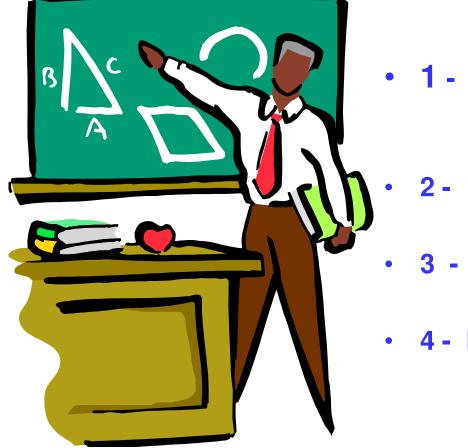


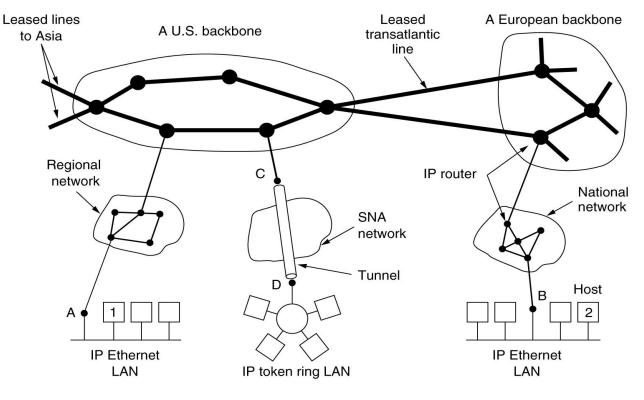
Chapter III The IP Layer

Network layer



Network layer

- Key design issues
 - Services provided to the transport layer (connection oriented vs. connectionless services)
 - Routing algorithms
 - Congestion control
 - Quality of services
 - Internetworking


The IP Layer (or network layer in Internet)

- 1 Design choices
 - 2 IPv4 / IPv6
 - 3 Mobility management
- 4 Routing in Internet

Design choices

The Internet

Figure 5.52 - Reference [1]

Design choices

- Key design objectives
 - 1. Make sure it works
 - 2. Keep it simple
 - 3. Make clear choices
 - 4. Exploit modularity
 - 5. Expect heterogeneity
 - 6. Avoid static options and parameters
 - 7. Look for a good design, it needs not be perfect
 - 8. Be strict when sending and tolerant when receiving
 - 9. Think about scalability
 - 10. Consider performance and cost

Design choices

- Choices
 - Services provided to the transport layer (connection oriented vs. connectionless services)
 - Connectionless only
 - Routing algorithms
 - Interior Gateway Routing Protocol
 - Open Shortest Path First (OSPF)
 - Exterior Gateway Routing Protocol
 - Border Gateway Protocol (BGP)

Design choices

- Choices
 - Congestion control
 - Left to upper layers
 - Quality of services
 - Best effort
 - More sophisticated/refined features left to upper layers
 - Internetworking
 - IP as the glue

IPv4

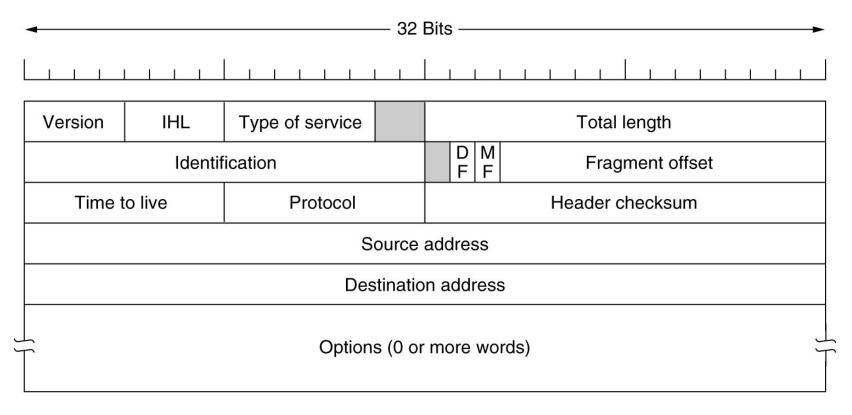


Figure 5.53 - Reference [1]

IPv4

- Header (20 byte fixed and variable length optional part)
 - Version
 - IHL: Length in 32 bit words
 - Minimum: 5 (No option is present)
 - Maximum: 15 (header 60 bytes and options 40 bytes)
 - Type of service (Early efforts for quality of services)
 - Total length: header + data (65,535 bytes)
 - Identification: Determine to which datagram a fragment belongs to
 - Fragment / do not fragment
 - More fragments

