2023

Excel Word Mplayer Emacs

56 TO0 ...

Domain

Windows Linux

Type 1 hypervisor

Hardware
(CPU, disk, network, interrupts, etc.)

(a)

Guest OS process

Host OS
O O é) rovess

 GuestOS
(e.g., Windows)
Type 2 hypervisor O

Host OS

(e.g., Linux)

Hardware

(CPU, disk, network, interrupts, etc.)

(b)

IIIIIIIIII

IIIIIIIIII

Type | vs Type Il Hypervisor

Types of hypervisor

= Type | — bare metal
» |nstalled on bare hardware
= Examples
= Citrix XEN server
= VMWARE ESX/ESXI

IIIIIIIIII

Type | vs Type Il Hypervisor

Types of hypervisor

= Type 2 — hosted
» Runs on top of host operating system
= Examples:
= VMWare workstation
= VirtualBox

IIIIIIIIII

Type | vs Type Il Hypervisor

Type | - Bare metal

= Hypervisor installed on bare hardware

= Advantages (compared to type Il)
= Performance (No additional software layer to go through)
= Security (No possible attack through host operating system)

» Drawbacks (compared to type II)
» Host operating system needs to be “ported” on top of hypervisor

= Complexity depends on the type of virtualization (Full
virtualization vs. para-virtualization)

IIIIIIIIII

h_ MANE
[]

Type | vs Type Il Hypervisor

Type Il - Hosted
= Hypervisor installed on top of host operating system

= Drawbacks (compared to type |)
= Performance (need to go through host operating system)
= Security (i.e. Possibility to attack through host operating system)

= Advantages (compared to type |)

» Host operating system is re-used as it is (No need to port it)

= No change required to applications running on top of host
operating system

IIIIIIIIII

h_ MANE
[]

Full virtualization vs. Para-virtualization

More on operating systems fundamentals

» User process vs. Kernel process
= User mode vs. Kernel mode

Note: In user mode some instructions called sensitive
iInstructions should not be executed

[]

Full virtualization vs. Para-virtualization

More on operating systems fundamentals
= Sensitive vs. non sensitive instruction

= Sensitive

» Has the capacity to interfere with supervisor software
functioning (e.g. OS) and should be executed only in kernel
mode (i.e. privileged mode)

= Write OS memory vs. read OS memory

Note: When a user process sends a sensitive instruction,
the instruction is trapped by the CPU and is not executed.

IIIIIIIIII

h_ MANE
[]

Full virtualization vs. Para-virtualization

Back to hypervisors

= |n addition to user mode and kernel mode

= Virtual user mode

= Virtual kernel mode

Full virtualization vs. Para-virtualization

Back to hypervisors

= Scenarios discussions

= CPU able to send trap to hypervisors (virtualizable CPUs)

» CPU unable to send traps to hypervisors (non virtualization CPUs)

IIIIIIIIII

Full virtualization vs. Para-virtualization

Back to hypervisors (CPUs able to send traps to

hypervisors)

AS Tanembaum an H Bos, Modern Operating Systems, 5th edition, Published by Pearson (May 29,

2022) © 2023

/ User process

| @
Virtual < O

machine

Guest operating system \

> Virtual user mode

)\

~ Virtual kernel mode

—

Type 1 hypervisor) Trap on privileged instruction

Hardware

.“."Z_—

. User
mode

-/

Kernel
mode

IIIIIIIIII

UUUUUUUUUU

Full virtualization vs. Para-virtualization

Could all CPU architectures be fully virtualized ?
= The case of Intel x86 CPU architectures

= Cannot be fully virtualized because they cannot generate
convenient traps to hypervisors

= Need to extended

Full virtualization vs. Para-virtualization
Definitions

Full virtualization

= Hypervisor enables virtual machines identical to real machine
= Problematic for architectures such as Intel x86

Full virtualization vs. Para-virtualization

Definitions

Para-virtualization

= Hypervisor enables virtual machine that are similar but not identical
to real machine

= A solution to the problem of CPU architectures that cannot be
virtualized

» Prevents user programs from executing sensitive instructions
= Note:
= Para-virtualization is not the only solution to the problem

IIIIIIIIII

h_ MANE
[]

Full virtualization vs. Para-virtualization

Full virtualization

= Advantages

= Possibility to host guest operating systems with no change since
virtual machines are identical to real machines

= Disadvantages
* Not always feasible (e.g. Intel x86)
= There are work around (e.g. binary translation)

= Some guest operating systems might need to see both virtual
resources and real resources for real time applications

IIIIIIIIII

h_ MANE
[]

Full virtualization vs. Para-virtualization

Para - virtualization

= Advantages
= Feasible for all CPU architectures
» Performance — Compared to:
= Full virtualization

