
RESTFul Web Services

(An Enabler of Cloud Computing)

Fundamentals

Roch Glitho, PhD

Full Professor

Ericsson / ENCQOR-5G Senior Industrial Research Chair

Cloud and Edge Computing for 5G and Beyond

My URL - http://users.encs.concordia.ca/~glitho/

Outline

1. Web services in general

2. Detailed presentation of REST

3. REST Case studies

- Hypervisor/Containers API

- Openstack compute API

- Messaging

- Conferencing

Web Services in general

Web Services in General

1. Definition and principles

2. Web services and Cloud Computing

2. Technologies

Web Services

 RESTFul Web Services (Focus of this course)

 SOAP – BASED WEB SERVICES (Legacy – less and less
used)

Definitions and principles

“The term Web Services refers to an architecture that allows
applications (on the Web) to talk to each other. Period.
End of statement”

Adam Bobsworth in ACM Queue, Vol1, No1

Definitions and principles

The three fundamental principles, still according to Adam
Bobsworth:

1. Coarse grained approach (I.e. high level interface)

2. Loose coupling (e.g. application A which talks to
application B should not necessarily be re-written if
application B is modified)

3. Synchronous mode of communication, but also
asynchronous mode

.

Web service and Cloud: Illustration

IaaS level (Openstack REST interface)

Alice

Openstack User

Openstack

Compute

REST Server

1: GET:/servers

2: 200 OK

{ "servers": [{ "id": “1", "links": [{ "href":

"http://openstack.example.com/v2/6f70656e737461636b

20342065766572/servers/1", "rel": "self" }, ….}

3: POST:/servers

Show List of Servers

{ "server": { "name": "auto-allocate-network", "imageRef":

"70a599e0-31e7-49b7-b260-868f441e862b", "flavorRef":

"http://openstack.example.com/flavors/1", "networks": "auto" } }

2: 200 OK

{ "server": { "OS-DCF:diskConfig": "AUTO", "adminPass": "6NpUwoz2QDRN", "id": "f5dc173b-6804-445a-

a6d8-c705dad5b5eb", "links": [{ "href":

"http://openstack.example.com/v2/6f70656e737461636b20342065766572/servers/f5dc173b-6804-445a-

a6d8-c705dad5b5eb", "rel": "self" },… }

Create Server

Web services and Cloud Computing

(Illustration at the SaaS level)
Zoom Developer API

https://developers.zoom.us/docs/api/ (accessed on
September 27, 2023)

Meeting

Overview

REST API

Webhooks

Master account API

Zoom Phone

Overview

REST API

Webhooks

Master account API

Web services and Cloud Computing

(Illustration at the SaaS level)
Zoom Developer blog (Processing Zoom audio in real time

in order to feed it to an AI box such as NLP box)
https://developers.zoom.us/blog/windows-msdk-realtime-

audio/ (accessed on September 27, 2023)

Underlying architecture
Demos
Code

Technologies

Protocol:

HTTP (Both REST and SOAP Based Web services)

Data format

• XML (Both REST and SOAP)

• Other formats (REST only) – Some examples:

• JSON

• Plain Text

HTTP

HTTP (HyperText Transfer Protocol)

 Is an application-level protocol for distributed, collaborative,
hypermedia information systems

 HTTP has been in use since 1990

 HTTP is a request-response protocol

 HTTP requests relates to resources

 A resource is any object or service network that can be

identified by a URI (Universal Resource Identifier)

HTTP

Client

– A program that establishes connections for the purpose of sending

requests

User Agent

– The client which initiates a request (e.g. browser)

 Note

 A request may pass through several servers

HTTP

Server

 An application program that accepts connections in order to service

requests by sending back responses

 A given program may be capable of being both a client and a server

 The role depends on connections

HTTP

 Origin server

 The server on which a given resource resides or is to be created

 Proxy server

 An intermediary program which acts as both a server and a client for

the purpose of making requests on behalf of other clients

 Gateway server

 receives requests as if it were the origin server for the requested

resource, and forwards the request to another server

 Is transparent to the client

HTTP

HTTP-message = Request | Response

generic-message = start-line

*(message-header CRLF)

CRLF

[message-body]

start-line = Request-Line | Status-Line

HEAD

 retrieve meta-information about a web page, without retrieving the

page content (ex: get the date for last modification)

GET

 retrieve the page content

PUT

 store the enclosed content under the supplied Request-URI

POST

 add the entity enclosed in the request as a new subordinate of the

resource identified by the Request-URI

 E.g.

