
Components/Entities

1

• It is a method of describing entities that are used often.
• Components are like the sockets that will be connected on a

breadboard.

• Entities are like the chips that go into the sockets.

• An entity is a real interface of the design with multiple
architecture.

• Components have no real architecture parts and has only
interface and connection.

• You can write your design without a component by direct
instantiation as you put the chips directly on the breadboard and
connect them.

2

component OR_3

port (A,B,C: in bit;

Z: out bit);

end component ;

Reserved Words

 Declarations of Components and Entities are similar

 Components are virtual design entities

entity OR_3 is

port (A,B,C: in bit;

Z: out bit);

end OR_3;

architecture MODEL of OR_3 is

begin

Z <= A or B or C;

end MODEL;

Reserved

Words

3

-- Connection of Components
A1: AND_2 port map (A_IN, B_IN, TEMP1);

A2: AND_2 port map(A_IN, C_IN, TEMP2);

A3: AND_2 port map(B_IN, C_IN, TEMP3);

O1: OR_3 port map(TEMP1, TEMP2,

TEMP3, COUT);

Reserved wordName of Component

Signal mapping or wiring:

By Positional Association Connectivity

Label

(identifier)

Component Instantiation Statements

Every component instantiation statement creates an instance of

a declared component

4

-- Entity

-- Architecture

-- Declaration Part

begin

-- Connection of Components with Named Association

A1: AND_2 port map (A =>A_IN, B =>B_IN , Z =>TEMP1);

A2: AND_2 port map (A =>A_IN, Z =>TEMP2 , B =>C_IN);

A3: AND_2 port map (A =>B_IN, B =>C_IN, Z =>TEMP3);

O1: OR_3 port map (A =>TEMP1, B =>TEMP2, C =>TEMP3, Z=> C_out);

end structure;

Name of the

Architecture

Signal Assignments

Position not

Important

Port map clause

5

• A hierarchical structure description is a powerful

modeling construct in VHDL as it provides the mechanism

to decompose the description of a large, complex digital

system into smaller pieces.

• Structural hierarchies reflecting convenient functional &

physical digital system decompositions is a good

modeling practice.

Next few slides show how hierarchy is built in a Full Adder

by using Half Adders and the Half Adder by using other

components.

6

-- First Component
entity xor_2 is
port (A,B: in BIT; Z: out BIT);
end xor_2;
architecture Data Flow of xor_2 is
begin
Z <= (not A and B) or (A and not(B));
end Data Flow;

-- Second Component
entity and_2 is
port (A,B: in BIT; Z: out BIT);
end and_2;
architecture Data Flow of and_2 is
begin
Z <= A and B;
end Data Flow;

xor_2

AB

Z

AB
Z

and_2

7

-- Interface
entity H_ADDER is
port (A,B: in BIT; SUM, CRY: out BIT);
end H_ADDER;
-- Body
architecture STRUCTURAL of H_ADDER is

component xor_2
port (A,B : in BIT; Z: out BIT);
end component;

component and_2
port (A,B : in BIT; Z: out BIT);
end component;

begin
X1: xor_2 port map (A,B,SUM);
A1: and_2 port map (A,B, CRY);
end STRUCTURAL;

CRY

SUM

B

A

and_2

xor_2

8

-- Interface
entity FULL_ADDER is
port (A,B,C: in BIT; SUM, CRY: out BIT);
end FULL_ADDER;
-- Body
architecture STRUCTURAL of F_ADDER is

component H_Adder
port (X,Y : in BIT; Z1,Z2: out BIT);
end component;

component or_2
port (X,Y : in BIT; Z: out BIT);
end component;

signal SUM1, CRY1, CRY2: BIT;

begin
HA1: H_ADDER port map (A, B, SUM1, CRY1);
HA2: H_ADDER port map (SUM1, C, SUM, CRY2);
O_2: OR_2 port map (CRY1, CRY2, CRY);

end STRUCTURAL;

SUM

CRY

SUM1

CRY1

CRY2

H_ADDER H_ADDER

or_2

A

B

C

9

library ieee;

use ieee.std_logic_1164.all;

entity Adder16 is
port (A, B: in std_logic_vector(15 downto 0);