= QOther approaches to architectures that could not be
virtualized (e.g. binary translation)

= Disadvantages
* Need to modify guest operating systems

IIIIIIIIII

h_ MANE
[]

Full virtualization vs. Para-virtualization

Para - virtualization

= Alternatives to para-virtualization
= Binary translation (e.g. VMWare ESX server)
= |_eads to full virtualization
= No need to re-write “statically” guest operating systems
= i.e. guest OS can be installed without change
= Interpretation of guest code (OS + application)

= “Rewrites” dynamically guest code and insert traps when
necessary

IIIIIIIIII

Full virtualization vs. Para-virtualization

Para - virtualization

= Alternatives to para-virtualization
= Binary translation
» Disadvantages / penalties
= Performance
= However, optimization is possible, e.g.

» Adaptive translation (i.e. optimize the code being
translated)

IIIIIIIIII

| NEXT]

Alternatives to Hypervisor Based -
Virtualization

Containers and Unikernels

= |ssues with hypervisors

. . = Alternatives (Containers and

unikernels)

T — e
| |

Hypervisor

In a hypervisor based — approach, a VM includes the

application + full blown operating system (e.g. Linux
Debian, Linux Red Hat)

= (OS on virtual machine needs to boot
= Slow starting time for application

= Resources are not used in an efficient manner
» Linux kernel replicated in each VM that runs linux.

T — i
1

Proposed Solutions

Back to operating systems basics

= The two components of an operating system
= Kernel

= |nteracts with the hardware and manages it (e.g. write/read a
disk partition)

= Librairies
= Set of higher level functions accessible to programs via
system calls

= Enable function like create / read / delete file while hiding
the low level operations on the hard disk

hvr’I —_— _ T Concordia
[|

Alternatives

VM vs container vs Unikernel

o j= 1 =
(=& (=R [=E
<C << <
&=
o o o
= | = = o a a
e la e (||| <
=3 e | =
@ © © = = o
E |2 |2 JIENE
> > e Kernel ernel Kernel Kernel
Hypervisor Hypervisor
Hardware Hardware Hardware
VM Container Unikernel
Fig. 1. Comparison of virtual machine, container and unikernel system

architecture

T. Goethals et al., Unikernels vs. Containers: An In-Depth
Benchmarking Study in the Context of Microservice Application,

IEEE SC2 Conference, November 2018

|

On containers

Operating system (Kernel) virtualization:

= Kernel offers isolated spaces to run containers

= Containers

» Applications packaged with their run time
environment that run on a same kernel

» Run as processes, but with isolated file system,
networking, CPU and memory resources

hvr’l —_— T Concordia
[|

On containers

Operating system (Kernel) virtualization:

= Kernel offers isolated spaces to run containers

= Containers
» Hosted by container engine (e.g. Docker Engine)

» Need to be deployed, managed and
orchestrated (e.g. Kubernetes)

T — i
1

On containers

Operating system (Kernel) virtualization:

= Kernel offers isolated spaces to run containers
= Some pros/cons
= Less memory footprint
» Do notinclude kernel
= Faster start up time
» Kernel does not need to boot

[|

||||||||||

On containers

Operating system (Kernel) virtualization:

= Kernel offers isolated spaces to run containers
= Some pros/cons

= Works only in environments in which you have given
operating system kernel + its libraries (e.g. Linux kernel
~+ Linux distributions)

= |Less secure than VM
» Challenge:

» Trade-off between isolation and performance /
efficiency

T — i
1

On Unikernels

Application + Tiny run time:

-

= Tiny run time
= Not the whole OS like VM
= Not the whole libraries like containers
» Only the function required by the applications
» Static binding
= Can run as a tiny VM or a tiny container

uuuuuuuuuuu

On Unikernels

Pros and cons:

= Smaller footprint
= Boot up faster
= Less flexible
= Addition / removal of functionality requires re-compilation

-

aaaaaaa

Server-less Computing
(Function as a Service)

Introduction

. . = Architecture

= Pros/Cons

T — s
[]

Introduction

Server-less does not mean there is no server !!!

= There are indeed servers !!!

