
REST Case Studies

On the Layers in an IaaS

B. Sotomayor et al., Virtual Infrastructure Management in Private and
Hybrid Clouds, IEEE Internet Computing, September/October 2009

Examples of layers at which REST
could be used in IaaS

 Lowest layer
 Access to individual hypervisors / containers

 Highest layer
 Interface between cloud users (e.g. End-user

program, PaaS and cloud infrastructure), e.g.
 OpenStack
 AWS

REST Case studies

 REST for hypervisors (VMWARE)

 REST for containers (Docker)

 REST for cloud IaaS (Openstack)

A Tutorial on using Hypervisors
and Containers through REST API

ENCS 691 K

Instructor: Dr. Roch Glitho

Presenters:

Behshid Shayesteh (b_shayes@live.concordia.ca)

Mahsa Raeiszadeh (m_raeisz@encs.concordia.ca)

5

Outline

• Part One on Hypervisors
• Introduction to VM Workstation Player
• Introduction to REST
• Setup VMware Workstation Player REST API HTTP server
• Vmware Player REST API explorer
• Try calling common VM management APIs using Python

• Part Two on Containers
• Introduction to Docker API
• Setup Docker HTTP server
• Docker REST API explorer
• Try calling common Docker APIs using Python

6

Part One: Hypervisors

7

Introduction to VMware Workstation Player

• VirtualBox does not offer
REST-enabled APIs

• Vmware Workstation Player
• Hypervisor type 2
• Free product of VMware

8

Introduction to REST

• REST (Representational State Transfer) is a network architectural style
for distributed hypermedia systems

• A way to reunite the programmable web with the human web
• Relies on HTTP and inherits its advantages

• Adressability, statelessness, uniform interface
• HTTP Interface

• GET, POST, PUT, DELETE

9

Setup VMware Workstation Player REST API
HTTP server

1. Install Vmware Workstation Player
2. Setup credentials (only first time)

• In a terminal window, change directories to the Workstation Player
installation folder and run the vmrest.exe -C command.

• Enter a user name and password as prompted.

3. Configure REST API service for HTTP
• In a terminal window, run the vmrest command. The command returns the IP

address and port number from which you can access the HTTP service. The
default IP address is 127.0.0.1:8697.

• Open a web browser and go to http://address-returned-by-vmrest-
command.

• Click Authorize in the top-right corner of the Workstation Player API Explorer
page.

• Enter the user name and password you configured in Step 2.

10

Vmware Player REST API explorer

11

Vmware Player REST API

• Datasets
• VMs

• Resources
• Each VM is a resource
• One special resource that lists the VMs

12

VM management APIs

• Common VM management APIs that will be called during this tutorial
• Get list of exisiting VMs
• Get the configuration of a specific VM
• Update the resource configuration of a specific VM
• Delete a specific VM

• Link to other APIs:
• https://developer.vmware.com/apis/1042/#api

13

Interacting with Vmware Player API - Example

Alice
VMware User

VMware Rest
Server

[{‘Id’: ‘AHC5617ULT’, ‘path’: ‘C:\\Users\\virtual
machines\\ubuntu\\ubuntu.vmx’}, {{‘Id’: ‘7UH2G5HNFJ’, ‘path’:
‘C:\\Users\\virtual machines\\windows\\windows.vmx’}}]

1: GET /vms

2: 200 OK

{‘Id’: ‘AHC5617ULT’, ‘cpu’: {‘processors’:2}, ‘memory’:4096}

1: GET /vms/{vm_id}

2: 200 OK

Show List of VM IDs
and Paths for all VMs

Show the VM
setting information
of a VM

14

Interacting with Vmware Player API - Example

Alice
VMware User

VMware Rest
Server

1: PUT /vms/{vm_id}

2: 200 OK

1: DELETE /vms/{vm_id}

2: 204 OK

Update the VM
settings

Delete a VM

{‘processor’: 1, ‘memory’: 1024}

{‘Id’: ‘AHC5617ULT’, ‘cpu’: {‘processors’:1}, ‘memory’:1024}

15

Python Code to interact with Wmware Player
API - Example

16

Part Two: Containers

17

Introduction to REST API

• REST API
• REST (Representational State Transfer) is a set of architectural principles for designing networked

applications.
• RESTful APIs allow you to access and manipulate resources over the internet via HTTP methods.
• Docker Engine, a containerization platform, exposes a RESTful API for container management.

• Python and Docker:
• Python can be used to interact with Docker Engine's REST API to automate container

operations.

18

Docker REST API

• Docker Engine provides a RESTful API that exposes endpoints for container management.
• Key endpoints include /containers, /images, /networks, and more.
• API calls are made using HTTP methods such as GET, POST, PUT, and DELETE.

• To interact with Docker's REST API in Python, you need:
• Docker Engine installed and running.
• Python installed on your system.
• The “request” library for making HTTP requests.