Cin: in std_logic; Cout: out std_logic;

Sum: out std_logic_vector(15 downto 0));

end Adder16;

architecture Ripple of Adder16 is
component Full_Adder

port (X, Y, Cin: in std_logic; Cout, Sum: out std_logic);

end component;

signal C: std_logic_vector(15 downto 0);

-- Before instantiating the components you must tell the VHDL compiler

--which components to use. We use the for-use construct for this purpose

for FA0 : Full_Adder use entity WORK.Full_Adder(Concurrent);

begin

FA0 : Full_Adder port map (A(0),B(0),Cin,C(0),Sum(0));

Stages: for i in 15 downto 1 generate

B1 :block
for FA : Full_Adder use entity WORK.Full_Adder(Concurrent);

begin

FA: Full_Adder port map

(A(i),B(i),C(i-1),C(i),Sum(i));

end block ;

end generate;

Cout <= C(15);

end Ripple;

10

A = FFFF, B = FFFF, Cin =0 Sum = FFFE, Cout = 1;
A = FFFF, B = FFFF, Cin = 1 Sum = FFFF, Cout = 1;
A = 0F0F, B = F0F0, Cin = 0  Sum = FFFF, Cout = 0;
A = 0F0F, B = F0F0, Cin = 1  Sum = 0000, Cout = 1;

Waveform 16-bit Adder

11

- In real life when building a pc board,usually the same components are often

picked up from a storage area and placed on the board. VHDL structural

description often use the same set of components. Repeating all the

constructs to describe all the components is very tedious. The problem is

solved by introducing the package concept.

- A package serves as a central place for frequently used utilities, such as

component declarations.

- The needed component declaration is only written ONCE in a package.

- The declaration may then be accessed by any VHDL model by simply

accessing the package.

12

- The use statement placed just before the architecture gives access

to all the declarations in the package:

use WORK.ASIM_LIB.all

The statement above gives access to all component declarations in

ASIM_LIB located in library WORK.

- The use statement allows the package ASIM_LIB to export its declarations.

- A package declaration is a design unit and can be analyzed by itself.

- It is important to have standard naming convention for components, type

and signal names. Standard naming conventions can be enforced by

declaring the commonly used names within a package.

Packages are the mechanism to share objects among
different design units

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_textio.all;
use IEEE.std_logic_arith.all;
use IEEE.numeric_bit.all;
use IEEE.numeric_std.all;
use IEEE.std_logic_signed.all;
use IEEE.std_logic_unsigned.all;
use IEEE.math_real.all;
use IEEE.math_complex.all;

SOME OF THE IEEE STD PACKAGE

The package textio provides user input/output
Types defined include: line, text, side,

width
Functions defined include: readline, read,

writeline write endline.

The package std_logic_arith provides numerical
computation

The package std_logic_1164 provides enhanced
signal types
Types defined include: std_ulogic,

std_ulogic_vector, std_logic,
std_logic_vector

15

-- Package Description
package gates is
-- Declare all the gates
component and_2 is
port (A,B: in BIT; Z: out BIT);
end component;

component xor_2 is
port (A,B: in BIT; Z: out BIT);
end component;

component or_2 is
port (A,B: in BIT; Z: out BIT);
end component;

end gates;

Header

Utilities to be exported

Package Declaration

Reserved

Word

Name of Package

Closes Package

declaration

Declared
Components

16

CRY

SUM

B

A

and_2

xor_2

-- Interface
entity HALF_ADDER is
port (A,B: in BIT; SUM, CRY: out BIT);
end HALF_ADDER;

-- Body
-- Use components in Package gates

use WORK.gates.all ;

architecture structural of HALF_ADDER is
begin

X1: xor_2 port map (A,B,SUM);
A1: and_2 port map (A,B, CRY);

end structural;

17

package Asim_1 is

declaration

declaration

end Asim_1;

use WORK.Asim_1.all

package Asim_2 is

declaration

declaration

end Asim_2;

use WORK.Asim_2.all

--Body

Architecture……….

declaration

end Asim_2;

Can use all

Declaration of

Asim_1

Can use all

Declaration of

Asim_2

(No access to

Asim_1)

A use clause can be placed

before an entity declaration,

giving the design entity and

associated architecture access

to the package contents.