IPv4

- Header (20 byte fixed and variable length optional part)
 - Fragment offset:
 - Where in the current datagram the fragment belongs
 - Time to live
 - Protocol:
 - to which transport process the datagram should be given to (UDP or TCP)
 - Header checksum
 - Source address / destination address
 - Options (e.g. strict source routing, loose source routing, record route, timestamp)

IPv4

• IP addresses

Figure 5.55 – Reference [1]

IPv4

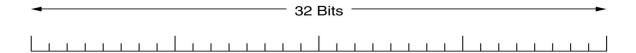
- Some early quick fixes to the IP address shortage issue
 - Classless Inter Domain Routing (CIDR)
 - Allocate remaining addresses in variable size blocks, without regard to classes
 - Make routing much more complex
 - Network Address Translation (NAT)
 - Only 1 IP address seeing from outside
 - Several IP addresses inside (i.e. 1 per host)
 - Translation process
 - Same set of internal addresses could be used by different organizations

IPv4

- Some early quick fixes to the IP address shortage issue
 - Classless Inter Domain Routing (CIDR)
 - Allocate remaining addresses in variable size blocks, without regard to classes
 - Make routing much more complex
 - Network Address Translation (NAT)
 - Only 1 IP address seeing from outside
 - Several IP addresses inside (i.e. 1 per host)
 - Translation process
 - Same set of internal addresses could be used by different organizations

IPv4

• Network Address Translation (NAT)


IPv6

- Some of the design goals
 - Support of billions of hosts
 - Reduce the size of routing tables
 - Simplify the protocol
 - Provide better security
 - Pay more attention to type of service
 - Aid multicasting
 - Enable roaming without address change
 - Enable evolution of the protocol
 - Enable co-existence IPv4 / IPv6

IPv6

• The main header

Version	Traffic class	Flow label		
	Payload length		Next header	Hop limit
Source address (16 bytes)				
Destination address (16 bytes)				

Figure 5.68 - Reference [1]

IPv6

• Header

- Version (6 for IPv6 and 4 for IPv4)
- Traffic class: Distinguish between packets with different delivery requirements
- Flow label: still under experiment Enable pseudo connection to mimic connection oriented services
- Payload length: how many bytes follow the 40-byte header
- Hop limit
- Next header: which one of the currently 6 optional headers follows this one, if any
- Source address, destination address: 16 bytes addresses instead of 4 in IPv4

- Key working assumptions
 - Deployment of IPv6 at the edge first
 - Full deployment (including core) last
 - Realistic and easy because most OS deployed on user sites are IPv6 capable.
 - Key related issues
 - Transportation of IPv6 packets from edge to edge through an IPv4 capable core
 - Conversion of IPv4 packets into IPv6 packets and vice versa on user sites.

- Key techniques
 - IPv6 / IPv4 dual stack
 - Use of a new API that supports both IPv6 and IPv4
 - Requirements
 - Upgrade of entire infrastructure
 - Dual addressing scheme
 - Dual management
 - Dual routing tables
 - Validity
 - Specific network infrastructure with a mix of IPv4 and IPv6
 - » Campus network
 - » Points of presence

- Key techniques
 - IPv6 over IPv4 tunnels
 - IPv6 packets are encapsulated in IPv4 packets
 - Requirements
 - Support of a dual stack by the two end points of the tunnel
 - Validity
 - Quite suitable when dual stacks are implemented at the edges and the core remains IPv4

- Key techniques
 - IPv4 IPv6 Translation mechanisms
 - Two categories
 - No change to IPv4 and IPv6
 - » TCP-UDP relay mechanism
 - » Runs on a dedicated server
 - » separate transport level connection with IPv4 and IPv6
 - Change to IPv4 and/or IPv6
 - Name resolver, address mapper and translator added to IPv4 between the network layer and the higher layer

- Key techniques
 - Requirements
 - Vary depending on the category and the specific mechanism
 - Examples
 - » Dedicated server
 - Validity
 - Will enable use of legacy IPv4 applications when IPv6 becomes widely deployed

- Key techniques
 - IPv6 over MPLS (Multiple Protocol Label Switching) backbone
 - MPLS
 - Switching using labels instead of IP addresses
 - » Inherent VPN features
 - No reconfiguration of core routers
 - Requirements
 - Depend on mechanisms used
 - Validity
 - No impact on MPLS infrastructure

- Service continuity when moving from sub-networks to sub-networks
 - Should be transparent to higher layer protocols
 - Key challenge
 - IP address no more valid when hosts move to different networks
 - Different from the ability to detach from a network and attach to a new one
 - New IP address assigned in this case without service disruption because there is no requirement on service continuity

- The way it is done in cellular networks
 - Location management
 - Registration / updating
 - Paging
 - Handoff management
 - Intra-cell (i.e. change of radio channel)
 - Inter-cell (i.e. change of base station)

