
CONCORDIA

1

VHDL, HOW IT WORKS

Simulating the passage of time in discrete steps is called discrete

time simulation.

VHDL uses discrete time event driven simulation, that is if a

signal value changes, that change is considered an event that has

to be processed to find out the effect of this change on the other

signals. Events occur at discrete times and signals are updated

during next discrete time intervals.

Once an events occur then a list of events to be changed are

updated accordingly and are changed in rounds of discrete time.

So in each round the list that are newly scheduled events are

processed and a new list of events are generated or scheduled.

So simulation goes in rounds of discrete time until all lists

contents are processed and there is no more scheduled events.

Each signal assignment is processed once at the beginning of

simulation.

CONCORDIA

• EVENTs are queued up.

• EVENTs are ordered in time

• Simulation moves from “EVENT” to “EVENT”

• The events queue is open ended as new events occur

they are scheduled and old events are removed from

the queue and saved in history file

• Addition and deletion of “EVENTs” is possible as a

result of current event

• Each “SIGNAL” has a driver that maintains time and

value of recent “EVENT”

• You may check the time, value and event time by their

attributes

Signal_1’last_event

Signal_1’last value

Signal_1’last active

Discrete Time Simulation and EVEVTs

CONCORDIA

A δ delay is a small delay that separates events occurring in the same

simulation cycle but within the simulation time to represent events

occurring in 0 time.

Signals are data objects that can be assigned a time series of “value,

time” for the data object.

Signal values are always scheduled in a future time.

Signal_1 <= a and b after 5ns;

This statement directs the driver of Signal_1 to generate a “Value,

Time” pair to be scheduled at 5 ns.

S2 <= ‘1’ after 5 ns;

S3 <= not Signal_1 after 6ns;

The events queue keeps track of scheduled signal changes

Time

Value

CONCORDIA

4

R S Qt+1

0 0 tq

0 1 1

1 0 0

1 1 —

R

S
Q

Q
0

0

0

1

R=S=0 Q=0. Q’=1

R S Qt+1

0 0 tq

0 1 1

1 0 0

1 1 —

R

S
Q

Q

R=0 S=0 Q=0 Q’=1 Initial Values

ThenS is set to 1

0

1 0

0

0 1

1

0
δ

δ

δ

With zero time delay

process

(R,S,Q,Q’)

begin

Q <= R nor Q’

Q’ <=S nor Q

end process

0 δ →2δ 3δ

R 0 0 0 0

S 0 → 1 1 1 1

Q 0 1 0 1

Q’ 1 0 0 0

1

CONCORDIA

δ0 2δ 3δ

S

0

1

S 1

Q 1

Q’ 1

δ
δ
δ

Q 0 2δ Q 1 3δ

Event Queue

Process suspended

waiting for change in

signals

Signal value scheduled

time

t1

Simulation time step

Infinitesmall

time delay

step

CONCORDIA

6

library ieee;

use ieee.std_logic_1164.all;

entity Full_Adder is

-- generic (TS : TIME := 0.11 ns; TC : TIME := 0.1 ns);

port (X, Y, Cin: in std_logic; Cout, Sum: out std_logic);

end Full_Adder;

architecture EVENTS_N of Full_Adder is

begin

Sum <= X xor Y xor Cin after 0.11 ns ;

Cout <= (X and Y) or (X and Cin) or (Y and Cin) after 0.1 ns;

end EVENT_N;

New event on signal

X
New Event on

Signal Y

New event on signal Cin

Event on Cin changes Sum

CONCORDIA

At the start, assume To=0 time, the processes that have a sensitivity
list are activated, Each signal is assigned a driver and their value
and their future time of activation is recorded.
when all processes are evaluated and suspended then the
simulation time move to T1. The next time step.
Simulation stops when Tc, current time is equal TIME’HIGH.

During simulation each active signal is updated and new “value ,
time” is calculated. all other signals effected are also updated.
New updates will be then effected during the next simulation cycle.
Events occurring as a results of these changes are further affected in
the next simulation cycle until no further events are scheduled or
time has reached TIME’HIGH
(When using 64-bit signed integers the maximum value is 263-1 = 9223372036854775807 = 9.22x1018.

This indicates that time values within 1 femtosecond to 3 hours range can be covered, this is sufficient for

majority of applications.

CONCORDIA

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

Dx
Clk

Clr

y
2

y
1

y
0

Events are infinite, maybe stopped by conditional statement

statement or Tc =Time HIGH

CONCORDIA

9

In this mode such as process clause, the assignments are carried out sequentially. This

means that the assignments are executed in order of appearance one after the other.

