
RESTFUL Web services

and their use in

telecommunications

Outline

• Why RESTFUL Web
services?

• Essentials of RESTFUL
Web servicesWeb services

• Using RESTFUL Web
services for
telecommunications

Why RESTFUL Web services?

• What is Web 2.0?

• How the web works?

• How Big Web Services

Works?

• What is REST and why we

need it?

What is Web 2.0?

• Web 1.0 , or the human
web, is designed for
human use.

• Web 2.0, or the
programmable web, is
designed for consumption
by software programs.

• Web 2.0 enables
communities and web
client participation.

What is Web 2.0?

Web 1.0 Web 2.0

– Human web

– Is about HTML

– Is about client-server

– Programmable web

– Is about XML

– Is about peer-to-peer– Is about client-server

– Is about reading

– Is about companies

–Is about home pages

– Is about owning

– Is about services sold
over the web

……

– Is about peer-to-peer

– about writing

– Is about communities

– Is about blogs

– Is about sharing

– Is about web services

…..

How the web works?

• The HTTP client:

– Connects to the server.

Example web server

GET http://www.example.com/hello.txt

– Sends the server a method (“GET”) and a path to the resource

(“/hello.txt”).

• The server sent back the contents of the requested document.

Client request Server response

GET /hello.txt HTTP/1.1

Host: www.example.com

200 OK

Content-Type: text/plain

Hello, world!

How the web works?

• HTTP characteristics

– a request-response protocol

– Statelessness

– Scalability– Scalability

– Addressability

– Cachability

– Unified interface

How the web works?

• HTTP methods (RFC 2616)

Safe Methods Retrieve information

GET retrieve information identified by the Request-URI

HEAD retrieve meta-information information identified by the

Request-URI

Idempotent

Methods

The result is the same if execute once or many times

Methods

GET, HEAD

PUT store the enclosed entity under the supplied Request-URI

DELETE delete the resource identified by the Request-URI.

POST add the entity enclosed in the request as a new subordinate

of the resource identified by the Request-URI

•E.g.

–Post a message to a mailinglist

– Extend a database by appending information

– Transfer a form data

How Big Web Services Works?

• ‘Big’ web services are modular programs that can be

discovered and invoked over a network.

• They rely on a stack of technologies including XML,

SOAP and WSDL. SOAP and WSDL.

• The SOAP messages are usually sent across the

network using HTTP, although other bindings are

possible.

How Big Web Services Works?

Service Registry

UDDI

WSDL Service 1

Description

Publish

WSDL, UDDI/SOAPFind

WSDL, UDDI/SOAP

WSDL Service 2

Description

WSDL Service 1

Description

Service Requestor

Service Provider 2

WSDL Service 2

Description
Publish

WSDL, UDDI/SOAP

WSDL, UDDI/SOAP

Bind

Service Provider 1

Service 1

Description

Service 2

WSDL Service 2

Description

How Big Web Services Works?

• Complex
– Every new layer creates

failure points, interoperability,
and scalability problems.

– Many SOAP extensions

– Clients need to support
SOAP

<env:Envelope

xmlns:env="http://schemas.xmlsoap.org/soap

/envelope/">

<env:Header />

<env:Body>

<startConference xmlns="http://com/conf">

• No unified interface
– Use Remote Procedure Call

(RPC)

– The method is sent in the
SOAP message body

– SOAP messages are sent
using HTTP POST

• All the requests to a given WS
are sent to the same URI

<startConference xmlns="http://com/conf">

<str1>alice@ericsson.com</str1>

<str2>bob@ericsson.com</str2>

<str3>charles@ericsson.com</str3>

</startConference>

</env:Body>

</env:Envelope>

What is REST and why we need it?

• What about using the Web’s basic technologies

as a platform for distributed services?

– This is what is REST about.

What is REST and why we need it?

• REST was first coined by Roy Fielding in his Ph.D.
dissertation in 2000

• It is a network architectural style for distributed
hypermedia systems.

• It is not an architecture, but a set of design criteria that
can be used to asses an architecture

• It is not a standard, but uses standards
– e.g. HTTP, XML, HTML

What is REST and why we need it?

• REST is a way to reunite the programmable web with the
human web.

• It is simple
– Uses existing web standards
– The necessary infrastructure has already become pervasive– The necessary infrastructure has already become pervasive
– RESTFull web services are lightweight
– HTTP traverse firewall

• RESTFul web services are easy for clients to use

• Relies on HTTP and inherits its advantages, mainly
– Statelessness
– Addressability
– Unified interface

What is REST and why we need it?