= However the servers are completely transparent to the cloud
users, unlike (Virtual Machine (VM), Containers, Uni-kernel)

= Server-less computing might actual rely on VMs or
containers or uni-kernels

» Cloud users deal with functions (No need to deal with the
infrastructure)

» thus Functions as a Service (FaaS)

IIIIIIIIII

h_ MANE
[]

Architecture

Examples of platforms
= Amazon Lambda
= Microsoft Azure function

= Kuberless

EEEEEEEEEE

UUUUUUUUUU

Architecture

Y. Li et al., Serverless Computing: State of the Art, Challenges and Opportunities, IEEE
Transactions on Services Computing, March/April 2023

Serverless Virtual Machine Container

Users' application

Users' application

Users' application

Serverless platform
(OpenWhisk, OpenFaas)

Configured Environment Docker

Guest Kernel

Orchestrator

VM / Container Host Kernel Host Kernel

Hardware Resource

h_ Cconsardle
[|

Architecture

Principles

1) Applications built as a set of functions

2) When there is a request for a given function, a run time
environment (e.g. VM, container, uni-kernel) is launched with the

function code + libraries

3) The run time is terminated after the execution of the function

g — s
[]

Architecture

Serverless front-end
= Function programming
= Function serving

Platform: Modules such as:
- Run time
- Repository
- Scheduler

g — s
[]

Architecture

Y. Li et al., Serverless Computing: State of the Art, Challenges and Opportunities, IEEE
Transactions on Services Computing, March/April 2023

(Flow view)
fro T T T T T T T - I
|)
| | : Runtime Repository :
I : I Push B |
' T d’ > _— 1
:) : [BD |
[ee) Coding P 1
I Programmer | </> I '
[
: [— . 1 Function Database Execution :
| Recyclin
| ! (" Store £ ycling "
Function I URL — 4-{-’(2) > \\:// - ® —» End
‘ogramming | é) - eum 8 : . I
| ; I
I
........ R R DA ER DR I F
| Invokei ! r Y |
Function I : | O - — Feleh I
: [I
Serving | Users ,O\)\ - { - "0; P e > — > I
: Request/trigger : ! 0‘:-. So = I
| ;| API Schiediiler Prepare Application specific :
| | : gateway Sandbox Initialization ,
e e e e e e e i s i e s B e L |
Serverless Frontend Serverless Platform

w—— UNIVERSITE

[]

Architecture

PAditya et al, Will Serverless Computing Revolutionize NFV, Proceedings of the IEEE, April 2019

Load Balancer J
Frontend 1 Frontend2 | ---| Frontend m

! i !

"
Message Bus [Scheduler]

Execution Execution Execution
Engine Engine Engine
Server 1 Server 2 Server n

[Storage Subsystem J
Fig. 1. Serverless platform architecture. ™ uwmiveasity
]

Architecture

Load balancer:
- Self explanatory

Front end:
- End user interface

Message bus and scheduler:
- Mediation between front ends and execution engines

IIIIIIIIII

B Gconcerdle
[]

Architecture

Load balancer:
- Self explanatory

Front end:
- End user interface

Message bus and scheduler:

- Mediation between front ends and execution engines
- Relies on a publication / subscription principles

g — s
[]

Architecture

Execution engine:

- Self explanatory
- Might rely on VM, containers and uni-kernels

Storage sub-system:

- States
- Persistent data

Pros (Examples)

- No real / virtual server management by cloud users

- Resource Efficiency and low cost

- Built-in scalability

EEEEEEEEEE

Cons (Examples)

- Most cited:
- Start up latency
- Others:

- Learning curve of the new programming model (e.g.
stateless functions + events)

IIIIIIIIII

B Gconcerdle
[]

Pros vs Cons

P Aditya et al, Will Serverless Computing Revolutionize NFV, Proceedings of the IEEE, April

2019

- Decision to be made on case bv case basis

VR Gaming
(13 ms)

Social
Networks

C-RAN:
CIPRI
&

Baseband
processing
(<1ms)

HD Cloud | loT I | Chatbots |
Gaming
Industry
4.0

(90 ms)
Control Plane MaCh_il"le
Functions learning

- inference
High SDN ()
Frequency SIP_
Trading register Web page
(<1m5) (10 ms) load
[Stream] Batch
processing Processing
Packet Cloud assisted car Background
forwarding driving (90 ms) Tasks
Few ms 10s of ms 100s of ms

Stringent =

» Relaxed
Latency Requirements

Fig. 3. Latency requirement ranges for various applications.

— UNIVERSITE

Q/_”Concordia

UNIVERSITY

Pros vs Cons

- Decision to be made on case by case basis

N — o
| On-demand VMs

| (Amazon EC2)

%

\

|

4000 Serverless 100x |

cheaper for }

variable load ‘
2000 |

1 /Serverless

\

\

‘,...——.—-ﬁ'/ (Amazon Lambda)

Monthly Cost ($)

0 2 4 8 16
Number of workload spikes/day

Fig. 4. Cost comparison between Amazon Lambda (serverless) and
Amazon EC2 (VMs) for spiky workload. In the gray region, serverless
is 100x cheaper.

[]

The End

Fer’!_) T Concordia
|

