
Virtualization Technologies

Roch Glitho, PhD
Full Professor
Ericsson / ENCQOR-5G Senior Industrial Research Chair
Cloud and Edge Computing for 5G and Beyond

My URL - http://users.encs.concordia.ca/~glitho

Outline

1. Hypervisor based –
virtualization

2. Containers

3. Uni-kernel

4. Virtualization and serverless
computing

Hypervisor Based - Virtualization

On Virtualization

 Key concepts

 Type I (bare metal) vs. Type 2 (hosted)

 Solutions for non virtualizable CPUs
 Binary Translation
 Para-virtualization

Basic concepts

1. On operating systems

2. Virtual machine, hypervisor

4. Examples of benefits

Operating systems
Some of the motivations

 Only one single tread of CPU can run at a time on any single
core consumer machine

 Machine language is tedious

Operating systems
Operating systems bring a level of abstraction on which
multiple processes can run at a time – Deal among other
things with:

 Multiplexing

 Hardware management issues

However only one operating system can run on a bare single
core consumer machine

virtual machines and hypervisors

 Systems virtualization dates back to the 60s

 IBM experimentation with “time sharing systems”

virtual machines and hypervisors

 Why virtual machines?

 How to develop software that run on different operating systems
without the purchase of several servers

 How to run legacy applications that run on legacy operating
systems

 Job migrations

virtual machines and hypervisors

Virtual machine (VM)
 Software that provides same inputs / outputs and behaviour

expected from hardware (i.e. real machine) and that supports
operations such as:
 Create
 Delete
 Migrate
 Increase resources

Hypervisor
 Software environment that enables operations on virtual

machines (e.g. XEN, VMWare) and ensures isolation

virtual machines and hypervisors

Hypervisors (earlier known as Virtual Machine Monitor (VMM)

 Software environment that enables operations on virtual
machines (e.g. XEN, VMWare) and meeting the following
requirements:

 Virtual machines identical to physical machines (same input /
same output)

 Efficiency

 Isolation

virtual machines, hypervisors

1. M. Pearce et al., Virtualization: Issues, Security, Threats, and Solutions, ACM
Computing Survey, February 2013

From reference [1] – Note: There is a small error in the
figure

Examples of Benefits

All benefits are due to the possibility to manipulate virtual
machine (e.g. create, delete, increase resources, migrate), e.g.

 Co-existence of operating systems

 Optimization of hardware utilization

 Job migration

Advanced concepts

1. Bare metal vs. hosted hypervisor

2. Full virtualization vs. Para-virtualization

3. Binary translation

Type I vs Type II Hypervisor

Some concepts

 Hardware

 Host OS
 Runs on the hardware (Type 2)

 Guest OS
 Runs on top of the hypervisor

Note: Type II hypervisor is sometimes called “Hosted Hypervisor”

Type I vs Type II Hypervisor
AS Tanembaum an H Bos, Modern Operating Systems, 5th edition, Published by Pearson (May 29,
2022) © 2023

Type I vs Type II Hypervisor

Types of hypervisor

 Type I – bare metal
 Installed on bare hardware
 Examples

 Citrix XEN server
 VMWARE ESX/ESXI

Type I vs Type II Hypervisor

Types of hypervisor

 Type 2 – hosted
 Runs on top of host operating system
 Examples:

 VMWare workstation
 VirtualBox

Type I vs Type II Hypervisor

Type I - Bare metal

 Hypervisor installed on bare hardware

 Advantages (compared to type II)
 Performance (No additional software layer to go through)
 Security (No possible attack through host operating system)

 Drawbacks (compared to type II)
 Host operating system needs to be “ported” on top of hypervisor
 Complexity depends on the type of virtualization (Full

virtualization vs. para-virtualization)

Type I vs Type II Hypervisor

Type II - Hosted
 Hypervisor installed on top of host operating system

 Drawbacks (compared to type I)
 Performance (need to go through host operating system)
 Security (i.e. Possibility to attack through host operating system)

 Advantages (compared to type I)