Therefore the order in which they appear is important.

What happens if new assignments are added when previous transactions are not yet carried

out. In such situations the driver of the signal will look at all the transactions placed on the

signal and decides if the new transaction that is scheduled as a new event overwrites other

events or will it be queued up.

Example:

architecture Implementation of Sequential_event is

signal connect_1 STD-logic <= ‘U’;

begin

process

begin

connect_1 <= ‘1’ after 14 ns; -- line 1

connect_1 <= ‘0’ after 3 ns ; --line 2

wait;

end process;

end Implementation; -- In this case line 2 will overwrite line 1

CONCORDIA

10

Process, Procedures, Functions are sequential VHDL.

All time based behavior in VHDL is defined in terms of the process statement.

Process statements is made up of two parts

The Declarative Part

Functions

Procedures

Type, subtype

Constant, Variable

File,

Alias, Attribute,

Use clause

group

The Statement Part

Wait, if, case, loop,

Variable, & signal assignment

Exit, return, next, null

Procedure call,

Assertion

report

continued

CONCORDIA

11

- Process statement defines the timing behavior in VHDL.

- A process is composed of two main parts:

 Declarative part:

Procedure, function, type, subtype, constant, variable, file,

alias, attribute, use clause, group.

 Statement part :

Wait, variable / signal assignment, if, exit, procedure call /

return, case, assertion, report, loop, next, null.

Process
--Declarative part
Begin
-- Statement part
end process;

Goes back to
beginning of
process

continued

CONCORDIA

12

- The execution of the process follows the same pattern as a hardware execution.

Process starts at the beginning of the simulation by executing series of signal

transitions brought in by the series of inputs. The process stops itself at the end

of the simulation.

- Process starts with the declaration part and then sets up the initial values. The

style of the process execution is sequential i.e statements are executed top to

bottom. After the execution of the last line of the process, the control shifts

back to the first line in the process. So, the process is virtually like a infinite

do loop.

- Process is activated through change in input and then the process reacts by

producing an output. Process can also be activated by the change in its sensitivity

list. Sensitivity list is a very useful statement for defining process activation or

suspension based on the events occurring on signals on the sensitivity list.

CONCORDIA

13

All Processes in the architecture of an entity run concurrently and are active
at all times.

All assignments within the body of a process run sequentially.

A process gets executed when an event occurs on one of its signals on the
right hand side of signal assignment (Sensitive to these changes).

A process begins with the reserved word process and ends with the reserved
word end process.

Each process has a declarative and the statement part.

Only variables, files, or constant objects can be declared within the
declarative part.

Signals and Constants declared in the architecture that contains the process
are visible within the body of the process.

The statement part of the process is always active and is running at time zero
unless suspended by a wait statement (implicit or explicit) , a process runs
for ever.

Only sequential statement (if, Loop, case..) are allowed within the statement
part of a process.

Process NOTES

CONCORDIA

14

The process execution is different from a procedure. With
the procedure the execution stops once the statements
are executed. With process it goes back to the beginning
of the statements and repeats itself.

The process can be conditionally stopped or suspended by
its sensitivity list.

The process is activated whenever an event occurs on its
sensitivity list and whenever the last statement is
executed then the process gets suspended (still alive)
waiting for a change in one or more of the sensitivity list.

Each Process is activated at least once at the beginning
of the process, independent of the sensitivity list.

Process NOTES

CONCORDIA

15

Optional

Optional- Process example

Process_label : process (sensivity list…..) is

------------- Declaration Part

begin

-------------- Statement Part

end process Process_label;

CONCORDIA

16

Process:

The most common and useful parts in a process is the wait statements:

[I] wait until clk = 1 ; -- waits for clk = 1

[II] process(x,y) --Process with x, y in its sensitivity list, process(clk,reset)
[III] wait on x,y ; -- Sensitivity list in [II] can not be used with III .

[IV] wait for 10 ns ;

[IV] wait for 0 unit time ;

[V] wait ;

The wait statement is used to model delays, handshaking and

dependencies.

[I] --Suspends when condition is satisfied.

[II] --The process is suspended until an event on sensitivity list occurs.

[III] --process is suspended until an event on x,y occurs.

[IV] -- wait for the time period specified, when time is 0, then suspends

process for d

[V] Suspend the process for ever.

