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On Virtualization

= Key concepts

= Type I (bare metal) vs. Type 2 (hosted)

= Solutions for non virtualizable CPUs
= Binary Translation
=  Para-virtualization
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Basic concepts

1. On operating systems

2. Virtual machine, hypervisor

4. Examples of benefits
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Operating systems
Some of the motivations

= Only one single tread of CPU can run at a time on any single
core consumer machine

= Machine language is tedious



Operating systems

Operating systems bring a level of abstraction on which
multiple processes can run at a time — Deal among other
things with:

= Multiplexing
» Hardware management issues

However only one operating system can run on a bare single
core consumer machine
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virtual machines and hypervisors

» Systems virtualization dates back to the 60s

= |[BM experimentation with “time sharing systems”



virtual machines and hypervisors

= Why virtual machines?

= How to develop software that run on different operating systems
without the purchase of several servers

= How to run legacy applications that run on legacy operating
systems

= Job migrations



virtual machines and hypervisors

Virtual machine (VM)

= Software that provides same inputs / outputs and behaviour

expected from hardware (i.e. real machine) and that supports
operations such as:

= Create

= Delete

= Migrate

= |ncrease resources

Hypervisor

= Software environment that enables operations on virtual
machines (e.g. XEN, VMWare) and ensures isolation
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virtual machines and hypervisors

Hypervisors (earlier known as Virtual Machine Monitor (VMM)

= Software environment that enables operations on virtual

machines (e.g. XEN, VMWare) and meeting the following
requirements:

* Virtual machines identical to physical machines (same input /
same output)

= Efficiency

= |solation
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virtual machines, hypervisors

1. M. Pearce et al., Virtualization: Issues, Security, Threats, and Solutions, ACM
Computing Survey, February 2013

From reference [1] — Note: There is a small error in the
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Examples of Benefits

All benefits are due to the possibility to manipulate virtual
machine (e.g. create, delete, increase resources, migrate), e.g.

= Co-existence of operating systems
= Optimization of hardware utilization

= Job migration
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Advanced concepts

1. Bare metal vs. hosted hypervisor

2. Full virtualization vs. Para-virtualization

3. Binary translation
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Type | vs Type Il Hypervisor

Some concepts

= Hardware

= Host OS
» Runs on the hardware (Type 2)

= Guest OS
= Runs on top of the hypervisor

Note: Type Il hypervisor is sometimes called “Hosted Hypervisor”
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Type | vs Type Il Hypervisor

AS Tanembaum an H Bos, Modern Operating Systems, 5th edition, Published by Pearson (May 29,

2022) © 2023
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Type 1 hypervisor
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(CPU, disk, network, interrupts, etc.)
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(e.g., Windows)
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Type | vs Type Il Hypervisor

Types of hypervisor

= Type | — bare metal
» |nstalled on bare hardware
= Examples
= Citrix XEN server
= VMWARE ESX/ESXI

IIIIIIIIII



Type | vs Type Il Hypervisor

Types of hypervisor

= Type 2 — hosted
» Runs on top of host operating system
= Examples:
= VMWare workstation
= VirtualBox
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Type | vs Type Il Hypervisor

Type | - Bare metal

= Hypervisor installed on bare hardware

= Advantages (compared to type Il)
= Performance (No additional software layer to go through)
= Security (No possible attack through host operating system)

» Drawbacks (compared to type II)
» Host operating system needs to be “ported” on top of hypervisor

= Complexity depends on the type of virtualization (Full
virtualization vs. para-virtualization)
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Type | vs Type Il Hypervisor

Type Il - Hosted
= Hypervisor installed on top of host operating system

= Drawbacks (compared to type |)
= Performance (need to go through host operating system)
= Security (i.e. Possibility to attack through host operating system)

= Advantages (compared to type |)

» Host operating system is re-used as it is (No need to port it)

= No change required to applications running on top of host
operating system
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Full virtualization vs. Para-virtualization

More on operating systems fundamentals

» User process vs. Kernel process
= User mode vs. Kernel mode

Note: In user mode some instructions called sensitive
iInstructions should not be executed
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Full virtualization vs. Para-virtualization

More on operating systems fundamentals
= Sensitive vs. non sensitive instruction

= Sensitive

» Has the capacity to interfere with supervisor software
functioning (e.g. OS) and should be executed only in kernel
mode (i.e. privileged mode)