A use clause can also be

placed before a package

declaration giving a package

access to another package.

Thus an hierarchy of packages

is constructed in which the

declarations of one package

may be based upon

declarations in other packages.

18

- In VHDL everything must be declared before it can be used. A

declaration defines what a name represents.

- The scoping rules define the name space:

 Anything declared within the declaration part of an architecture

may be used only within the architecture body.

 Anything declared within a design entity declaration may be used

only within the enclosing entity declaration and associated architecture.

Anything declared within a package declaration may be used within the

enclosing package and also by the use statement in the other parts of

VHDL

19

-- You may select only an element Selected of a Package

use WORK.gates.and_2;

Architecture structural of access is

begin
A1: and_2 port map (………..);

…………..
……………

OR1:
end access;

Gives acces only
to and_2

20

-- Example of Nested Spaces
package signals is
signal Z: bit := ‘0’;
end signals;

use WORK.signals.all ;
entity example is
…………
………..
end example;

architecture structural of example is
signal Z: BIT :=‘1’;
………..
……….
end structural;

Z will take
the value
of 1

21

-- Example
entity CARRY_GENERATE is
port (A_IN, B_IN, C_IN : in BIT; C_OUT : out BIT);
end CARRY_GENERATE;

architecture structural of CARRY_GENERATE is
signal temp1, temp2, temp3;
begin
-- Connect Logic Operators using
-- Direct Design Entity Instantiation

A1: entity WORK.LOGIC.and_2 port map (A_IN, B_IN, TEMP1);
A2: entity WORK.LOGIC.and_2 port map (A_IN, C_IN, TEMP2);
A3: entity WORK.LOGIC.and_2 port map (B_IN, C_IN, TEMP3);
O1: entity WORK.LOGIC.or_3 port map (TEMP1, TEMP2, TEMP3, C_OUT);

end structural;

See Direct
referencing

22

Architecture

• Structural

• Behavioral

Data Flow

Algorithmic

• Mixed

We will use a full adder design to show

the different architectural styles

Structural Modeling
It IMPLICITLY defines the input/output functions by describing components

and their interconnections. It treats the system to be described as a collection

of gates and other components built on hierarchy that are interconnected to

perform a certain function.

Structural modeling mimic actual hardware design, like a schematic diagram

that has the components and their interconnections. It is by the use of defined

components (cells or micros entities etc.) over and over again and their

interconnection.

All used component have to be defined earlier, usually in a package.

Structural modeling uses hierarchy to reduces modeling and the design

complexity.

At the lowest hierarchy component are given in a behavioral model, using the

basic logic operators such as AND, OR etc.

Within the architecture body declare:

All components to be used.

All signals that are used to interconnect the components.

**Use labels for each instance of the component used for clear identification.

DATA FLOW Modeling
This kind of modeling describes how data moves through the system.

The data flow model makes use of concurrent statements that are executed in parallel as

soon as data arrives at the input.

With Concurrency , when a change occurs on the right hand side of any statement, all

other statements that get affected are executed in the same time sample. This is the

nature of the event driven simulation of VHDL. This is to say that, the order in which

the statements are written does not matter and has no bearing on the execution of the

statements. Concurrent statements are executed in parallel.

Concurrent design usually has no hierarchy and is a flat design.

Example:
LEVEL1 : block
begin
Temp1 <= A xor not B after 2 ns;
Temp2 <= B xor not A after 2 ns;
Temp3 <= Temp1 or Temp2 after 5ns;
end
end Block LEVEL1;

Behavioral Modeling

It is the highest level of abstraction that describes a system in
terms of what the system does, or how the output is related to
the input signals.
Algorithmic architecture is composed of one or more concurrent
processors. The statements inside each process execute
sequentially .
It could be of many forms such as Boolean expression or Register
Transfer etc.
example:

The house alarm will sound if the Alarm, is activated and one of
the inside doors D1,D2 or D3 is opened.