CONCORDIA

17

Proc2_counter: process

begin

wait until (clk =‘0’);

if (counter =7) then

count <= 0;

else

count <= count + 1;

end if;

end process Proc2_counter;

Proc3_print: process

variable L: Line;

begin

write (L, now);

write (L, string’(“count= ”));

write (count);

writeline (output,L);

wait for 1ns;

end process Proc3_print;

Counter increments

on negative edges of

clock and then

resets back to 0
library STD;

use STD.TEXTIO.all ;

entity counter_8 is

end counter_8;

architecture behavior of

counter_8 is

signal clk: Bit := ‘0’;

signal counter: Integer := 0 ;

begin

Proc1_clk: process

begin

wait for 10 ns;

clk <= not (clk);

if (now > 500 ns) then

wait;

end if;

end process

Proc1_clk;

library

to print

Delay of

10 ns

Stop after

500 ns

All processes are executed at the same time / Concurrent

Example taken from ASIC, By J.S. Smith

CONCORDIA

18

Example 1

process (x)

begin

a1 <= not x ;

end process;

Example 2

process

begin

a2 <= not x;

wait on x;

end process;

Example 3

process

begin

wait on x

a3 <= not x ;

end process;

Example 4

process

begin

wait until

x=‘1’;

a4 <= not x;

end process;

Example 5

process

begin

a5 <= not x ;

wait until x=‘1’ for

10 ns;

end process;

Example taken from reference 3

CONCORDIA

19

Example wait

10 20 30 40 50 60

x

a1
a2

a3

a

4a

5 10ns 20ns

Example 1

process (x)

begin

a1 <= not x

;

end process;

Example 2

process

begin

a2 <= not x;

wait on x;

end

process;

Example 3

process

begin

wait on x

a3 <= not x ;

end process;

Example 4

process

begin

wait until

x=‘1’;

a4 <= not x;

end process;

Example

process

begin

a5 <= not x ;

wait until x=‘1’

for 10 ns;

end process;

Example Ref. 3

CONCORDIA

20

Example of Process
 EX1: process(X)
 begin
 A1<=not X;
 end process;
 EX2: process
 begin
 A2<=not X;
 wait on X;
 end process;
 EX3: process
 begin
 wait on X;
 A3<=not X;
 end process;
 EX4: process
 begin
 wait until X='1';
 A4<=not X;
 end process;
 EX5: process
 begin
 A5<=not X;
 wait until X='1'

for 10 ns;
 end process;
 end ALGORITHM;

Taken from reference 3

CONCORDIA

21

. architecture behav of waitexample is

begin

p1:process(x)

begin

a1<= not x;

end process;

p2: process

begin

a2<= not x;

wait on x;

end process;

p3:process

begin

wait on x ;

a3<= not x;

end process;

p4:process

begin

wait until x='1';

a4<= not x;

end process;

p5: process

begin

a5<= not x;

wait until x='1' for 10ns;

end process;

end behav;

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.std_logic_unsigned.all;

entity waitexample is

port (x:in std_logic;

a1,a2,a3,a4,a5: out std_logic);

end waitexample;

CONCORDIA

22

Example (wait for) Waveform Generator

 library ieee;
 use ieee.std_logic_1164.all;
 entity example is
 port(A: out std_logic);
 end example;
 architecture ALGORITHM of example is
 signal X: std_logic;
 begin
 STIMULATOR : process
 begin
 X <= '0';
 wait for 20 ns;
 X <= '1';
 wait for 5 ns;
 X <= '0';
 wait for 20 ns;
 X <= '1';
 wait for 10 ns;
 X <= '0';
 wait for 20 ns;
 end process;

CONCORDIA

23

Loop:

[I] For loop: for j in 0 to 6 loop

[II] While loop: while j < 5 loop

Case:

[I] case S is

when ‘0’ => C <= X;

when ‘1’ => C <= Y

If statement:

if x= “01” then y <=“01” ;

elsif x=“11” then y <= “11” ; -- Can have numbers of elsif statements

else y <=“10” ;

end if;

Generate:

for generate: for j in 1 to n generate

if generate if j=1 generate

CONCORDIA

24

- Generate statement example

for i in m downto n generate

------------- Statement Part

end generate ;

-- VHDL 93 should contain a declarative part and begin

for i in m downto n generate

------------- Declaration Part

Begin

------------- Statement Part

end generate ;

CONCORDIA

25

The Generate statement as used in VHDL provides a powerful ability

to describe a regular or slightly irregular structures by automatic

component instantiation generation instead of manually writing each

component instantiation.

There are two kinds of generate statements:

- Iteration

- Conditional

The iteration statement is also known as for generate statement.

The conditional statement is also known as the if generate statement.