RESTFul web services Big Web Services

• Simple and lightweight

• Easy to develop

• The method information is given in
the URI (i.e. is the HTTP method)

• Complex

• Harder to develop (requires
tools)

• The method is given in the the URI (i.e. is the HTTP method)

• Scoping information is given in the
URI

• Use HTTP

– No extra envelope (except for

HTTP)

– Can be seen as a ‘postcard’

• Closer in design and philosophy to the

web

• The method is given in the
request body

• Scoping information is given in
the request body

• Use SOAP/HTTP

– +SOAP envelope

– Can be seen as a ‘letter’ inside

an envelope

Essentials of RESTFUL Web

services

• Resource Oriented
Architecture (ROA)

• Tools

• Examples of existing
RESTFul web services

Resource-Oriented Architecture

• The Resource-Oriented Architecture (ROA)
– Is a RESTful architecture
– Provides a commonsense set of rules for designing

RESTful web services

• ROA concepts
– Resources– Resources
– Resources names (Unified Resource Identifiers-URIs)
– Resources representations
– Links between resources

• ROA Properties:
– Addressability
– Statelessness
– Connectedness
– Uniform interface

Resources

• What’s a Resource?
– A resource is any information that

• can be named

• Is important enough to be referenced as a thing in itself

– A resource may be a physical object or an abstract concept

– e.g.

• a document• a document

• a row in a database

• the result of running an algorithm.

• Unified Resource Identifier (URI)
– The URI is the name and address of a resource

– Each resource should have at least one URI

– URIs should have a structure and should vary in predictable
ways

Resource representation

• A representation is any useful information about the state
of a resource

• Different representation formats can be used
– plain-text

– JSON

– XML

– XHTML

– …

• In most RESTful web services, representations are
hypermedia
– i.e. documents that contain data, and links to other resources.

ROA properties

• Addressability

– An application is addressable if it exposes a URI for

every piece of information it serves

– This may be an infinite number of URIs – This may be an infinite number of URIs

• e.g. for search results

– http://www.google.com/search?q=jellyfish

ROA properties

• Statelessness

– The state should stay on the client side, and be transmitted to
the server for every request that needs it.

• Statelessness

– Makes the protocol simpler– Makes the protocol simpler

– Ease load balancing

– Ease access to any resource (for client)

• The most common way to break the HTTP intrinsic

statelessness is to use HTTP sessions.

ROA properties

• A stateless search engine

ROA properties

• A stateful search engine

ROA properties

• Connectedness

– e.g. when searching google, you get

• Some search results, and a

• A set of internal links to other pages

ROA properties
• Uniform interface

– HTTP GET:
• Retrieve a representation of a resource

– HTTP PUT
• Create a new resource, where the client is in charge of creating the

resource URI: HTTP PUT to the new URI

• Modify an existing resource: HTTP PUT to an existing URI

– HTTP POST:– HTTP POST:
• Create a new resource, where the server is in charge of creating

the resource URI: HTTP POST to the URI of the superordinate of
the new resource

– HTTP DELETE:
• Delete an existing resource:

– HTTP HEAD:
• Fetch metadata about a resource

– HTTP OPTIONS:
• Lets the client discover what it’s allowed to do with a resource.

ROA properties

• PUT and POST actions

ROA properties

• Safety and Idempotence
– GET and HEAD requests are safe.

– GET, HEAD, PUT and DELETE requests are idempotent.

– POST is neither safe nor idempotent.

• Why safety and idempotence matter• Why safety and idempotence matter
– They let a client make reliable HTTP requests over an unreliable

network.

• Why the Uniform Interface Matters
– Any RESTFul service is as similar as any web site

– No need to learn how each service expected to receive and send
information.

Tools

• Techniques

• HTTP Servlet

• Ajax

• APIs• APIs

• HTTP Servlet API

• RestLet

• JSR 311 API for RESTful web service (JAX-RS or Jersey)

• XMLHTTPRequest API

Existing services

• Examples of existing RESTful web services include:
– Amazon’s Simple Storage Service (S3) (http://aws.amazon.com/s3)

– Services that expose the Atom Publishing Protocol
(http://www.ietf.org/html.charters/atompub-charter.html) and its variants
such as GData (http://code.google.com/apis/gdata/)

– Most of Yahoo!’s web services (http://developer.yahoo.com/)

– Twitter is a popular blogging site that uses RESTful Web services
extensively.

