Concordia '¥:/ University

“lecture #8

Inthis lecture we will cover the following material:

The standard package,
The std_logic_1164

e Objects & data Types (Signals, Variables,
Constants, Literals, Character)
e Types and Subtypes (Scalar & Composite types).

s Concordia Departme nt of Electrical

and Computer Engineering

+ library Clauses ~ ~

- A library clause declares a name that denotes a library. The name can be any legal

identifier.

- A library clause can declare more than one library name by declaring all the
library names separated by comma.

- Examples for user defined libraries:

library Designs; -- Declaration for the Designs library
use Designs.all; -- Use statement grants visibility of declarations inside the library
--Examples for predefined libraries
- Every design assumes the following 2 statement:
library STD;
use STD.STANDARD.all; -- Package STANDARD inside library STD
-Every design assumes “ Library WORK” clause

University

-In VHDL there are no arithmetic operators for types that require bit
operation.

- Most VHDL Simulators provide arithmetic packages to perform arithmetic
operations using STD_LOGIC_1164 types.

- Some companies provide many math packages such as floating point.
- Some synthesis tool provide special software that maps some functions such
as adders, subtractors, multipliers, registers, counters etc. to ASIC library
cells.
- Most synthesis companies nowadays provide component packages for a
variety of cells such as power and ground pads, 1/O buffers, clock driver, 3-
state pads etc.

This is usually done by 2 stages first technology-independent codes are
generated and then the components are mapped to primitives for technology

dependent libraries after synthesis.
3

STANDARD PACKA

v
|

GJEJ Concordia \¥
IGE

-- the types declared in the standard package are used similar to the way
that the reserved words are used
package subset STANDARD is
type BOOLEAN is (FALSE, TRUE);
type BITis ('0","17);
type SEVERITY_LEVEL is (NOTE, WARNING, ERROR, FAILURE);
subtype NATURAL is INTEGER range 0 to INTEGER’ HIGH,;
subtype Positive is INTEGER range 1 to INTGER’ HIGH,;
type BIT_VECTOR is array (Natural range <>) of BIT;
type STRING is array (Positive range <>) of CHARACTER,;
subtype DELAY _LENGTH is TIME range 0 fs to TIME” HIGH;
-- A STRING array must have a positive index.
-- The type TIME is declared in the STANDARD package as:
type TIME is range implementation_defined
Units fs;
ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;

ms =1000 us;
sec = 1000 ms;

end units;

end subset STANDARD;

University

Concordia ‘o5 University

T l0_L0Gie_164...

- VHDL does not have a in build logic value system. The STANDARD
package pre-defines the type BIT with two logic values of ‘0’ and ‘1’ .

- Normally additional values of ‘X’ (unknown) and ‘Z’ (high impendence)
are also needed.

- CMOS circuits require more levels and strengths.

- The STD_LOGIC_1164 package includes functions to perform logical,
shift, resolution and conversion functions.
To access this package, the following statements have to be included:
library IEEE;
use IEEE.STD LOGIC 1164.all;

- The STD_LOGIC_1164 package contains definitions for a nine-value
logic system.

- The STD_ULOGIC is defined in STD_LOGIC_1164.

University

" STJDJJ-OJM@ Iﬂjﬁjﬂ;}: concordia (0

—

package subset STD 1164 is

_ _ This type is used in most
-- defines the 9-vlaue logic system

type STD_ULOGIC s structural designs
(‘u’, - Un-initialized
X7, -- Forcing unknown
07, -- Forcing zero
17, -- Forcing one

=~
-

Z -- High Impedance
"W, -- Weak Impedance
L7, -- Weak zero
"H’, -- Weak 1
) -- Don "t Care

type STD_ULOGIC _VECTOR is array (Natural range <>) of STD_ULOGIC;

function resolved (S: STD_ULOGIC_VECTOR) return STD_ULOGIC;

subtype STD _LOGIC is resolved STD_ULOGIC;

type STD_LOGIC _VECTOR is array(NATURAL range <>) of STD_LOGIC;

function rising_edge (signal S: STD_ULOGIC) return BOOLEAN,;
falling_edge (signal S: STD_ULOGIC) return BOOLEAN;

end subset STD 1164;

Concordia ¥

" STD_LOGIC Example

library IEEE;
use IEEE.STD LOGIC 1164.all;
entity control_buffer is

port (A,OE : in std_logic;