 Host operating system is re-used as it is (No need to port it)
 No change required to applications running on top of host

operating system

Full virtualization vs. Para-virtualization
More on operating systems fundamentals

 User process vs. Kernel process

 User mode vs. Kernel mode

Note: In user mode some instructions called sensitive
instructions should not be executed

Full virtualization vs. Para-virtualization
More on operating systems fundamentals

 Sensitive vs. non sensitive instruction

 Sensitive

 Has the capacity to interfere with supervisor software
functioning (e.g. OS) and should be executed only in kernel
mode (i.e. privileged mode)
 Write OS memory vs. read OS memory

Note: When a user process sends a sensitive instruction,
the instruction is trapped by the CPU and is not executed.

Full virtualization vs. Para-virtualization
Back to hypervisors

 In addition to user mode and kernel mode

 Virtual user mode

 Virtual kernel mode

Full virtualization vs. Para-virtualization
Back to hypervisors

 Scenarios discussions

 CPU able to send trap to hypervisors (virtualizable CPUs)

 CPU unable to send traps to hypervisors (non virtualization CPUs)

Full virtualization vs. Para-virtualization
Back to hypervisors (CPUs able to send traps to
hypervisors)

AS Tanembaum an H Bos, Modern Operating Systems, 5th edition, Published by Pearson (May 29,
2022) © 2023

Full virtualization vs. Para-virtualization
Could all CPU architectures be fully virtualized ?

 The case of Intel x86 CPU architectures

 Cannot be fully virtualized because they cannot generate
convenient traps to hypervisors

 Need to extended

Full virtualization vs. Para-virtualization
Definitions

Full virtualization
 Hypervisor enables virtual machines identical to real machine

 Problematic for architectures such as Intel x86

Full virtualization vs. Para-virtualization
Definitions

Para-virtualization
 Hypervisor enables virtual machine that are similar but not identical

to real machine
 A solution to the problem of CPU architectures that cannot be

virtualized
 Prevents user programs from executing sensitive instructions

 Note:
 Para-virtualization is not the only solution to the problem

Full virtualization vs. Para-virtualization

Full virtualization
 Advantages

 Possibility to host guest operating systems with no change since
virtual machines are identical to real machines

 Disadvantages
 Not always feasible (e.g. Intel x86)

 There are work around (e.g. binary translation)
 Some guest operating systems might need to see both virtual

resources and real resources for real time applications

Full virtualization vs. Para-virtualization

Para - virtualization
 Advantages

 Feasible for all CPU architectures
 Performance – Compared to:

 Full virtualization
 Other approaches to architectures that could not be

virtualized (e.g. binary translation)
 Disadvantages

 Need to modify guest operating systems

Full virtualization vs. Para-virtualization

Para - virtualization
 Alternatives to para-virtualization

 Binary translation (e.g. VMWare ESX server)
 Leads to full virtualization
 No need to re-write “statically” guest operating systems

 i.e. guest OS can be installed without change
 Interpretation of guest code (OS + application)

 “Rewrites” dynamically guest code and insert traps when
necessary

Full virtualization vs. Para-virtualization

Para - virtualization
 Alternatives to para-virtualization

 Binary translation
 Disadvantages / penalties

 Performance
 However, optimization is possible, e.g.

» Adaptive translation (i.e. optimize the code being
translated)

Alternatives to Hypervisor Based -
Virtualization

Containers and Unikernels

 Issues with hypervisors

 Alternatives (Containers and
unikernels)

Hypervisor
In a hypervisor based – approach, a VM includes the
application + full blown operating system (e.g. Linux
Debian, Linux Red Hat)

 OS on virtual machine needs to boot
 Slow starting time for application

 Resources are not used in an efficient manner
 Linux kernel replicated in each VM that runs linux.

