
Socket programming

Goals:

� Present the basics of socket programming

� Show concretely how it works using Java

Agenda:
� Basics

� Client and server implementation

� Sending and receiving data

Basics

• What is a socket?

• Socket
communication

What is a socket
“A socket is an abstraction through which an

application may send and receive data, in
much the same way as an open file handle
allows an application to read and

write data to stable storage”
FTP HTTP

Server

Client

FTP HTTP

SNMP

21 161 80

192.168.1.3 192.168.1.50

Network

TCP/UDP

IP

application

TCP UDP

IP

What is a socket

• The ports are used by TCP and UDP protocols to

identify the destination program (application) of

an incoming data

TCP or UDP

port1 port2 port3 port4

app1 app2 app3 app4

port# dataData

Packet

What is a socket

• Port numbers between 0 and 1,023 are reserved
(used by common/well known services)

• FTP: 21/tcp, 21/udp

• HTTP: 80/tcp, 80/udp

• HTTPS: 443/tcp, 443/udp

• SNMP: 161/tcp, 161/udp • SNMP: 161/tcp, 161/udp

* managed by the Internet Assigned Numbers Authority
(IANA)

• When selecting a port number for your server,
select one that is greater than 1,023

Socket communication

• A server (application) runs on a specific

computer and has a socket that is bound to a

specific port.

• The server listens to the socket and waits for a

client to make a connection request.

server
Client

Connection request

p
o

rt

Socket communication

• The server accepts the incoming connection
request.

• The server gets a new socket bounds to a
different port. different port.

server

Client

Connection

p
o

rt

port p
o

rt

Socket communication

• Two main communication protocols can be
used for socket programming

– Datagram communication– Datagram communication

• datagram sockets (UDP)

– Stream communication

• stream sockets (TCP)

Socket communication

• Datagram communication
• UDP is a connectionless protocol

– For each datagram, we need to send the local socket
descriptor and the receiving socket's address

– There is a size limit of 65,500 bytes on each datagram – There is a size limit of 65,500 bytes on each datagram

– No guarantee that the sent datagrams will be received in
the same order

==> UDP is often used in implementing client/server
applications built over local area networks

Socket communication

• Stream communication
• TCP is a connection-oriented protocol

– A connection must first be established between the client
and the server.

– No limit on the data to send– No limit on the data to send

– The sent packets are received in the order in which they
were sent.

==> TCP is useful for implementing network services such
as remote login (rlogin, telnet) and file transfer (FTP)

Client and server implementation

• Main classes

• TCP client/server implementation

• UDP client/server implementation

Main classes
• java.net package provides three main classes:

• Socket – for implementing a TCP client
• ServerSocket – for implementing a TCP server
• DatagramSocket – for implementing both a UDP client and server

• Data exchange

• TCP: InputStream and OutputStream

Client

socket

TCP

IP

Application

Server

socket

TCP

IP

Application

• TCP: InputStream and OutputStream

• UDP: DatagramPacket

Server Client

Open a serverSocket

create a clientSocket:
opens a connection
with the server

Wait for incoming
client request

TCP connection

setup

TCP client/server implementation

close
clientSocket

Display data

Read data from
clientSocket

Send data to client
using the connectionSocket

close
serverSocket

Accept the client request
and create a connectionSocket

Open a server

socket

Create a

ServerSocket server;

try {

server = new ServerSocket(portNumber);

} catch (IOException e) { System.out.println(e); }

try {

Open a server

socket

Open a server

socket

TCP server implementation

Create a

connection

socket object

Write data to
the connection
socket

try {

Socket connectSocket = server.accept();

} catch (IOException e) { .. }

String data = “Hello from server”;

try {
OutputStream out = connectSocket.getOutputStream();

out.write(data.getBytes());

} catch (IOException e) {…}

TCP server implementation

try {

connectSocket.close(); // Close the socket. We are

// done with this client!

server.close(); // close the server socket

} catch (IOException e) { System.out.println(e); }

Close the

sockets

TCP client implementation

Open a client

socket

Read data

try {

Socket clientSocket = new Socket(serverIP/Name, serverPort);

} catch (IOException e) { System.out.println(e); }

int MAXLENGTH= 256;