• Python and request library
• The “request” library simplifies making HTTP requests.
• You can use it to GET, POST, PUT, and DELETE requests to Docker's API endpoints.

19

Common API Operations

• With Docker's REST API and Python, you can:
• Create and start containers.
• Stop and remove containers.
• Build and manage custom images.
• Access container logs and statistics.
• Configure network settings, and more.

• Visit the website below for Docker’s Engine API:
https://docs.docker.com/engine/api/v1.43/

20

Docker Engine REST API

• Datasets
• Containers
• Images
• Networks

• Resources
• Each container is a resource
• Each image is a resource
• Each network is a resource
• One special resource that lists containers
• One special image that lists containers
• One special network that lists containers

21

Docker Engine API - Name Resources with URIs

Container URI Image URI Network URI

List containers

create a container

Extract an archive of files or folders to a
directory in a container

remove a
container

Search an image

build an image

remove an
image

List networks

Create a network

Remove a network

22

Interacting with Docker API - Example

Alice
Docker User

Docker Rest
Server

{"Id": "8dfafdbc3a40","Names": ["/boring_feynman"],"Image":
"ubuntu:latest","ImageID":"d74508fb6632491cea586a1fd7d748d
fc 274cd6fdfedee309ecdcbc2bf5cb82“,}

Get/Containers/json

200 OK

{"Id":"ede54ee1afda366ab42f824e8a5ffd195155d853ceaec74a927f24
9ea270c743",
"Warnings": []}

Post/Containers/create

201 OK

Show List of
Containers

Create a Containers

{"Hostname": "","Domainname": "","User": "", "AttachStdin":
“false”,Env": ["FOO=bar","BAZ=quux"],"Cmd": ["date"],"Entrypoint":
"", "Image": "ubuntu",…}

23

Interacting with Docker API - Example

Alice
Docker User

Docker Rest
Server

{"message": "No such container: c2ada9df5af8.“}

Delete/Containers/{id}

404

Put/Containers/{id}/Update

Remove a container

Updating a Docker Container
Configuration

204 No content

204 No content

24

Enable Docker API Port

• Docker Desktop -> Setting -> General

25

Example Python code for listing containers

26

OpenStack Compute API

 REST Modelling procedure

 OpenStack Compute key concepts

 Applying the procedure

Examples of REST Modelling
(OpenStack - Compute)

Note: Slides prepared by Yassine Jebbar,
Teaching Assistant

OpenStack Compute API

 REST Modelling procedure

 OpenStack Compute key concepts

 Applying the procedure

The procedure – First Part

 Figure out the data set

 Split the data set into resources

The procedure – Second Part

For each resource:
 Name the resources with URIs
 Identify the subset of the uniform interface that is exposed by the

resource
 Design the representation(s) as received (in a request) from and

sent (in a reply) to the client
 Consider the typical course of events by exploring and defining

how the new service behaves and what happens during a
successful execution

OpenStack Compute (REST-based) Key Concepts

• OpenStack Compute is a compute service that provides server
capacity in the cloud.

• Compute Servers come in different flavors (virtual hardware
configuration) of memory, cores, disk space, and CPU, and can be
provisioned in minutes.

• Interactions with Compute Servers can happen programmatically
with the OpenStack Compute API.

OpenStack Compute Key Concepts

• Server: A virtual machine (VM) instance, physical machine or a
container in the compute system.

• Flavor: Virtual hardware configuration for the requested server.
Each flavor has a unique combination of disk space, memory
capacity and priority for CPU time.

• Image: A collection of files used to create or rebuild a server.
Operators provide a number of pre-built OS images by default.

OpenStack Key Concepts

• Server Management: Enable all users to perform an action on a
server.

Example:

• Flavor Management: Show and manage server flavors.
Example:

• Image Management: Show details and manage images.
Example:

Create/Delete/Resize/Reboot Server
Show Server(s) Details

Create/Delete/Update Flavor
Show Flavor(s) Details
Create/Delete/Update Flavor
Show Flavor(s) Details

List Images
Show Image Details
Delete Image

Applying the procedure – Data Set

• Servers

• Flavors

• Images

Applying the procedure – Split Data Set into Resources

• Each server is a resource

• Each flavor is a resource

• Each image is a resource

• One special resource that lists servers

• One special resource that lists flavors

• One special resource that lists images

Applying the procedure – Name Resources with URIs

Server URI Flavor URI Image URI

Example: Listing and Creating Server

Alice
Openstack User

Openstack
Compute

REST Server
1: GET:/servers

2: 200 OK
{ "servers": [{ "id": “1", "links": [{ "href":
"http://openstack.example.com/v2/6f70656e737461636b
20342065766572/servers/1", "rel": "self" }, ….}