CONCORDIA

26

entity full_adder is

generic (T1: time := 0.11 ns; T2 : time := 0.1 ns);

port (A, B, Cin : in BIT; Cout, Sum : out BIT);

end full_adder ;

architecture behave of full_adder is

begin

Sum <= A xor B xor Cin after T1;

Cout <= (A and B) or (A and Cin) or (B and Cin) after T2;

end behave;

TIMINGS;

T1 (Input Sum) = 0.11 ns

T2 (Input Cout) = 0.1 ns +

A

B

Cin

Cout

Sum

CONCORDIA

27

entity full_adder8 is

port (X,Y : in BIT_VECTOR (7 downto 0);

Cin: in BIT; Cout: out BIT;

Sum : out BIT_VECTOR (7 downto 0));

end full_adder8 ;

architecture structure of full_adder8 is

component full_adder

port (A, B, Cin : in BIT; Cout, Sum : out BIT);

end component ;

signal D: BIT_VECTOR (7 downto 0);

begin

Levels: for i in 7 downto 0 generate

Lowbit: if i=0 generate

FA : full_adder port map (X(0), Y(0), Cin, D(0), Sum(0));

end generate ;

Otherbits : if i /= 0 generate

FA : full_adder port map (X(i), Y(i), D(i-1), D(i), Sum(i));

end generate ;

end generate;

end structure;

+
X(7)

Y(7)

+
X(5)

Y(5)

+
X(6)

Y(6)

+
X(0)

Y(0)

Cin

Sum(0)

Sum(5)

Sum(6)

Sum(7)

Cout

+
X

8 bits

Y

Cin

Cout

8 bits

Sum

CONCORDIA

28

a(0)

a(1)

a(2)

a(6)

a(7)

entity even_parity is

port(a: in BIT_VECTOR (7 downto 0)

out1: out BIT) ;

end even_parity;

architecture structural of even_parity is

signal sig1: BIT_VECTOR (1 to 6);

begin

for i in 0 to 6 generate

if i=0 generate -- continued on the right

sig1 <= a(i) xor a(i+1);

end generate; -- i=0 case

if (i >=1 and i <= 5) generate

sig1(i+1) <= sig1(i) xor a(i+1);

end generate; -- 1< i <5 case

if i=6 generate

out1 <= sig1(i) xor a (i+1);

end generate; -- i=6 case

end generate; end structural;

CONCORDIA

29

entity compare is

port(x,y, a_in, b_in: in BIT ;

a_out, b_out: out BIT) ;

end compare;

architecture behave of compare is

begin

a_out <= (((not y) and x and b_in) or a_in) ; -- By K-maps Optimization

b_out <= ((y and (not a) and (not a_in)) or b_in) ;-- By K-maps Optimization

end behavior;

Truth Table (bit by bit)

a b

0 0 x=y

0 1 x<y

1 0 x>y

1 1 Don’t Care

Compare

a_out

b_out

a_in

b_in

x y

CONCORDIA

30

entity compare_8 is

port(x,y: in BIT_VECTOR (7 downto 0) ;

a_in: in BIT_VECTOR (1 downto 0);

a_out: out BIT_VECTOR (1 downto 0));

end compare_8;

architecture behave of compare_8 is

begin

component compare is

port(x,y, a_in, b_in: in BIT ;

a_out, b_out: out BIT) ;

end component;

signal s1, s2: BIT_VECTOR(7 downto 1);

begin

for i in 7 downto 0 generate

if (i=7) generate

comp7: compare port map (x(i), y(i), a_in(1),

a_in(0), s1(i), s2(i));

end generate; -- First bit case

if (i<= 6 and i>= 1) generate

compx: compare port map (x(i), y(i)

s1(i+1), s2(i+1) s1(i), s2(i));

if (i=0) generate

comp0: port map (x(i), y(i),s1(i+1)

s2(i+1), a_out(1), a_out(0);

end generate; -- Normal Case

end generate; -- End Case

end behave;

a_out(1)

a_out(0)

a_in(1)

a_in(0)

x(7) y(7) x(6) y(6) x(0) y(0)

compare comparecompare

CONCORDIA

31

Style 1

process (clk)

begin

if clk’event and clk =‘1’ then

a<=x;

end if ;

end process;

Style 2

process

begin

if clk =‘1’ then

a <=x;

end if;

end process;

Style 3

process (clk)

begin

if clk’event and clk =‘1’

and clk’last_value =‘0’ then

a <=x;

end if ;

end process;

.Style 4

process (clk)

begin

wait until prising(clk);

a <=x;

end process;

-- Not valid for asynchronous reset

Not supported by Synopsys

Activated by ‘0’ to ‘1’

event on clk

-- signal clk: std_logic :=‘0’ ;

Use rising_edge()

and falling_edge()

functions instead of

(clk'event and clk='1')

statements in your

designs.