- Classification scheme for Internet
 - Macro mobility
 - Mobility across regional networks
 - Schemes: Mobile IP (MIP): MIPv4, MIPv6
 - Micro mobility
 - Mobility within regional networks
 - Examples of schemes: Cellular IP, HAWAI
 - Seamless mobility
 - "Right" mix of macro mobility and micro mobility

- Macro mobility
 - Mobile IPv4
 - Key concepts
 - Mobile host (MH)
 - Two IP addresses
 - » Home address
 - » Care of (COA) address
 - Two new entities
 - » Home agent (HA)
 - » Foreign agent (FA)

- Macro mobility
 - Mobile IPv4
 - Key phases
 - Agent discovery
 - Registration
 - Routing

- Macro mobility
 - Mobile IPv4
 - Agent discovery (i.e. Need to detect MH has changed point of attachment)
 - Agent advertisements transmitted periodically by HA and FA
 - Extension of Internet Control Message Protocol (ICMP)
 - Detection may be based on lifetime field of the router advertisement
 - » ICMP
 - » Reports when something unexpected happens / Test Internet
 - » Ex: destination unreachable, time exceeded, echo/echo reply

- Macro mobility
 - Mobile IPv4
 - Registration
 - Goal: Make HA aware of the whereabouts of MH
 - May (or may not) go through FA
 - Two messages (carried over UDP)
 - » Registration request
 - » Registration reply

- Macro mobility
 - Mobile IPv4
 - Routing
 - HA
 - 1. Intercepts packets sent to MH home address
 - » Gratuitous Address Resolution Protocol (ARP) packets
 - » ARP address maps IP address on MAC address
 - Gratuitous ARP packets enables the redirections to HA of all packets sent to MH home address

Mobility Management

- Macro mobility
 - Mobile IPv4
 - Routing

– HA

- 1. Tunnels packets to CoA
 - » End of tunnel

» MH

```
» Or
```

```
» FA
```


- Macro mobility
 - Mobile IPv6
 - Same fundamental principles as Mobile IPv4
 - Some differences
 - 1. No foreign agent (FA)
 - » IPv6 MH acquire their CoA without the assistance of FA
 - 2. HA discovery done using anycast
 - » More efficient than the broadcast used in Mobile IPv4

- Macro mobility
 - Shortcomings
 - High signalling load
 - Especially when MH is within a region
 - » Macro signalling actually not needed
 - Latency when restoring communications paths
 - Packets may be dropped

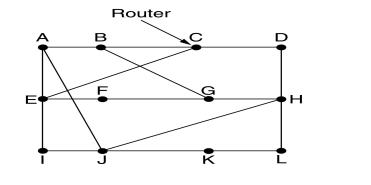
- Micro mobility
 - Cellular IP (CIP)
 - Columbia University and Ericsson
 - CIP access network
 - » Base stations
 - » Wireless interface to MH
 - » Routing and location management
 - » CIP nodes
 - » Routing and location management only
 - » Gateway
 - » CIP nodes that bridge CIP access network and a MIP networks

Mobility Management

- Micro mobility
 - Cellular IP (CIP)
 - Columbia University and Ericsson
 - Routing
 - » Hierarchical (MH BS CIP node Gateway)
 - » Example of advantage compared to MIP use in the same access network
 - » MH to MH packets within a CIP network do not leave the CIP network
 - » No need to travel back and forth between HA and FA

- Open Short Path First (OSPF)
 - Routing within autonomous systems
 - Key design goals/requirements
 - 1. Openness although used with autonomous systems
 - 2. Plurality of metrics (e.g. physical distance, delay)
 - 3. Dynamicity (i.e. adaptation to changes in the network)
 - 4. Load balancing
 - 5. Support of hierarchical systems
 - 6. Security

- Open Short Path First (OSPF)
 - Key features
 - Link state algorithm
 - Flooding algorithm
 - Shortest path algorithm
 - Authenticated exchanges



- Open Short Path First (OSPF)
 - Link state algorithm
 - Replacement of the distance vector algorithm
 - Distance vector algorithm in a nutshell
 - » Also known as Bellman Ford routing
 - » Use of a plurality of metrics
 - » Each router maintains a table with the best known distance to each destination and the next hop to reach the destination
 - » Table updated with the information received from the neighbours

Routing in Internet

• Distance vector algorithm

(a)

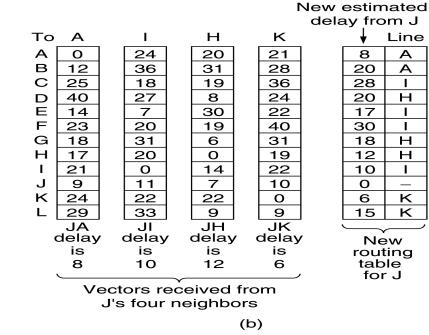


Figure 5.9 – Reference [1]