Read data

from the

socket

Close socket
try {

clientSocket.close(); // Close the socket and its streams

} catch (IOException e) {…}

int MAXLENGTH= 256;
byte[] buff = new byte[MAXLENGTH];

try {
InputStream in = clientSocket.getInputStream();

in.read(buff);

} catch (IOException e) {System.out.println(e); }

Server

create a clientSocket

Client

Send a datagram request to

create a serverSocket for
incoming request.

port=x:

UDP client/server implementation

close
clientSocket

read reply from
clientSocket

Send a datagram request to
the server using clientSocket

read request from
serverSocket

Send a reply
to the client
using the
serverSocket

close
serverSocket

Create the

clientSocket

try {

DatagramSocket clientSocket = new DatagramSocket();

} catch (IOException e) { System.out.println(e); }

UDP client implementation

Send a

datagram

to the server

int PACKETLENGTH= 256;
byte[] data = new byte[PACKETLENGTH];

try {

DatagramPacket packet = new DatagramPacket(data,

data.length, serverIP, serverPort);

clientSocket.send(packet);

} catch (IOException e) {System.out.println(e); }

Read the

server reply

byte[] rcvData = new byte[PACKETLENGTH];

try {

DatagramPacket receivePacket =

new DatagramPacket (rcvData, rcvData.length);

clientSocket.receive(rcvPacket);

UDP client implementation

Close socket
try {

clientSocket.close(); // Close the socket

} catch (IOException e) {…}

String rcvString = new String(rcvPacket.getData());

System.out.println(“The received packet is: ”+rcvString);

} catch (IOException e) {System.out.println(e); }

Open a

socket

DatagramSocket server;

try {

serverSocket = new DatagramSocket (portNumber);

} catch (IOException e) { System.out.println(e); }

UDP server implementation

Receive a

datagram

from client

byte[] buff = new byte[PACKETLENGTH];

try {

DatagramPacket rcvPacket = new DatagramPacket

(buff, buff.length);

server.receive(rcvPacket);

} catch (IOException e) { .. }

Get the

client IP

and Port

InetAddress clientIP = rcvPacket.getAddress();

int clientPort = rcvPacket.getPort();

UDP server implementation

Get the

client IP

and Port

Send a
datagram
to the client

String data = “Hello from server”;

try {
DatagramPacket sendPacket = new DatagramPacket

(sendData, sendData.length, clientIP, clientPort);
serverSocket.send(sendPacket);

} catch (IOException e) {…}

Sending and receiving data

• Communication
protocol

• Message encoding and

decoding

• Framing

• Example

Sending and receiving data

• Sender and receiver must agree on the communication
protocol

– How the exchanged information will be encoded (represented as a

sequence of bits)

• How the sequence of bits is arranged by the sender and interpreted, • How the sequence of bits is arranged by the sender and interpreted,
or parsed, by the receiver?

• Framing: refers to the problem of enabling the receiver to locate the
beginning and end of a message.

– Which program sends what information and when

– How the received information affects the behavior of the
program.

Sending and receiving data

• Framing:
– Possible problems:

• Deadlock

• Protocol errors

– Two general techniques enable a receiver to unambiguously find – Two general techniques enable a receiver to unambiguously find
the end of the message:

• Delimiter-based

– E.g. end-of-stream indication, a particular character

• Explicit length

• The same considerations apply to finding the boundaries
of the individual fields of a given message

Sending and receiving data

• Example
– Consider the following voting protocol

Vote RequestInquiry Request

Voting Request
Candidate = 123

Client Server

Vote Request
Candidate = 123

Vote Response
Candidate = 123
Vote count= 456

Inquiry Request
Candidate = 123

Vote Response
Candidate = 123
Vote count= 457

Sending and receiving data

1. Message representation:
public class VoteMsg {

private boolean isInquiry; // true if inquiry; false if vote

private boolean isResponse;// true if response from server

private int candidateID; // in [0,1000]private int candidateID; // in [0,1000]

private long voteCount; // nonzero only in response

…..