Prising (clk) and

Pfalling(clk)

CONCORDIA

32

Scenario 1
process

begin

wait for 10 ns;

a1<= a1 + 1;

a2<= a1 + 1;

end process;

Scenario 2

process

begin

variable a1, a2: integer ;

wait for 10 ns;

a1 := a1 + 1;

a2 := a1 + 1;

end process;

Time a1 a2 a1 a2

0 0 0 0 0

10 0 0 1 2

10 + δ 1 1 1 2

20 1 1 2 3

20 + δ 2 2 2 3

30 2 2 3 4

30 + δ 3 3 3 4

signal variable

-- a1,a2 defined as signals

CONCORDIA

33

– Predefined for one-dimensional array of type Bit or Boolean

 SLL , SRL.

– Fill in type' LEFT or type’RIGHT (‘0’or False)

 SLA

– Fill in right most bit

 SRA .

– Sign extension

 ROL , ROR

CONCORDIA

34

Shift Left Arithmetic

Shift Right Arithmetic

Shift Left Logical

Shift Right Logical

Rotate Left Logical

Rotate Right Logical

“1110” sla 1 = “1100”

“0111” sla 1 = “1111”

“1100” sra 1 = “1110”

“1100” sra -1 = “1000”

“1100” sll 2 = “0000”

“1101” sll 3 = “1000”

“1100” srl 2 = “0011”

“1101” srl 3 = “0001”

“1100” rol 2 = “0011”

“1100” rol -1 = “0110”

“1100” ror 2 = “0011”

“1100” ror -1 = “1001”

Binary test values

CONCORDIA

35

If & Case Sequential StatementIf & Case

When & With Concurrent Assignments

CONCORDIA

36

case name is

when choice 1 => statement;

when choice 2 => statement;

when choice 3 => statement;

when choice 4 => statement;

when choice n => statement;

end case ;

-- Case example

-- val, a, b, c, d are type

integer

case val is

when 1 => a:= b;

when 2 => a:= 0;

when 3 => c:= d;

when others => null;

end case ;

CONCORDIA

37

entity 3bit_counter is

port (clk: in BIT;

state: out BIT_VECTOR(2 downto 0));

end 3bit_counter;

architecture behave of 3bit_counter is

begin

process

variable current_state: BIT_VECTOR(2 downto 0) :=“111”;

begin

case current_state is

when “000” => current_state := “001”;

when “001” => current_state := “010”;

when “010” => current_state := “011”;

when “011” => current_state := “100”;

when “100” => current_state := “101”;

when “101” => current_state := “110”;

when “110” => current_state := “111”;

end case ;

state <= current_state after 10 ns ;

wait until (clk=‘1’) ;

end process; end behave ;

000

111

001

010

011

100110

101

S0

S1

S3

S2

S6

S5 S4

S7

CONCORDIA

38

Data_out

entity mux_4 is

port (in1, in2, in3, in4: in BIT;

s: in BIT_VECTOR (1 downto 0);

Data_out: out BIT);

end mux_4;

architecture behave of mux_4 is

begin

with s select

Data_out <= in1 when “00”

in2 when “01”

in3 when “10”

in4 when “ 11”;

end behave ;

S1,S0

in1
in2
in3
in4

CONCORDIA

39

-- Buffer Example

process (x,y)

begin

if x =‘0’ then

output <= ‘Z’

-- High impedance state

else

output <= y;

end if;

end process;

-- “AND” example

process (clk,x1,x2)

begin

if clk =‘1’ and clk’event then

if x1 =‘0’ or x2=‘0’ then

z <= ‘0’ else

z <= ‘1’;

-- clocked “AND” gate example

end if;

end if;

end process;

output

x

y
clk

x1

x2

z
AND

z

CONCORDIA

40

-- Multiplexer Example

entity MUX is

port (x1, x2, sel: in std_logic;

z : out std_logic);

end MUX;

architecture top of MUX is

begin

z <= x1 when sel = '1' else x2;

end top;

- With-else form a conditional concurrent assignment statement

z

sel

X1

x2

CONCORDIA

41

-- Sequential Assignment

process (control)

begin

case control is

when “00” => out_1 <= in1;

when “01” => out_1 <= in2;

when “10” => out_1 <= in3;

when “11” => out_1 <= in4;

end case;

end process;