– Most other read-only web services that don’t use SOAP

– Static web sites

– Many web applications, especially read-only ones like search engines

Using RESTFUL Web services

for telecommunications

• The procedure to create a
RESTFul web service

• Illustrative use case

The procedure to create a RESTFul

web service

1. Figure out the data set
2. Split the data set into resources

For each kind of resource:
3. Name the resources with URIs
4. Expose a subset of the uniform interface
5. Design the representation(s) accepted from the client
6. Design the representation(s) served to the client
7. Integrate this resource into existing resources, using hypermedia

links and forms
8. Consider the typical course of events: what’s supposed to happen?
9. Consider error conditions: what might go wrong?

Illustrative use case

• Use case

– Create a service that allows users to

• Create a conference

• Stop a conference

• Change media for a conference• Change media for a conference

• Get a conference status

• Add users to a conference

• Remove users from a conference

• Change media for a participant

• Get a participant media

Illustrative use case

1. Figure out the data set
– Conferences, along with related media and participants

2. Split the data set into resources
– One special resource that lists the conferences– One special resource that lists the conferences
– One special resource that lists the participants
– Each conference is a resource
– Each participant is a resource

– In this example, I will not consider media as a resource, but as
a conference/participant property

Illustrative use case

3. Name the resources with URIs

– I’ll root the web service at

http://www.confexample.com/

– I will put the list of conferences at the root URI– I will put the list of conferences at the root URI

– Each conference is defined by its ID:

http://www.confexample.com/{confId}/

– A conference participants’ resources are subordinates of the
conference resource:

• The lists of participants:

http://www.confexample.com/{confId}/participants/

• Each participant is identified by his/her URI:

http://www.confexample.com/{confId}/participants/{participantURI}/

Illustrative use case

Resource Operation

CRUD

HTTP action Req

Body

Resp

Body

Conference Create:
establish a

POST: http://confexample.com/ YES YES

4. Expose a subset of the uniform interface

establish a
conference

Read:

Get conference
status

GET: http://confexample.com/{confId} NO YES

Update:

Change media
for conference

PUT: http://confexample.com/{confId} YES NO

Delete:
terminate a
conference

DELETE: http://confexample.com/{confId} NO NO

Why not to simply use HTML forms to manage a conference?

Illustrative use case

Resource Operation

CRUD

HTTP action Req

Body

Resp

Body

Participant(s) Create: Add POST: YES YES

4. Expose a subset of the uniform interface

Participant(s) Create: Add

participant(s)

POST:
http://confexample.com/{confId}/participants

YES YES

Read:

Get information
about a
participant

GET:
http://confexample.com/{confId}/participants/{p
articipantId}

NO YES

Update:

Change media
for a participant

PUT:
http://confexample.com/{confId}/participants/{p
articipantId}

YES NO

Delete: delete

a participant

DELETE:
http://confexample.com/{confId}/participants/{p
articipantId}

NO NO

Illustrative use case

• Create conference request body:
<Participants>

5-6-7. Design the representation(s) accepted
from/served to the client

<Participants>

<Participant>alice@ericsson.com</Participant>

<Participant>bob@ericsson.com</Participant>

<Participant>charles@concordia.ca<Participant>

</Participants>

<Media>audio</Media>

• Create conference Accept response body:

http://www.confexample/{confId}

Illustrative use case

• Get conference status response body:

5-6-7. Design the representation(s) accepted
from/served to the client

• Get conference status response body:

<Participants>

<Participant media=“video”>alice@ericsson.com</Participant>

<Participant>bob@ericsson.com</Participant>

<Participant>charles@concordia.ca<Participant>

</Participants>

<Media>audio</Media>

• PUT: change media for a conference request body:

<Media>video</Media>

Illustrative use case (steps 5-6-7)

• Add participant(s) request body:

<Participants>

<Participant media=“audio”>alice@ericsson.com</Participant>

<Participant media=“video”>bob@ericsson.com</Participant>

</Participants>

• Add participant OK response body:

<Participants>

<Participant>

<uri>alice@ericsson.com</uri>

<link>http://confexample.com/{confId}/participants/alice@ericsson.com</link>

</Participant>

<Participant>

<uri>bob@ericsson.com</uri>

<link>http://confexample.com/{confId}/participants/bob@ericsson.com</link>

</Participant>

</Participants>

Illustrative use case

• Get participant status response body:

5-6-7. Design the representation(s) accepted
from/served to the client

• Get participant status response body:

<Participant media=“audio”>alice@ericsson.com</Participant>

• PUT: change media for a participant request body:

<Media>video</Media>

Illustrative use case

A lice Conf App

Part icipant
REST C lient

REST Server

1 : POST(http://www.confexample.com)

2 : 202 A ccepted(http://www.confexample.com/conf1@confexample.com)

8. What is supposed to happen?

Create

conference

3 : INVITE

4 : OK

5 : ACK

6 : 200 OK

7 : GET(http://www.conference.example.com/conf1@congexample.com)

8 : 200 OK

Illustrative use case

A lice C o n f A pp Bob
R EST C lie n t

R EST Se rv e r

1 : PO ST(h t tp : //w ww . co n f e x amp le . com/co n f 1@ con f e x amp le . com)

< Pa r t ic ip a n t s>

 < Pa r t ic ip a n t me d ia = “v id e o ”> bob@ e ric s s o n . com< /Pa r t ic ip a n t>

< /Pa rt ic ip a n t s>

8. What is supposed to happen?

Add

participant

2 : 2 0 2 A cce p te d ()

3 : INVITE

4 : O K

5 : A C K

6 : 2 0 0 O K

< Pa r t ic ip a n t s>

 < Pa r t ic ip a n t>

 < u r i> bob@ e ric s s o n . com< /u r i>

 < lin k> h t t p ://co n f e x amp le . com/{co n f Id }/p a rt ic ip a n t s /b o b@ e ric s s o n . com< /lin k>

 < /P a rt ic ip a n t>

< /Pa rt ic ip a n t s>

The procedure to create a RESTFul

web service

9. What might go wrong?

– Conference

Operation Server->Client Way it may go wrongOperation Server->Client Way it may go wrong

Create

(POST)

Success: 200 OK

Failure: 400 Bad Request

The received request is not correct

(e.g. has a wrong body)

Read (GET)
Success: 200 OK

Failure: 404 Not Found

The targeted conference does not

exist

Update

(PUT)

Success: 200 OK

Failure: 400 Bad Request

Failure: 404 Not Found

• The received request is not correct

(e.g. has a wrong body)

• The target conference does not exist

Delete

(DELETE)

Success: 200 OK

Failure: 404 Not Found

The targeted conference does not

exist

Illustrative use case

9. What might go wrong?

– Participant(s)

Operation Server->Client Way it may go wrong

• The received request is not correct
Create

(POST)

Success: 200 OK

Failure: 400 Bad Request

Failure: 404 Not Found

• The received request is not correct

(e.g. has a wrong body)

• The target conference does not exist

Read (GET)
Success: 200 OK

Failure: 404 Not Found

• The target conference does not exist

• The target participant does not exist

Update

(PUT)

Success: 200 OK

Failure: 400 Bad Request

Failure: 404 Not Found

• The received request is not correct

• The target conference does not exist

• The target participant does not exist

Delete

(DELETE)

Success: 200 OK

Failure: 404 Not Found

• The target conference does not exist

• The target participant does not exist

References

• L. Richardson and S. Ruby, “RESTful Web Services”, O’ Reilly & Associates,
ISBN 10: 0-596-52926-0, May 2007

• Lightweight REST Framework, http://www.restlet.org/

• JSR 311: JAX-RS: The JavaTM API for RESTful Web Services, online at:
http://jcp.org/en/jsr/detail?id=311

• C. Pautasso, O. Zimmermann, and F. Leymann, “RESTful Web Services vs. • C. Pautasso, O. Zimmermann, and F. Leymann, “RESTful Web Services vs.
“Big”Web Services: Making the Right Architectural Decision”, In Proceedings of the
17th International World Wide Web Conference, pages 805–814, Beijing, China,
April 2008, ACM Press.

• C. Pautasso and E. Wilde, “Why is the web loosely coupled? A multi-faceted
metric for service design”, in Proc. of the 18th World Wide Web Conference,
Madrid, Spain (April 2009)

• C. Pautasso, “Composing restful services with jopera”, in A. Bergel and J. Fabry,
editors, Software Composition, volume 5634, Lecture Notes in Computer Science,
pages 142–159. Springer, 2009.

• Andreas Kamilaris, “A Lightweight Resource-Oriented Application Framework for
Wireless Sensor Networks”, Master Thesis, April 2009