}

2. Message encoding and decoding

Magic-string Type [‘v’,’i’] RespFlag [‘R’] Candidate ID Vote Count

Sending and receiving data
public class VoteMsgEncoder implements VoteMsgCoder {

public static final String MAGIC = "Voting";

public static final String VOTESTR = "v";

public static final String INQSTR = "i";

public static final String RESPONSESTR = "R";

public static final String FIELDELIMSTR = " ";

public static final int MAX_MSG_LENGTH = 2000;

public byte[] encode(VoteMsg msg) throws IOException {

String msgString = MAGIC + FIELDELIMSTR + (msg.isInquiry() ? INQSTR : VOTESTR)

+ FIELDELIMSTR + (msg.isResponse() ? RESPONSESTR + FIELDELIMSTR : "")

+ Integer.toString(msg.getCandidateID()) + FIELDELIMSTR

+ Long.toString(msg.getVoteCount());

byte data[] = msgString.getBytes();

return data;

}

………….

Sending and receiving data
public class VoteMsgDecoder implements VoteMsgCoder {

boolean isInquiry;

boolean isResponse;
int candidateID;
long voteCount;

public VoteMsg decode(byte[] message) throws IOException

{

ByteArrayInputStream msgStream = new ByteArrayInputStream(message);

Scanner s = new Scanner(new InputStreamReader(msgStream));

String token;
try {
token = s.next();
if (!token.equals(MAGIC)) {

throw new IOException("Bad magic string: " + token); }
token = s.next();
if (token.equals(VOTESTR)) {

isInquiry = false;
} else if (!token.equals(INQSTR)) {

throw new IOException("Bad vote/inq indicator:
" + token);

} else {
isInquiry = true; }

Check if the
message stars with
the magic word

Check if the
message stars with
the magic word

Check if the
message stars with
the magic word

Check if it is a
vote message

Magic-string Type [‘v’,’i’] RespFlag [‘R’] Candidate ID Vote Count

Sending and receiving data

token = s.next();
if (token.equals(RESPONSESTR)) {

isResponse = true;
token = s.next();

} else {
isResponse = false;

}
candidateID = Integer.parseInt(token);
if (isResponse) {

Check if it is a
response

if (isResponse) {
token = s.next();
voteCount = Long.parseLong(token);

} else {
voteCount = 0;

}
} catch (IOException ioe) {

throw new IOException("Parse error...");
}
return new VoteMsg(isResponse, isInquiry, candidateID, voteCount);

}

}

Magic-string Type [‘v’,’i’] RespFlag [‘R’] Candidate ID Vote Count

Get information
from the message

Create and return a
vote message

Sending and receiving data

public class DelimFramer {
private InputStream in; // data source

private static final byte DELIMITER = "\n";

// message delimiter

3. Framing
Define a message framing class, which implements a delimiter-based framing using

the “newline” character ("\n").

// message delimiter

public void frameMsg(byte[] message, OutputStream out) throws IOException {

for (byte b : message) {

if (b == DELIMITER) {

throw new IOException("Message contains delimiter"); }

}

out.write(message);

out.write(DELIMITER);

out.flush();

}

ensure that the
message does not
contain the delimiter

Sending and receiving data

public byte[] readNextMsg() throws IOException {
ByteArrayOutputStream messageBuffer = new ByteArrayOutputStream();
int nextByte;

while ((nextByte = in.read()) != DELIMITER) {

Define a message framing class, which implements delimiter-
based framing using the “newline” character ("\n").

fetch bytes until the
while ((nextByte = in.read()) != DELIMITER) {

if (nextByte == -1) { // end of stream?
if (messageBuffer.size() == 0) { // if no byte read

return null;
} else { // if bytes followed by end of stream: framing error

throw new EOFException("Non-empty message without
delimiter");}

}
messageBuffer.write(nextByte);

}
return messageBuffer.toByteArray();
…………..

}

fetch bytes until the
delimiter is found

Write the current
byte to the buffer
Write the current
byte to the buffer

Return the
message

• References
– TCP/IP Sockets in Java: Practical Guide for

Programmers, Second Edition, Kenneth L. Calvert
and Michael J. Donahoo, ISBN: 978-0-12-374255-1

– “All About Sockets”
http://java.sun.com/docs/books/tutorial/networking/sohttp://java.sun.com/docs/books/tutorial/networking/so
ckets/