-- Concurrent Assignment

with control select

Out_1 <= in1 when “00”

in2 when “01”

in3 when “10”

in4 when “11”;

end behavior ;
Out_1

control

in1
in2
in3
in4

CONCORDIA

42

-- There are 3 iterative loops in VHDL

 Simple Loop

 For Loop

 While Loop

-- The exit statement is a sequential statement which is

associated with the loops

-- For the for loop the loop index is incremented

--and for

-- a while loop the condition is always checked

CONCORDIA

43

a1: process

variable x: integer :=0;

variable y: integer :=0;

Begin

outerloop: loop

x := x+1;

y := 30;

innerloop: loop

if y < = (4*x) then

exit innerloop;

end if;

y:= y-x;

end loop innerloop;

exit loop outerloop when x>10;

end loop outerloop;

wait;

end process;

Exit statement

Normal end

Loop statement

CONCORDIA

44

-- While/for Loop Example

a1: process

variable x: integer :=0;

begin

outerloop: for y in 1 to 20 loop

x := 30;

innerloop: while x >= (5*y) loop

x := x-y ;

end loop innerloop;

end loop outerloop;

wait;

end process;

Normal end

Loop statement

Constraint on

while loop

Iterative

for loop

CONCORDIA

45

-- Simple loop

i:=0; Less than

/equal

loop

exit when f(i) /=‘0’ or i<=100 loop

f(i) := (3 * i) ;

i := i + 1;

end loop;

-- While loop

i:=0;

while ((f(i) /=‘0’) and (i<=100))

loop

f(i) := (3 * i) ;

i := i + 1;

end loop;

Conditional statement is checked by the constraint on while

and by exit on the simple loop

Less than

/equal

CONCORDIA

46

Next syntax: next [loop label] [when condition] ;

- Next statement is used in a loop to cause the next iteration.

- Without the label next statement applies to the innermost enclosing loop.

- Loop label is conditional.

-- EXAMPLE: Counting the number of zeros

number_zeros := 0 ;

for i in 0 to 31 loop

next when temp1(i) /= ‘0’ ;

number_zeros:= number_zeros + 1 ;

end loop ;

CONCORDIA

47

Assert syntax: [label:] assert Boolean_condition [report string]

[sensitivity name] ;

- Assert statement is used by the programmer to encode constraints in the code.

- The constraints are checked during simulation and if the constraint conditions are

not satisfied, message is sent to terminal. The severity of the message can be

set by the programmer. Assert can also be used for debugging of the code. The

report can give the programmer indication of the location of program error.

- Predefined sensitivity names are: NOTE, WARNING, ERROR, FAILURE.

Default sensitivity for assert is ERROR

-- Assert Example

assert (expected_output = actual_output)

report “ actual and expected outputs don’t match ”

severity Error ;

CONCORDIA

48

-- Assert example, door opens when z =‘1’

entity door_open is

port (key1, key2: in std_logic;

z : out std_logic);

end door_open;

architecture top of door_open is

begin

if key1 = ‘1’ or key2 =‘1’ then

z <= ‘1’ ;

end if ;

assert not(key1=‘0’ and key2=‘0’)

report “ both keys are wrong, door remains closed ”

severity error ;

end top;

CONCORDIA

49

Null statement is used when there is nothing to do and hence its

execution has no effect.

signal: z: BIT := ‘0’;

case x is

when 0 => z <=‘0’ ;

when 1 => z <=‘1’ ;

when others => Null; -- Program does not do anything here

end case;

CONCORDIA

50

-- Generic example, OR_ gate

entity OR_2 is

generic (prop_delay: time);

port (x, y: in std_logic;

z : out std_logic);

end OR_2;

architecture top of or_2 is

begin

z <= x or y after prop_delay ;

end top;

component and_2

generic (prop_delay : time);

port (x,y: in BIT; z: out BIT);

end component ;

o1: OR_2

generic map (prop_delay => 5 ns)
port map (x =>x, y=>y, z=> z);

Propagation delay for entities

can be written in a general

manner and exact value

put during their instantiation

CONCORDIA

51

- Functions and procedures can be declared globally, so that they are used

throughout the design, or locally within the declarative region of an

architecture, block, process, or another subprogram.

- For the subprogram that will be used throughout the design, the

subprogram declaration in an external package will have the syntax:

use work.asim_package.asim_global_function;

entity asim_design is

begin

End asim_design;

package asim_package is

function asim_global_function(...)

return BIT;

end asim_package;

package body asim_package is

function asim_global_function(...)

return bit is

begin

end asim_global_function;

end asim_package;

CONCORDIA

Synthesis Steps with VHDL

Analysis: Static behavior, that checks for syntax and semantics

Elaboration: Creates ports, signals, architecture body, flattening

the design (Can get a schematic). Eventually a flat collection of

gates, FFs, processors, other units connected with signal nets.

