

Chapter V vireless TCP

Roch H. Glitho

Wireless TCP

- 1 Wireless Networks
 - 2 Problems for TCP and taxonomy
 - 3. Pro-active approaches
 - 4. Re-active approaches

- Infrastructure based wireless networks
 - Rely on pre-installed infrastructure (e.g. base stations / access points)
 - Examples:
 - classical (unihop) cellular networks,
 - Wireless Local Area Networks (WLANs) configured in infrastructure mode

- Infrastructure-less wireless networks
 - Deployed on the fly (no base stations / access points)
 - Examples:
 - Mobile ad hoc networks (MANETs)
 - Could be built using WLANs configured in infrastructureless mode

- Hybrid wireless networks
 - Made up of:
 - Infrastructure based portion
 - Infrastructure-less portion

- Hybrid wireless networks
 - Classical example:
 - Multi-hop cellular network
 - Classical unihop cellular network (eg. GSM, 3G) portion
 - Mobile ad hoc network (MANET) portion to connect cellular phones that are outside base station coverage
 - Key benefits:
 - » Increased coverage
 - » Improved performance

- Key characteristics
 - Signal fading
 - Dispersion, reflection and diffraction due to obstacles
 - Mobility
 - Terminal mobility (i.e. keep on-going sessions alive while roaming)
 - Handoff / Handover in infrastructure based networks
 - Limited power and energy

Problems for TCP and taxonomy of solutions

Problems for TCP

- Random loss of segments mistaken as indication of congestion
 - May be caused by fading
 - Triggering of wrong decisions in TCP state machine
 - » Unnecessary slow start

Problems for TCP and taxonomy of solutions

Problems for TCP

- Burst loss of segments mistaken as indication of congestion
 - May be caused by mobility (i.e. handoff/handover)
 - Triggering of wrong decision in TCP state machine
 - » Unnecessary slow start

Problems for TCP and taxonomy of solutions

Problems for TCP

- Packet re-ordering
 - May be caused by mobility (i.e. handoff / handover)
 - Triggering of wrong decisions in TCP state machine
 - » Unnecessary fast re-transmit and fast-recovery

Problems for TCP and Taxonomy of solutions

- Several taxonomies exist
 - Taxonomy used in this course
 - Pro-active
 - Avoid the problem (i.e. TCP segment loss without knowing the exact cause: congestion or random / burst error)

Problems for TCP and Taxonomy of solutions

- Several taxonomies exist
 - Taxonomy used in this course
 - Re-active
 - Let the problem happens (i.e. TCP segment loss without knowing the exact cause)
 - Figure the exact cause and take appropriate actions

Pro-active approaches

Split TCP (basic form)

Pro-active approaches

Split TCP (Basic form)

- Applicable to networks with a fixed portion and an infrastructure based wireless portion
 - Split the connection in two (fixed part and wireless part)
 - Cause of segment loss determined by where the loss happens and relevant decisions are taken

Pro-active approaches

Split TCP

- Sample of disadvantages
 - Violation of TCP semantics
 - ACK may arrive before segment reaches receiver because sent by base station
 - Lack of general applicability
 - Link base station mobile may not be the last mile (e.g. multi hop cellular networks)
 - Inefficient handling of handoff / handovers
 - Need to transfer connection state from old base station to new base station

Re-active approaches

Cross layer approaches

- Let the problem happens (i.e. segment loss without knowing the cause)
- Use information from other layers including non adjacent layers to determine the cause

Re-active approaches

Cross layer approaches

- Example: ILC TCP
 - Sender side solution
 - Relies on a state manager that collects relevant information from all layers including
 - Link state (bad or good)
 - » Bad link indicates imminent handoff and good link indicates completion of handoff

Re-active approaches

Cross layer approaches

- Example: ILC TCP
 - Upon timeout
 - Check link state
 - » Good implies congestion
 - » Bad implies imminence of handoff
 - » Suspend TCP state

References

- K. Pentikousis, TCP in Wired-Cum-Wireless Environments, IEEE
 Communications Surveys and tutorials, fourth quarter 2000
- K-C Leung and V. O.K. Li, Transmission Control Protocol (TCP) in Wireless Networks: Issues, Approaches and Challenges, IEEE Communications Surveys and Tutorials, Fourth Quarter 2006