Y: out std_logic);

end control_buffer;
architecture archl of control buffer is
signal n: std_logic; - - Internal Signal Declaration
begin

n<=notA;

University

type

See new
_logic value

Y <=nwhen OE = ‘0" else ‘Z'4—

end archl;

University

Use Clause — °
o YUV & D

-- Place the library & use statements in front every entity
library IEEE;

use IEEE.STD_LOGIC _1164.all;

entity package 1

Makes the entity visible
end package 1, to logic type used

library IEEE;
use IEEE.STD_LOGIC 1164.all;

entity NO_1
o Not essential
end 1

use IEEE.STD_LOGIC_1164.aII;}

Architecture structure of No 1 is

end structure
use IEEE.STD LOGIC 1164.all;
entity NO 2

end NO_2; 8

Concordia ‘o5 University

siynal Declarations

signal identifier (Label) : subtype (bus/register) [<= expression]
- Asignal has a history of values. It has a past, present and future value
-The expression specifies the initial value of the signal at simulation time.
The expression is evaluated at each elaboration of the signal.
- The default initial value for a signal of a scalar type T is T left.
- Signal can be only declared in concurrent descriptions.

signal Sig_1: Bit;

signal Address_Bus: BIT_VECTOR (31 downto 0);
signal Bus: tristate;

signal A, B, C : BIT_VECTOR (0 to 2);

signal A: BIT<=‘0
\ Initialized

University

ki Global sﬂg}“ﬂﬂSﬂ concorta (9

-- to make a signal global, declare it in a package and make the
--package visible to the entities that requires it

package GLOBAL_1 is

signal M: std_logic;

end GLOBAL 1: M can be used here
- - without declaration

use WORK.GLOBAL_1. M ;
architecture DATA of is
begin

cessing a global signal

end DATA; 10

Concordia \;¥5)

Example of Signal assignment

A Concurrent signal assignment assigns a new value
to the target signal whenever any of the signals on
the right hand side change:

Example:

University

architecture SIG_ASSIGN of Half Adder is
begin

SUM <= A xor B

CARRY <= A and B
end SIG_ASSIGN;

11

-

Concordia '¥:/ University

e f vl assrment with aelay

A signal assignment may have a delay specified:

architecture DIFFERENT of SIG is

constant A_Delay : time := 20ns;
begin

SUM <= A xor B after A-Delay -1 ns;

CARRY <= A and B after 9 ns;
end DIFFERENT;
NOTE: Synthesis tools usually treat a signal assigned
with a concurrent statement as combinational logic.
Delays are ignored.

12

~ Variahle Declarations ~~*

- Avariable has only one value (current).
- The expression specifies the initial value. The expression Is
evaluated at each elaboration of the variable.
- The default initial value for a scalar type variable T is T left.
- It Is a sequential statement and used inside processes, procedures
and functions.
-The value of the right hand side is copied immediately
variable A: BIT := ‘0°;
variable R20 : Integer,
variable CHA : character := Z7;
variable BV: Bit Vector (0 to 3) :
variable volts : real := 2.67;
Variables are synthesizeable if their type Is acceptable by the
synthesis tools. 13

‘0101 %

Concordia '¥:/ University

variahle/Signal conuersion

Delay can not be assigned to variables
Assignments may be made from signals to
variables and vice-versa, but types have to match:
process (A, B, C, DIFF)
variable Z : integer range 0 to 7;
begin
if DIFF = '1' then
Z:=B;
else
Z:=C;
end if;
Y<=A*B+ Z; --Y has been declared as signal

end process;

University

Concordia \;¥5)

= ConstantDeclarations

-- Example
constant my weight: weight := 65 Kg ;

constant period : TIME := 20ns ;

constant Pai : real := 3.14 ;

constant All_Ones: vector 4 := “1111" ;

-- All subtypes are pre-defined.
Constants can be synthesized if their type is acceptable by the synthesis
tool.