Simulation: Discrete even driven simulation following the events

to final steady state and final input to output transformation.

Targeting: Selecting an FPGA to be downloaded. Selection of

optimization criterion

CONCORDIA

53

- Type conversion functions are written using unconstrained integers. Therefore,

cannot be synthesized. In a synthesizable design, an arbitrary width type

should not be used. The solution is to use the conversion functions provided by

the synthesis vendor or the IEEE 1076.3 signed or unsigned types.

- The wait statement is also not synthesizable.

- Floating Point numbers are usually not synthesizable.

-Time usually is ignored and placed with real values once device is tagetted

CONCORDIA

54

- Is a VHDL feature that permits the extraction of additional

information for an object such as signal, variable or type.

- Attributes also allow the access to additional information that may be

needed in synthesis.

There are 2 classes of attributes:

 Pre-defined (defined inside 1076 STANDARD)

 Introduced by the programmer or tool supplier

Pre-defined Attributes:

Five kinds: Value, Function, Signal, Type or Range

Example:

wait until clk=‘1’ and clk’event and clk’ last_value =‘0’ ;

Not a reserved word BUT pre-defined in the

1076 package

CONCORDIA

55

- Pos (value) – To return the position number of a type value

--Example

type state_type is (Init, Hold, Strobe, Read, Idle) ;

variable P : INTEGER := state_type'pos (Read);

-- Value of P is 3

- Val (value) – To return the position number of a type value

--Example

variable X : state_type := state_type' Val (2);

-- X has the value of Strobe

- Succ (value) – Return the value to the position after the given

type value

--Example

variable Y : state_type := state_type'succ (Init);

-- Y has the value of Hold

-- Other functions: Pred (value) Leftof (value) Rightof (value)

CONCORDIA

56

- Left (value) – To return the leftmost element index of a given type

--Example

type BIT_ARRAY is ARRAY (1 to 5) of BIT;

variable M: INTEGER := BIT_ARRAY' Left;

-- Value of M is 1

- Right (value) – To return the rightmost element index of a given type

- High (value) – Return the upper bound of a given scalar type

--Example

type BIT_ARRAY is ARRAY (-15 to 15) of BIT;

variable M: INTEGER := BIT_ARRAY' High;

-- M has a value of 15

- Low (value) – Return the lower bound of a given scalar type

- Length (value) – Return the length of an array

type BIT_ARRAY is ARRAY (0 to 31) of BIT;

variable N: INTEGER := BIT_ARRAY' length;

-- Value of N is 32

CONCORDIA

57

-- Example to show the value attributes in action

signal sum : BIT_VECTOR (7 downto 0) ;

sum`Left = 7

sum`Right = 0

sum`High = 7

sum`Low = 0

sum`Range = 7 downto 0

sum`REVERSE_RANGE = 0 to 7

sum`Length = 8

CONCORDIA

58

- Event – Returns a true value if the signal had an event in current simulation time

--Example

process (Rst, clk)

begin

if Rst =‘1’ then

M <= ‘0’;

elsif clk = ‘1’ and clk’event then -- On look out for the clock rising edge

M <= N;

end if;

end process ;

- Active – Returns true if any event (scheduled) occurs in current simulation

process (Rst, clk)

variable A,E : BOOLEAN ;

begin

M <= N after 10 ns

A:= M’Active; -- A = true

E := M’Event; -- E = false

end process ;

CONCORDIA

59

- Last_event – Return the time elapsed since the previous event occurring

process

variable T : time;

begin

P <= Q after 5 ns;

wait 10 ns;

M <= ‘0’;

T := P’last_event; -- T gets the value of 5 ns

end process ;

- Last_value – Return the value of the signal prior to the last event

process

variable T2 : BIT;

begin

P <= ‘1’ ;

wait 10 ns;

P <= ‘0’;

wait 10 ns

T2 : = P’last_value; -- T2 gets a value of ‘1’

end process;

CONCORDIA

60

- Last_active– Return the time elapsed since the last scheduled event of the

signal

-- Example

process

variable T : time;

begin

P <= Q after 30ns;

wait 10 ns;

T := P’last_active; -- T gets the value of 10 ns

end process ;

CONCORDIA

61

- Delayed (time)

– Creates a delayed signal that is identical in waveform to the attribute

applied signal.

- Stable (time)

– Creates a signal of type BOOLEAN that is true when the signal is stable

(without any events) for some period of time.

- Quiet (time)

– Creates a signal of type BOOLEAN that is true when the signal has no

scheduled events for some period of time.