Alarm sounds = Alarm_on and (D1_open or D2_open or
D3_open)

26

A_IN

B_IN

A_IN

C_IN

B_IN

C_IN

A1

A2

A3

TEMP1

TEMP2

TEMP3

OR1

C_OUT

LEVEL1 : block
begin
Temp1 <= A xor not B after 2 ns;
Temp2 <= B xor not A after 2 ns;
Temp3 <= Temp1 or Temp2 after 5
ns;
end
end Block LEVEL1;

process (x)
begin
if a1 = 1 then a1 <= not x after 5 ns;
end process;

Concurrent
Constructs

Behavioral
Construct

Schematic “Structural Constructs”
Physical View

Block

The use of block statement is for organizational purpose only and it does

not effect the simulation.

Each block must be assigned a label placed just before the block reserved

word.

Example:

LEVEL1 : block
begin
Temp1 <= A xor not B after 2 ns;
Temp2 <= B xor not A after 2 ns;
Temp3 <= Temp1 or Temp2 after 5 ns;
end
end Block LEVEL1;

28

architecture GATE_IMPLEMENTATION of FULL_ADDER is
Block
component or_gate port (A,B : in BIT; C: out BIT);
end component;
component and_gate port (A,B : in BIT; C: out BIT);
end component;
component xor_gate port (A,B : in BIT; C: out BIT);
end component;
-- Local Signal Declaration
signal S1, S2, S3: BIT;

begin
X1: xor_gate port map (A, B, S1);
X2: xor_gate port map (S1, CIN, SUM);
A1: and_gate port map (CIN, S1, S2);
A2: and_2 port map (A, B, S3);
O1: or_gate port map (S2, S3, COUT);
end Block;
end GATE_IMPLEMENTATION ;

SUM

COUT

S1

S3

S2

A

B

CIN

29

architecture DATA_FLOW_IMPLEMENTATION of FULL_ADDER is

block
signal S1, S2, S3: BIT;

begin
S1 <= A xor B;
SUM <= S1 xor CIN;
S2 <= A and B;
S3 <= S1 and CIN;
COUT <= S2 or S3;

end block;

end DATA_FLOW_IMPLEMENTATION;

30

architecture ALGORITHMIC_IMPLEMENTATION of FULL_ADDER is
block
begin

process (A,B,CIN)
variable S: BIT_VECTOR (1 to 3) := A & B & CIN;
variable COUNT: INTEGER range 0 to 3 :=0;
begin
for i:= 1 to 3 loop
if S(i) = ‘1’ then
COUNT := COUNT +1;
end if ;
end loop;
case COUNT is
when 0 => COUT <= ‘0’; SUM <= ‘0’;
when 1 => COUT <= ‘0’; SUM <= ‘1’;
when 2 => COUT <= ‘1’; SUM <= ‘0’;
when 3 => COUT <= ‘1’; SUM <= ‘1’;

end case; end process;
end block; end ALGORITHIC-IMPLEMENTATION;

31

architecture FUNCTIONAL_IMPLEMENTATION of FULL_ADDER is
use convert_pack.all -- Contains type conversion Functions

block
port (A,B,C: in INTEGER; S, CO: out INTEGER;
-- Type conversion between BIT and INTEGER is performed in ports

port map (X=> Bin_to_Int(A), Y=> Bin_to_Int(B), CIN=> Bin_to_Int(C),
INT_to_Bin (S) => SUM, INT_to_Bin (CO) => COUT);

process (A,B,C) -- Sensibility list of the process

variable TOTAL: INTEGER;

begin
TOTAL := A + B + C;
S <= TOTAL mod 2;
CO <= TOITAL / 2;
end Process;

end Block;
end FUNCTIONAL_IMPLEMENTATION;

32

architecture MIXED_IMPLEMENTATION of FULL_ADDER is

signal WIRE: BIT;
component XOR_G

port (X1, X2: in BIT; XO1: out BIT);
end component;
for all: XOR_G use XOR_GATE(BEHAVIORAL);

-- Selection of Component Bodies

begin

XOR1: XOR_G port map (X,Y,WIRE);
XOR2: XOR_G port map (WIRE,CIN,SUM);
COUT <= (WIRE and CIN) or (X and Y);

end MIXED_IMPLEMENTATION ;

SRUCTURAL

Data Flow

33

 THERE ARE VARIOUS SITES THAT YOU MAY TRY TO GET VHDl

 http://www.freedownloadscenter.com/Best/vhdl-tool-
free.html

 http://www.csee.umbc.edu/help/VHDL/#free

 ActiveHDL

http://www.aldec.com/products/active-hdl/
Please visit this site for window based VHDL they have a demo that you can be downloaded The tool is called ActiveHDL.