3: POST:/servers

Show List of Servers

{ "server": { "name": "auto-allocate-network", "imageRef":
"70a599e0-31e7-49b7-b260-868f441e862b", "flavorRef":
"http://openstack.example.com/flavors/1", "networks": "auto" } }

2: 200 OK

{ "server": { "OS-DCF:diskConfig": "AUTO", "adminPass": "6NpUwoz2QDRN", "id": "f5dc173b-6804-445a-
a6d8-c705dad5b5eb", "links": [{ "href":
"http://openstack.example.com/v2/6f70656e737461636b20342065766572/servers/f5dc173b-6804-445a-

a6d8-c705dad5b5eb", "rel": "self" },… }

Create Server

Example: Resizing Server

Alice
Openstack User

Openstack
Compute

REST Server

3: POST:/servers/1/action

{ "resize" : { "flavorRef" : "2", "OS-DCF:diskConfig": "AUTO" } }

2: 200 OK
Resize Server

If successful, this method does not return content in the response body.

References

https://docs.openstack.org/api-guide/compute/general_info.html

https://docs.openstack.org/api-ref/compute/?expanded=

Case Study – REST for Conferencing

http://users.encs.concordia.ca/~glitho/

References
• F. Belqasmi, C. Fu, R. Glitho, Services Provisioning in Next Generation Networks: A

Survey, IEEE Communications Magazine, December 2011
• F. Belqasmi, J. Singh, S. Bani Melhem, and R. Glitho, SOAP Based Web Services vs.

RESTful Web Services: A Case Study for Multimedia Conferencing Applications, IEEE
Internet Computing, July/August 2012

Examples of REST Modelling
(Messaging)

Examples of RESTful Web Services

Examples of RESTful Web Services

Examples of REST Modelling
(Conferencing)

Case Study On Conferencing

1. A stepwise procedure

2. On conferencing semantics

3. Applying the procedure to
conferencing

The procedure – First Part

 Figure out the data set

 Split the data set into resources

The procedure – Second Part

For each resource:
 Name the resources with URIs
 Identify the subset of the uniform interface that is exposed by the

resource
 Design the representation(s) as received (in a request) from and

sent (in a reply) to the client
 Consider the typical course of events by exploring and defining how

the new service behaves and what happens during a successful
execution

On Conferencing semantics

 The conversational exchange of multimedia
content between several parties
 About multimedia

 Audio, video, data, messaging
 About participants

 Any one who wants to participates the conference

On Conferencing semantics

Classification:
 Dial-in / dial-out
 Open/close
 Pre-arranged/ad hoc
 With/without sub-conferencing (i.e. sidebar)
 With/without floor control

On conferencing semantics
 Case considered in the use case
 Create a service that allows a conference

manager to :
 Create a conference
 Terminate a conference
 Get a conference status
 Add users to a conference
 Remove users from a conference
 Change media for a participant
 Get a participant media

Applying the procedure – First part
1. Data set

 Conferences
 Participants
 Media

Applying the procedure – First part

2. Split the data set into resources
 Each conference is a resource
 Each participant is a resource
 One special resource that lists the participants
 One special resource that lists the conferences (if we consider

simultaneous conferences)

Applying the procedure – Second part
3. Name the resources with URIs
 I’ll root the web service at

http://www.confexample.com/
 I will put the list of conferences at the root URI
 Each conference is defined by its ID:

http://www.confexample.com/{confId}/
 A conference participants’ resources are subordinates of the

conference resource:
 The lists of participants:

http://www.confexample.com/{confId}/participants/
 Each participant is identified by his/her URI:

http://www.confexample.com/{confId}/participants/{participantURI}/

Applying the procedure – Second part

4. Expose a subset of the uniform interface

conference?

Applying the procedure – Second part

Applying the procedure – Second part

9. What might go wrong?
 Conference

Operation Server->Client Way it may go wrong
Create
(POST)

Success: 200 OK
Failure: 400 Bad Request

The received request is not correct
(e.g. has a wrong body)

Read (GET) Success: 200 OK
Failure: 404 Not Found

The targeted conference does not
exist

Delete
(DELETE)

Success: 200 OK
Failure: 404 Not Found

The targeted conference does not
exist

Applying the procedure – Second part

9. What might go wrong?
 Participant(s)

Operation Server->Client Way it may go wrong

Create
(POST)

Success: 200 OK
Failure: 400 Bad Request
Failure: 404 Not Found

• The received request is not correct
(e.g. has a wrong body)
• The target conference does not exist

Read (GET) Success: 200 OK
Failure: 404 Not Found

• The target conference does not exist
• The target participant does not exist

Update
(PUT)

Success: 200 OK
Failure: 400 Bad Request
Failure: 404 Not Found

• The received request is not correct
• The target conference does not exist
• The target participant does not exist

Delete
(DELETE)

Success: 200 OK
Failure: 404 Not Found

• The target conference does not exist
• The target participant does not exist

The End
A

.