= Write OS memory vs. read OS memory

Note: When a user process sends a sensitive instruction,
the instruction is trapped by the CPU and is not executed.
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Full virtualization vs. Para-virtualization

Back to hypervisors

= |n addition to user mode and kernel mode

= Virtual user mode

= Virtual kernel mode



Full virtualization vs. Para-virtualization

Back to hypervisors

= Scenarios discussions

= CPU able to send trap to hypervisors (virtualizable CPUs)

» CPU unable to send traps to hypervisors (non virtualization CPUs)
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Full virtualization vs. Para-virtualization

Back to hypervisors (CPUs able to send traps to

hypervisors)

AS Tanembaum an H Bos, Modern Operating Systems, 5th edition, Published by Pearson (May 29,

2022) © 2023
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Full virtualization vs. Para-virtualization

Could all CPU architectures be fully virtualized ?
= The case of Intel x86 CPU architectures

= Cannot be fully virtualized because they cannot generate
convenient traps to hypervisors

= Need to extended



Full virtualization vs. Para-virtualization
Definitions

Full virtualization

= Hypervisor enables virtual machines identical to real machine
= Problematic for architectures such as Intel x86



Full virtualization vs. Para-virtualization

Definitions

Para-virtualization

= Hypervisor enables virtual machine that are similar but not identical
to real machine

= A solution to the problem of CPU architectures that cannot be
virtualized

» Prevents user programs from executing sensitive instructions
= Note:
= Para-virtualization is not the only solution to the problem
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Full virtualization vs. Para-virtualization

Full virtualization

= Advantages

= Possibility to host guest operating systems with no change since
virtual machines are identical to real machines

= Disadvantages
* Not always feasible (e.g. Intel x86)
= There are work around (e.g. binary translation)

= Some guest operating systems might need to see both virtual
resources and real resources for real time applications
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Full virtualization vs. Para-virtualization

Para - virtualization

= Advantages
= Feasible for all CPU architectures
» Performance — Compared to:
= Full virtualization

= QOther approaches to architectures that could not be
virtualized (e.g. binary translation)

= Disadvantages
* Need to modify guest operating systems
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Full virtualization vs. Para-virtualization

Para - virtualization

= Alternatives to para-virtualization
= Binary translation (e.g. VMWare ESX server)
= |_eads to full virtualization
= No need to re-write “statically” guest operating systems
= i.e. guest OS can be installed without change
= Interpretation of guest code (OS + application)

= “Rewrites” dynamically guest code and insert traps when
necessary
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Full virtualization vs. Para-virtualization

Para - virtualization

= Alternatives to para-virtualization
= Binary translation
» Disadvantages / penalties
= Performance
= However, optimization is possible, e.g.

» Adaptive translation (i.e. optimize the code being
translated)
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Alternatives to Hypervisor Based -
Virtualization




Containers and Unikernels

= |ssues with hypervisors

. . = Alternatives (Containers and

unikernels)

T — e
| |



Hypervisor

In a hypervisor based — approach, a VM includes the

application + full blown operating system (e.g. Linux
Debian, Linux Red Hat)

=  (OS on virtual machine needs to boot
= Slow starting time for application

=  Resources are not used in an efficient manner
» Linux kernel replicated in each VM that runs linux.
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Proposed Solutions

Back to operating systems basics

= The two components of an operating system
= Kernel

= |nteracts with the hardware and manages it (e.g. write/read a
disk partition)

= Librairies
= Set of higher level functions accessible to programs via
system calls

= Enable function like create / read / delete file while hiding
the low level operations on the hard disk
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Alternatives

VM vs container vs Unikernel
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Fig. 1. Comparison of virtual machine, container and unikernel system

architecture

T. Goethals et al., Unikernels vs. Containers: An In-Depth
Benchmarking Study in the Context of Microservice Application,

IEEE SC2 Conference, November 2018
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On containers

Operating system (Kernel) virtualization:

= Kernel offers isolated spaces to run containers

=  Containers

» Applications packaged with their run time
environment that run on a same kernel

» Run as processes, but with isolated file system,
networking, CPU and memory resources
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On containers

Operating system (Kernel) virtualization:

= Kernel offers isolated spaces to run containers

= Containers
» Hosted by container engine (e.g. Docker Engine)

» Need to be deployed, managed and
orchestrated (e.g. Kubernetes)
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On containers

Operating system (Kernel) virtualization:

= Kernel offers isolated spaces to run containers
= Some pros/cons
= Less memory footprint
» Do notinclude kernel
= Faster start up time
» Kernel does not need to boot

[ |
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On containers

Operating system (Kernel) virtualization:

= Kernel offers isolated spaces to run containers
= Some pros/cons

= Works only in environments in which you have given
operating system kernel + its libraries (e.g. Linux kernel
~+ Linux distributions)

= |Less secure than VM
» Challenge:

» Trade-off between isolation and performance /
efficiency
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On Unikernels

Application + Tiny run time:

-

= Tiny run time
= Not the whole OS like VM
= Not the whole libraries like containers
» Only the function required by the applications
» Static binding
= Can run as a tiny VM or a tiny container
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On Unikernels

Pros and cons:

=  Smaller footprint
= Boot up faster
= Less flexible
= Addition / removal of functionality requires re-compilation

-
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Server-less Computing
(Function as a Service)

Introduction

. . = Architecture

= Pros/Cons
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Introduction

Server-less does not mean there is no server !!!

= There are indeed servers !!!

= However the servers are completely transparent to the cloud
users, unlike (Virtual Machine (VM), Containers, Uni-kernel)

= Server-less computing might actual rely on VMs or
containers or uni-kernels

» Cloud users deal with functions (No need to deal with the
infrastructure)

» thus Functions as a Service (FaaS)
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Architecture

Examples of platforms
= Amazon Lambda
= Microsoft Azure function

= Kuberless
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Architecture

Y. Li et al., Serverless Computing: State of the Art, Challenges and Opportunities, IEEE
Transactions on Services Computing, March/April 2023

Serverless Virtual Machine Container

Users' application

Users' application

Users' application

Serverless platform
(OpenWhisk, OpenFaas ......)

Configured Environment Docker

Guest Kernel

Orchestrator

VM / Container Host Kernel Host Kernel

Hardware Resource
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Architecture

Principles

1) Applications built as a set of functions

2) When there is a request for a given function, a run time
environment (e.g. VM, container, uni-kernel) is launched with the

function code + libraries

3) The run time is terminated after the execution of the function
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Architecture

Serverless front-end
= Function programming
= Function serving

Platform: Modules such as:
- Run time
- Repository
- Scheduler
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Architecture

Y. Li et al., Serverless Computing: State of the Art, Challenges and Opportunities, IEEE
Transactions on Services Computing, March/April 2023
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Architecture

PAditya et al, Will Serverless Computing Revolutionize NFV, Proceedings of the IEEE, April 2019

Load Balancer J
Frontend 1 Frontend2 | ---| Frontend m

! i !

"
Message Bus [ Scheduler ]

Execution Execution Execution
Engine Engine Engine
Server 1 Server 2 Server n

[ Storage Subsystem J
Fig. 1. Serverless platform architecture. ™ uwmiveasity
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Architecture

Load balancer:
- Self explanatory

Front end:
- End user interface

Message bus and scheduler:
- Mediation between front ends and execution engines
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Architecture

Load balancer:
- Self explanatory

Front end:
- End user interface

Message bus and scheduler:

- Mediation between front ends and execution engines
- Relies on a publication / subscription principles
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Architecture

Execution engine:

- Self explanatory
- Might rely on VM, containers and uni-kernels

Storage sub-system:

- States
- Persistent data



Pros (Examples)

- No real / virtual server management by cloud users

- Resource Efficiency and low cost

- Built-in scalability
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Cons (Examples)

- Most cited:
- Start up latency
- Others:

- Learning curve of the new programming model (e.g.
stateless functions + events)
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Pros vs Cons

P Aditya et al, Will Serverless Computing Revolutionize NFV, Proceedings of the IEEE, April

2019

- Decision to be made on case bv case basis
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Gaming
Industry
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Control Plane MaCh_il"le
Functions learning

- inference
High SDN ( )
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Trading register Web page
(<1m5) (10 ms) load
[ Stream ] Batch
processing Processing
Packet Cloud assisted car Background
forwarding driving (90 ms) Tasks
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Stringent =
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Fig. 3. Latency requirement ranges for various applications.
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Pros vs Cons

- Decision to be made on case by case basis

N — o
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Fig. 4. Cost comparison between Amazon Lambda (serverless) and
Amazon EC2 (VMs) for spiky workload. In the gray region, serverless
is 100x cheaper.
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The End
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