15

University

J

au W 'y)11 I % Concordia
=+ Literais Examples

--Literals are the values given to VHDL objects
--Examples of decimal literals

11:=150000; or 12:=150 000; Or 13:=15¢e4; .. All are the same
R1:=1500.0; or R2:=1 500.0; or R3:-1.5e3;

--examples of based literals

--The base can be either hexadecimal, octal or binary

For example Integer literal of value 255 can be expressed as:

In binary as 2#1111 1111 or

In Octal as O#773# or

In Hexadecimal as 16 # FF#

--Bit string-literals

X“FFE” = B”1111-1111-1110"

0“765” =B”111 110 101"

(Where X is hexadecimal, O is Octal)

16

Concordia '¥:/ University

" Character Strin mlﬂt@mlﬁ

Character literals
Between two °’ (comas) characters:
‘B, ‘b, ‘?7

String literals

- Text inside two (double comas) characters:

- A string must be fitting on a single line.

- Concatenation operation is used to combine strings longer
than one line.

“When First line is full then we can continue be placingan “ &”

fk

“ we have continued on the second line ”

17

-

Concordia ¥

Tunes, Subtypes

University

-Scalar Types
> Single numerical value }

v

Integer, real, physical
» Enumerated J Py

- Composite Types
»> Arrays } > Collection of values
» Records ‘\

U \ Of the same type
> Pointers Of different types

- File Types

» Objects that contain a sequence of values for reference

18

Concordia ‘¥ University

" Types, Subtypes: DJ@GMawﬁaltltojn

- A type Is defined by a set of values and a set of
actions/operations.

Example: type Nibble value is range 0 to 15 ;

- A further constraint might be applied to values of a

given type.
Then a subtype Is a type along with the added constraint.
Example: subtype COUNT is INTEGER range 1 to 255;
subtype SEVEN_BIT is COUNT range 1to 127 ;

» Constraint is checked during each simulation.

19

Predefined Enumeration types

128 ASCII characters
-BIT
(07, 1)
- BOOLEAN
(FALSE, TRUE)
- SEVERITY_LEVEL
(NOTE, WARNING, ERROR, FAILURE)

--Examples of Enumerations types are:

type Transition is (H,L,U,2) ;

type STATE is (S1,52,S3) ;

type logic_strength is (W,S,D,) ;

-- Enumeration literals must be characters and in ascending range

Concordia '¥:/ University

Integer Tynes

-- The only pre-defined integer is INTEGER.

-- Example

type WEIGHT is INTEGER range 300 downto 30 ;
subtype HEAVY is WEIGHT _ range 100 to 250 ;
subtype LIGHT is WEIGHT range 60 downto 40 ;

-- Pre-defined

-- Integer Range: =+ 23!
-- Natural Range: 0 to 23!
-- Positive Range: 1 to 23!

21

Concordia '¥:/ University

Hoating Point Types

-- ~ (Approx.) Real Numbers
-- Contains a range constraint

-

-- Example
Type WEIGHT is range 0.5 to 300.0 ;
Subtype VERY-LIGHT is WEIGHT range 1.0 to 10.0;

-- Pre-defined

-- Real numbers are in Package STANDARD

-- Guaranteed to include the range

-- Natural Range: - 1E 3! to + 1E 3!

-- Real data types supports: =, /=, <=, >, >=, +, -, abs, *, /

22

Concordia ‘o5 University

Physical Tunes

-1t is predefined in Package STANDARD
> Includestherange-231+1to+231-1
» All delays declared in VHDL must be of the type TIME

type TIME is range - 1E 18 to + 1E 18;
units fs;
ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms =1000 u;
sec = 1000 ms;
min = 60 sec;
hr = 3600 sec;
end units;
-- fs femto second (10-° seconds) is the base unit

-- Values can be real or integer
23

University

-- Example: User Defined Capacitance
type Capacitance is range 0 to 2** 31 -1 ;
Units aF;

fF = 1000 aF;

pF = 1000 fF;

nF = 1000 pF;

uF = 1000 nF;

mF = 1000 uF;
end units;

-- Example: User Defined Voltage
type Voltage is range 0 to 2** 31 -1 ;
Units pV;

nV = 1000 pV;

uV = 1000 nV;

mV = 1000 uV;

V =1000 mV;,

end units; 24

University

Y Array Types ™%

- Array Is collection of objects/values of similar type.

Example

type array 1 is array (15 downto 0) of std_ulogic;

This array declaration defines array 1 that contains 16 elements. The

Indexes are decremented from15 to O.

An Array can be put under a decrement or increment mode with
(ydowntox) or (xtoy).