 Xilinx:

www.xilinx.com/ise/logic_design_prod/webpack.htm

 VHDL Simili

http://www.symphonyeda.com/products.htm. There's a free version for students, but
you can only simulate 10 waveforms at the same time. There is also a 30 day trial for the standard/professional edition
which does not have this limit. It is very good and

 Aldec's Active-HDL EDA tool and free educational resources

http://www.aldec.com/downloads

http://www.freedownloadscenter.com/Best/vhdl-tool-free.html
http://www.csee.umbc.edu/help/VHDL/#free
http://www.aldec.com/products/active-hdl/
http://www.xilinx.com/ise/logic_design_prod/webpack.htm
http://www.symphonyeda.com/products.htm
http://www.aldec.com/downloads

Environment set-up
Please go through the Tutorial, it is more upto date

 Login to any Linux machine in ENCS (H915)

 To write and debug and simulate VHDL/Verilog code you use

the Modelsim software using the following commands:

1. source /CMC/ENVIRONMENT/modelsim.env

2. vsim

--

 To synthesis your RTL design FPGA_Advantage

software using the following commands:

1. Source /CMC/ENVIRRONMENT/fpga_advantage.env

2. Precision

 One can login to any Linux server in encs from home (

please check with encs website or consult Ted to find

out wbout the server you are eligible to remotely login)

-in Linux OS use: ssh –Y login.encs.concordia.ca , then enter

your encs username and password

34

35

Environmental Set Up for Synopsys VHDL
Analyzer/Simulator

 For information on how to set up your environment for the VHDL
simulator please go to the following website:

 Remote login from windows OS:

 Download putty or SSH secure client from internet

 For graphical user interface you need to install a X-client
software like Xming.

 Follow the instruction in

http://www.encs.concordia.ca/helpdesk/howto/xserver.html

 Please go through the tutorials available in:
http://www.encs.concordia.ca/helpdesk/resource/tutorial.html

36

Test Bench

 To be able to test the circuit that you have designed
then you have to apply some test vectors.

 This task is achieved by writing a test bench.

Test_Bench

CircuitStimulus

37

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity and_2 is

Port (a : in bit;

b : in bit;

c : out bit);

end and_2;

architecture dataflow of and_2 is

begin

c <= a and b;

end dataflow;

Circuit : AND GATE

38

 library IEEE;
 use IEEE.STD_LOGIC_1164.ALL;
 use IEEE.STD_LOGIC_ARITH.ALL;
 use IEEE.STD_LOGIC_UNSIGNED.ALL;

 entity stim is
 Port (out_1 : out bit; out_2 : out bit);
 end stim;
 architecture Behavioral of stim is
 signal a, b : bit:='0';
 begin
 process
 begin
 --00
 out_2 <= '0';
 out_1 <= '0';
 wait for 10 ns;
 --01
 out_2 <= '1';
 out_1 <= '0';
 wait for 10 ns;
 --10
 out_2 <= '0';
 out_1 <= '1';
 wait for 10 ns;
 --11
 out_2 <= '1';
 out_1 <= '1';
 wait for 10 ns;
 end process; end Behavioral;

39

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity bench is

end bench;

architecture concurrent of bench is

component and_2 port (a, b : in bit; c : out bit);

end component;

component stim port (out_1, out_2 : out bit);

end component;

for inst_stim: stim use entity WORK.stim(behavioral);

for inst_and2: and_2 use entity WORK.and_2(dataflow);

signal x, y, z : bit:='0';

begin

inst_stim: stim port map (x, y);

inst_and2: and_2 port map (x, y, z);

end concurrent ;

40

Simulation results of
TestBench