Routing in Internet

• Distance vector algorithm

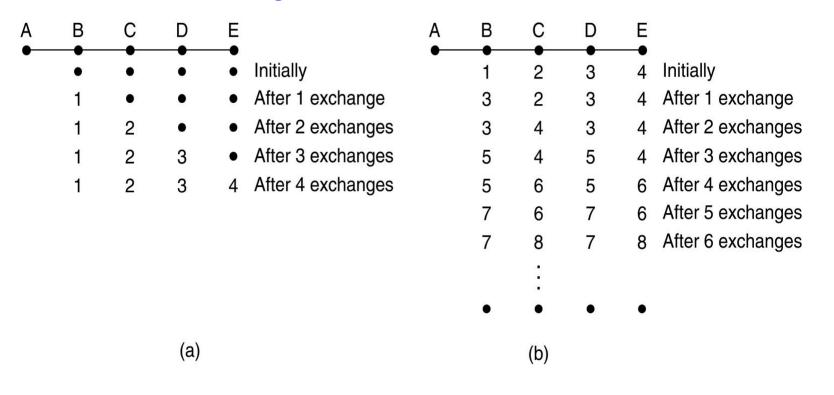
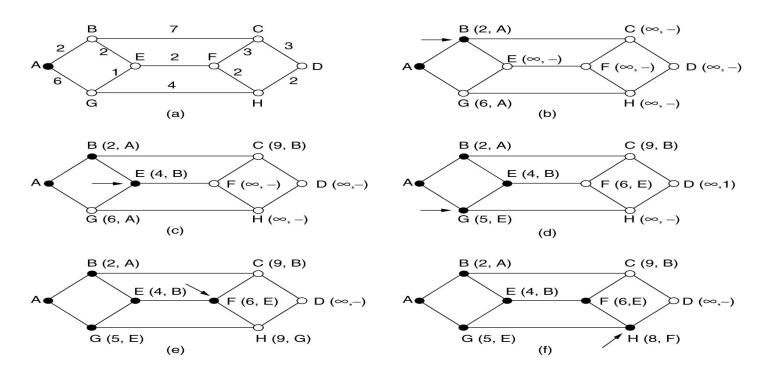


Figure 5.10 – Reference [1]



- Link state algorithm
 - Solves the count to infinity problem
 - Information received from all the other routers instead of just the neighbouring routers.
- Flooding algorithm
 - Used by each router to send information to all the other routers
 - Every packet received by a router is sent to all the neighbouring routers
 - Maybe selective (e.g. sent to all the other routers except the one from which it was received).

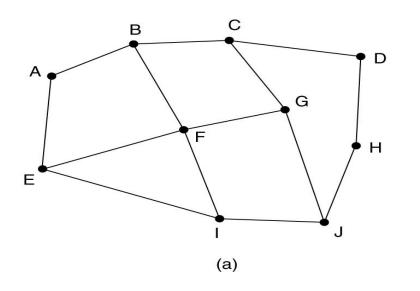
Shortest path algorithm (i.e. Djikstra algorithm)

- Rooted in graph theory

Fiugre 5.7 - Reference [1]

- Border Gateway Protocol (BGP)
 - Routing across autonomous systems
 - Additional requirement
 - Business model / political considerations
 - » Traffic from a given source AS should not transit by in a given Ass to reach a given destination AS
 - » Business model
 - » Political issues
 - Design choice to address the new requirement
 - Configurable policies on each router

- Border Gateway Protocol (BGP)
 - Three types of autonomous systems
 - 1. Stub networks
 - Only 1 connection in the graph
 - No possibility to carry transit traffic
 - 2. Multi-connected networks
 - May be used to carry transit traffic (if they wish)
 - 3. Transit networks (e.g. backbones)
 - Willing to carry traffic
 - » For pay
 - » Eventual restrictions



- Border Gateway Protocol (BGP)
 - Key features
 - Distance vector algorithm
 - Restrictions in graph topology
 - » No possibility of count to infinity
 - Shortest path algorithm
 - Paths that do not respect configured policies are excluded even if they are the shortest
 - Authenticated exchanges

Routing in Internet

• Border Gateway Protocol (BGP)

Information F receives from its neighbors about D

From B: "I use BCD" From G: "I use GCD" From I: "I use IFGCD" From E: "I use EFGCD"

(b)

Figure 5.67 - Reference [1]

References

- 1. A. Tanenbaum, Computer Networks, Fourth Edition, Prentice Hall, 2003 (Introduction)
- 2. M. Tatipamula and P. Grossetete, IPv6 Integration and Co-existence Strategies for Next Generation Networks, IEEE Communications Magazine, January 2004
- 3. A. Salkintzis, editor, Mobile Internet Enabling Technologies and Services, Chapter 5, CRC Press, 2004