 Post a message to a mailinglist

 Extend a database by appending information

 Transfer a form data

HTTP

HTTP

DELETE

 Deletes the page

TRACE

 Debug

OPTIONS

 Allows the client to discover the options supported by the server

supporte

CONNECT

 Not used currently

HTTP

The built-in HTTP request methods.

HTTP

The status code response groups.

Detailed presentation of REST

RESTFul Web Services

1. Introduction

2. Resource Oriented Architecture

3. Resources

4. Properties

5. Tool kits

6. Examples of RESTful Web services

Introduction

 What about using the Web’s basic technologies

(e.g. HTTP) as a platform for distributed

services?

 This is what is REST about.

Introduction

 REST was first coined by Roy Fielding in his Ph.D.
dissertation in 2000

 It is a network architectural style for distributed
hypermedia systems.

Introduction

 REST is a way to reunite the programmable web with the
human web.

 It is simple
 Uses existing web standards
 The necessary infrastructure has already become pervasive
 RESTFull web services are lightweight
 HTTP traverse firewall

Introduction

 RESTFul web services are easy for clients to use

 Relies on HTTP and inherits its advantages, mainly
 Statelessness
 Addressability
 Unified interface

Resource-Oriented Architecture

 The Resource-Oriented Architecture (ROA)
 Is a RESTful architecture
 Provides a commonsense set of rules for designing

RESTful web services

Resource-Oriented Architecture

 Concepts
 Resources

 Resources names (Unified Resource Identifiers-URIs)

 Resources representations

 Links between resources

 Key properties:
 Addressability
 Statelessness
 Uniform interface

Resources

 What’s a Resource?
 A resource is any information that

 can be named

 Is important enough to be referenced as a thing in itself

 A resource may be a physical object or an abstract concept

 e.g.

 a document

 a row in a database

 the result of running an algorithm.

Resources

 Naming:

 Unified Resource Identifier (URI)
 The URI is the name and address of a resource

 Each resource should have at least one URI

 URIs should have a structure and should vary in predictable ways

Resource

Representation

 A representation is any useful information about the state
of a resource

 Different representation formats can be used (Unlike
SOAP based Web services)
 plain-text

 JSON

 XML

 XHTML

 ….

Resource

…

 In most RESTful web services, representations are
hypermedia
 i.e. documents that contain data, and links to other resources.

Properties

 Addressability

 An application is addressable if it exposes a URI for

every piece of information it serves

 This may be an infinite number of URIs

 e.g. for search results

 http://www.google.com/search?q=jellyfish

Properties

 Statelessness

 The state should stay on the client side, and be transmitted to
the server for every request that needs it.

 Makes the protocol simpler

 Ease load balancing

Properties

 Uniform interface
 HTTP GET:

 Retrieve a representation of a resource

 HTTP PUT
 Create a new resource, where the client is in charge of creating the

resource URI: HTTP PUT to the new URI

 Modify an existing resource: HTTP PUT to an existing URI

 HTTP POST:
 Create a new resource, where the server is in charge of creating

the resource URI: HTTP POST to the URI of the superordinate of
the new resource

 HTTP DELETE:
 Delete an existing resource:

 HTTP HEAD:
 Fetch metadata about a resource

 HTTP OPTIONS:
 Lets the client discover what it’s allowed to do with a resource.

Examples of tool kits

Python

- Django REST

Java

- Play

- Jersey

Examples of RESTful Web Services

 Examples of existing RESTful web services include:

 Amazon’s Simple Storage Service (S3) (http://aws.amazon.com/s3)
(Accessed on September, 23, 2023)

 Oracle Cloud IaaS

https://docs.oracle.com/en-us/iaas/api/ (Accessed on September 23, 2023)

The End
•A

.