- Multi-dimensional Array
Arrays can have multiple indices:
type Dimension_2 is array (0 to 7, 10 downto 0) of byte;

25

Concordia ‘o5 University

Array type.

Array Type can be declared as Constrained or Unconstrained
Constrained Array:

array (discrete range) of element subtype indication

Unconstrained Array:
array (subtype name range) of element subtype indication

-- Example: Array Types

type word is array (7 downto 0) of BIT ;

type memory is array (natural range <>) of word ;
variable ROM: memory (0 to 2 ** 10) ;

variable Address: BIT VECTOR (0to N) ;
signal mem1: word,

26

Concordla ¥/ University

" Constrained and unconstrained n\rr@wjme..

entity example_array

end example_array;
architecture Behave of example_array is
type word is array (0 to 15) of BIT ;
type byte is array (NATURAL range 7 downto 0) of BIT ;
type unconstrained is array (NATURAL range <>) of BIT ;
begin
-- < > |s for the range that is not defined at the time.
-- Range can be declared later when using the array, for
example:
subtype array a is unconstrained (4 downto 0) ;

27

Concordia ‘o5 University

Bit Yectlor

- Is a single dimensional vector, each element is of type BIT.

- Bit Vector Array is pre-defined in the STANDARD Package.

- Bit Vector is really a template for the elements of an array. Example
COEN: out BIT_VECTOR (7 downto 0) ;

yd ™~~~

COEN <= B“10101010" ;

Subtype Indication Indices (Length) of the array

COEN—/ |1 0 1 0 1 0 1 0

signal destiny : BIT_VECTOR (7 downto 0)
destiny <= B“1110-0011" ;

destiny— 1 1 1 0 0 0 1 1

28

Concordia ‘\(¥:/ University

Pre-lefined Array Tyne

-- Example

subtype NATURAL is INTEGER range 0 to 2** 31 ;

type BIT VECTOR array (NATURAL range < >) of BIT;

type POSITIVE i1s INTEGER range 1 to 2** 31 ;

29

o BEHAVIORAL_Concurrent verses Algorithm

Concurrent entity normally infer logic design

architecture CONCURRENT of Half _Adder is
begin

SUM<= X XORY;

CARRY<= X AND Y;

End CONCURRENT;

architecture BEHAVIORAL of Half_Adder is
-- signal X,Y : integer; --X and Yare read as integers
--signal SUM,CARRY: BIT; in the interface
begin
process (X, Y)
variable Z : integer;
begin
SUM<="'0; CARRY<='0";
Z:=X+Y,;
if Z =1 then SUM <="1";
elsif Z=2 then CARRY<="1";
end if;
end process;
end BEHAVIORAL;

Concordia \: University

architecture ALGORITHMIC of
Half _Adder is
begin
process (X,Y)
begin
SUM<= X XOR Y;
CARRY<= X AND Y;
end process;
End ALGORITHMIC;

30

Test Bench

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY Half_Adder_Con_Tb IS Concordia University
END Half_Adder_Con_Tb;
ARCHITECTURE CONCURRENT OF Half_Adder_Con_Tb IS
COMPONENT Half_Adder_Con
PORT
(XY : IN std_logic;
SUM,CARRY : OUT std_logic);
END COMPONENT;
signal X : std_logic :="'0";
signal Y : std_logic :='0";
signal SUM : std_logic;
signal CARRY : std_logic;
BEGIN
-- Instantiate the Unit Under Test (UUT)
uut: Half_Adder_Con PORT MAP (
X =>X,
Y =>Y,
SUM => SUM,
CARRY=>CARRY);
-- Stimulus process
stim_proc: process
begin
X<='0";
Y<='0"
wait for 10 ns;
X<='0"
Y<:I1I;
wait for 10 ns;
X<="1";
Y<='0",
wait for 10 ns;
X<=1; 31

Y<="1"

Concordia ¥

University

Simulation of Half Adder

[] Fle Edt View Smulation Window Layout Help

¥ ADDX® o oo D=5 x|l A2)L2 232 R x=2r § : B b pE|00us ¥ Sa (3 Redaunch
20.000 ns|

o> MR (TR

SR pOO N

32

Concordia ¥/ University

A good site for VHDL Syntax + Examples

http://www.ics.uci.edu/~jmoorkan/vhdIiref/

33