Proposed Solutions
Back to operating systems basics

 The two components of an operating system
 Kernel

 Interacts with the hardware and manages it (e.g. write/read a
disk partition)

 Librairies
 Set of higher level functions accessible to programs via

system calls
 Enable function like create / read / delete file while hiding

the low level operations on the hard disk

Alternatives
VM vs container vs Unikernel

T. Goethals et al., Unikernels vs. Containers: An In-Depth
Benchmarking Study in the Context of MicroserviceApplication,
IEEE SC2 Conference, November 2018

On containers
Operating system (Kernel) virtualization:

 Kernel offers isolated spaces to run containers

 Containers
» Applications packaged with their run time

environment that run on a same kernel

» Run as processes, but with isolated file system,
networking, CPU and memory resources

On containers
Operating system (Kernel) virtualization:

 Kernel offers isolated spaces to run containers

 Containers
» Hosted by container engine (e.g. Docker Engine)
» Need to be deployed, managed and

orchestrated (e.g. Kubernetes)

On containers
Operating system (Kernel) virtualization:

 Kernel offers isolated spaces to run containers
 Some pros / cons

 Less memory footprint
» Do not include kernel

 Faster start up time
» Kernel does not need to boot

On containers
Operating system (Kernel) virtualization:

 Kernel offers isolated spaces to run containers
 Some pros / cons

 Works only in environments in which you have given
operating system kernel + its libraries (e.g. Linux kernel
+ Linux distributions)

 Less secure than VM
» Challenge:

» Trade-off between isolation and performance /
efficiency

On Unikernels
Application + Tiny run time:

 Tiny run time
 Not the whole OS like VM
 Not the whole libraries like containers

» Only the function required by the applications
» Static binding

 Can run as a tiny VM or a tiny container

On Unikernels
Pros and cons:

 Smaller footprint
 Boot up faster
 Less flexible

 Addition / removal of functionality requires re-compilation

Virtualization and Serverless Computing

Server-less computing

Server-less Computing
(Function as a Service)

 Introduction

 Architecture

 Pros / Cons

Introduction
Server-less does not mean there is no server !!!

 There are indeed servers !!!

 However the servers are completely transparent to the cloud
users, unlike (Virtual Machine (VM), Containers, Uni-kernel)

 Server-less computing might actual rely on VMs or
containers or uni-kernels

 Cloud users deal with functions (No need to deal with the
infrastructure)
 thus Functions as a Service (FaaS)

Architecture
Examples of platforms

 Amazon Lambda

 Microsoft Azure function

 Kuberless

Architecture

Y. Li et al., Serverless Computing: State of the Art, Challenges and Opportunities, IEEE
Transactions on Services Computing, March/April 2023

Architecture
Principles

1) Applications built as a set of functions

2) When there is a request for a given function, a run time
environment (e.g. VM, container, uni-kernel) is launched with the
function code + libraries

3) The run time is terminated after the execution of the function

Architecture
Serverless front-end
 Function programming
 Function serving

Platform: Modules such as:
- Run time
- Repository
- Scheduler

Architecture
Y. Li et al., Serverless Computing: State of the Art, Challenges and Opportunities, IEEE
Transactions on Services Computing, March/April 2023
(Flow view)

Architecture

Architecture
Load balancer:
- Self explanatory

Front end:
- End user interface

Message bus and scheduler:
- Mediation between front ends and execution engines

Architecture
Load balancer:
- Self explanatory

Front end:
- End user interface

Message bus and scheduler:
- Mediation between front ends and execution engines

- Relies on a publication / subscription principles

Architecture
Execution engine:
- Self explanatory

- Might rely on VM, containers and uni-kernels

Storage sub-system:
- States
- Persistent data

Pros (Examples)

- No real / virtual server management by cloud users

- Resource Efficiency and low cost

- Built-in scalability

Cons (Examples)

- Most cited:

- Start up latency

- Others:

- Learning curve of the new programming model (e.g.
stateless functions + events)

Pros vs Cons
P Aditya et al, Will Serverless Computing Revolutionize NFV, Proceedings of the IEEE,April
2019

- Decision to be made on case by case basis

Pros vs Cons

- Decision to be made on case by case basis

The . End