- Transaction (time)

– Creates a signal of type BIT that toggles its value when an actual event

or transaction occurs on the signal.

CONCORDIA

62

 PC based packages for VHDL

 ActiveHDL

http://www.aldec.com/products/active-hdl/

Please visit this site for window based VHDL they have a demo that you can be downloadedThe tool is called ActiveHDL.

 Xilinx:

www.xilinx.com/ise/logic_design_prod/webpack.htm

 VHDL Simili

http://www.symphonyeda.com/products.htm. There's a free version for students, but
you can only simulate 10 waveforms at the same time. There is also a 30 day trial for the standard/professional edition
which does not have this limit. It is very good and

 Aldec's Active-HDL EDA tool and free educational resources

http://www.aldec.com/downloads

http://www.aldec.com/products/active-hdl/
http://www.xilinx.com/ise/logic_design_prod/webpack.htm
http://www.symphonyeda.com/products.htm
http://www.aldec.com/downloads

CONCORDIA

63

In VHDL simulation when no delay is prescribed for the signal transformation

then some time delay must finish before the signal assignment is carried out and

the signal takes its new value. Generally delays are 3 types:

1)Transport delay (propagation delay), 2)Inertia delay(propagation + pulse

width) and 3) Delta delay. Although the first two types are well defined the third

is ambiguous.

In VHDL Simulation everything within a process happens simultaneously.

However if two or more signals are assigned to the same target in a process then

the final assignment takes precedence. To do this within the same simulation

cycle, the value of the signal does not change immediately, rather is remembered

and used in the next delta cycle. So the Delta delay is a fictions quantum delay for

the purpose of simulation only. Within the same simulation time, when all the

processes are completed then the signal changes value and the next delta cycle

takes effect. When all signals are processed by the succeeding delta cycles then

the simulation cycle advances. The delta delay is the default delay when no delay

is specified.

Explanation of Delta Delay

CONCORDIA

64

Functions and procedures in VHDL commonly referred to as

subprograms,

are directly analogous to functions and procedures in a high-level

programming language such as Pascal or C/C++.

Subprograms are very useful for separating segments of VHDL that are

commonly used. They can be defined locally (e.g inside architecture), or

they can be placed in a package and used globally anywhere in the

design.

Subprograms are quite similar to processes in VHDL. Any statement

that can be entered in a VHDL process can also be entered in a function

or procedure, with the exception of a wait statement (since a

subprogram executes once each time it is called and cannot be

suspended while executing).

CONCORDIA

65

- A procedure is a subprogram that has an argument list consisting of inputs and

outputs, and no return value.

- It allows the programmer to control the scheduling of simulation without the

overhead of defining several separate design entities.

Procedure Syntax:

procedure procedure_name (parameter_list) is

[variable declaration]

[constant declaration]

[type declaration]

[use clause]

begin

sequential statements
end procedure_name;

Procedure Call: procedure_name (association list);

CONCORDIA

66

-- Procedure Example, and_ gate

procedure and_2 (a,b: in BIT; c: out BIT); is

begin

if a=‘1’ and b=‘1’ then

c <=‘1’;

else

c<=‘0’;

end if;

end and_2 ;

Procedure can have parameters

of the mode in, inout, and out.

CONCORDIA

67

- A function is a subprogram that has only inputs in its argument list, and has a

return value.

- Can only take parameters of mode in. They are useful for modeling of

combinational logic.

Function Syntax:

function function_name (parameter_list)

return type_name is

[variable declaration]

[constant declaration]

[type declaration]

[use clause]

begin

[sequential statements]

return expression;

[sequential statements]

end function_name ;

Function Call: function_name (parameter);

CONCORDIA

68

-- Function Example, and_ gate

function and_func (a,b: in BIT) return BIT is

begin

if a=‘1’ and b=‘1’ then

return ‘1’;

else

return ‘0’;

end if;

end and_func ;

Function return type is

specified here

CONCORDIA

69

-- Convert an integer to a unsigned STD_ULOGIC_VECTOR, from std_logic_arith.all

function CONV_UNSIGNED(ARG: INTEGER; SIZE: INTEGER) return UNSIGNED is

variable result: UNSIGNED(SIZE-1 downto 0);

variable temp: integer;

Begin

temp := ARG;

for i in 0 to SIZE-1 loop

if (temp mod 2) = 1 then

result(i) := '1';

else

result(i) := '0';

end if;

if temp > 0 then

temp := temp / 2;

else

temp := (temp - 1) / 2;

end if;

end loop;

return result;

end;

