
1

LECTURE 6

In this lecture we will introduce:

• The VHDL Language and its benefits.

• The VHDL entity

• Concurrent and Sequential constructs

• Structural design.

• Hierarchy

• Packages

• Various architectures

• Examples

2

PC with C++ Application Implements Designs to Hardware

C-Based Hardware Design

•Design and simulate at system level using C-based programming language such as Handel-C

•Need libraries that provide interface drivers including audio and video packages

•Need FPGA prototyping board, with variety of interfaces

•Handel-C Language Reference Manual

web.pa.msu.edu/hep/d0/l2/Handel-C/Handel C.PDF

Chapter 9 is a reference for the complete Handel-C language syntax.

•Overview 5 1.4 Basic Concepts. This section deals with some of the basics behind the Handel-C

3

Design Kit Output Targets

Target a variety

of FPGA’s
Or convert Handel-C to:

VHDL

Verilog

EDIF

System C

The output of the design kit can be down loaded to a variety of FPGAs or

if you require some modification it can convert the Handel-C to other

Forms such as VHDL….

Yes, there are C to FPGA compilers. That is not a good way

to go for the design presently

C-to-hardware compiler (HLL synthesis), It exits but has

many performance drawbacks

Mentor Graphics, Handel-C

• Handel-C Synthesis Methodology - Mentor Graphics

www.mentor.com/products/fpga/handel-cCached

• DK Design Suite - Handel-C, synthesis with DK

Design Suite offers a software flow for

algorithm development, optimization and acceleration

in embedded systems.

4

5

Implementation is vendor

dependent

Design

Specification

Modeling the behavior

English Prose

Data Path

Transfer Function,

Boolean Equations,

Flow Graphs, Pseudo

Codes

Logic Design

Computational

Units,Registers,

Buses

Flip Flops, Gates,

Netlist

Transistors, Wires

Masks

Manufacturing

V

H

D

L

Netlist, ASCII text describing gates or library

modules and their interconnection

ASIC FPGA

6

VHDL Code of

the Design

Vendor’s Library

VHDL Code

of Test

Design

Verification

Simulation

Engine

Synthesis is the use of software packages to

automatically verify and translate the VHDL code

into a targeted device, using embedded optimising

methods and meeting all the design constraints.

7

Summit Visual Elite

VHDL Entry

&

Initial Simulation

ModelSim SE VHDL 5.75

Detailed Simulation using

Test Bench

Synplicity Synplify 7.0.3

Synthesis

Xilinx Design Manager

Place & Route

&

Programming File

Generation

Target Device

Xilinx Virtex XCV50

bit file/

mcs file

report

files

report

files

testbench

output

files

MS Excel

compare results with

expected

FPGA Design Flow

For Xilinx Virtex

XCV50

8

Verilog Example

// Description of a simple circuit .

module circuit_1 (A,B, C, x,y);

input A,B,C;

wire e;

output x,y;

and g1(e,A,B);

not g2 (x,C);

or g3(y,x,e);

endmodule;

g1

g2

A

B

C

y

e

x

9

//CMOS inverter
module inverter (OUT, IN);

input IN;

output OUT;

supply1 PWR;

supply0 GND;

pmos (OUT, PWR, IN); // (Drain, Source, Gate)

nmos (OUT, GND, IN); // (Drain, Source, Gate)

end module

GND

OUT

PW R

IN

10

For transmission gate the keyword cmos is used.
cmos (output, input, ncontrol, pcontrol); // general description.

For example for the transmission gate shown in the Figure below

cmos (Y,X,N,P);

x Y

N

P

11

The VHDL Language

• Introduced in 1985, standardized in 1987
modified in 1993.

• It is used mainly as a specification and
modeling language for digital systems .

• It is used as an intermediate form of design
entry for many different tools

• It is a simulation and verification language.

• It is a test-synthesis language

12

The VHDL Language

• VHDL is supported by DoD and most

manufacturers.

• Technology Portable

• It is not yet standardized for synthesis.

• It has major application in Rapid

prototyping

The VHDL Entity

13

• General Components that performs
specific function

• It can represent the whole system to be
designed or its boards, chips, logic gates
etc.

• It consists of 2 parts:

The interface

The Architecture

14

VHDL DESIGN UNITS

• Entity Declaration
Gives the interface view of the unit.

Implementation Independent

• Architecture

Describes the implementation(s) of the entity

• Package Declaration

Contains global information common to many design units.

• Configuration

Relates the design references to the designs saved in the
library

15

-Interface

entity OR_2 is

--Input/output ports

port

(A, B : in BIT;

Z : out BIT);

end OR_2 ;

--Body

architecture DATA_FLOW of OR_2 is

begin

Z <= A or B; -- a construct statement implementing the OR gate

end DATA_FLOW;

Interface

Body

BASIC CONSTRUCT
Interface is responsible for

defining the black box’s name,

input and output

Body is responsible for describing

the function that transforms the

inputs to the outputs

16

Entity Organization

Entity Interface

Identifier, Generic constants, Port, Local

types, signals……..

Architecture I

(could be structural)

Declarative Parts,

Local signals, constants, types

Concurrent statements

Architecture N

(could be behavioral)

Declarative Parts,

Local signals, constants, types

Concurrent statements

Implementation

Interface

17

Difference Between two Architectures

Architecture DATA_FLOW of

Half_Adder is

Begin

S<= A XOR B;

end DATA_FLOW;

Architecture Algorithmic of Half_Adder is

Process(A,B)

begin

if A=B then S=0; else

S=1;

end if;

end process;

end;

18

Tutorials at

http://www.encs.concordia.ca/helpdesk/resource/tut

orial.html

http://www.encs.concordia.ca/helpdesk/resource/tutorial.html

19

VHDL reserved keywords
•access

•after

•alias

•all

•and

•architecture

•array

•assert

•attribute

•begin

•abs

•block

•body

•buffer

•bus

•case

•component

•configuration

•constant

•disconnect

•downto

•else

•elsif

•end

•entity

•exit

•file

•for

•function

•generate

•generic

•guarded

•if

•in

•inout

•is

•label

•library

•linkage

•loop

•map

•mod

•new

•next

•nor

•not

•null

•of

•on

•open

•or

•others

•out

•package

•port

•procedure

•process

•range

•record

•register

•rem

•report

•return

•select

•severity

•signal

•subtype

•then

•to

•tansport

•type

•units

•until

•use

•variable

•wait

•when

•with

•xor

20

Additional reserved keywords in VHDL-93

•impure

•group

•inertia

•postponed

•pure

•literal

•reject

•rol

•ror

•shared

•sla

•sll

•sra

•srl

•unaffected

•xnor

All RESERVE WORDS ARE CASE INSENSETIVE

21

--List of reserved operators

=

/=

:=

<

<=

>

>=

+

-

*

/

**

&

Equality operator

Inequality operator

The assignment operator for variables

The “less than” operator

“less than or equal to” when used in an expression on scalar

types & array

The assignment operator

The “greater than” operator

The “greater than or equal to” operator

The addition operator

The subtraction operator

The multiplication operator

The division operator

The exponentiation operator

The concatenation operator

22

entity OR_2 is

-- Input/output ports

port

(A, B : in BIT;

Z : out BIT);

end OR_2 ;

keywords (reserved words)

the header

name of the design

(identifier)

Port declaration

type

optional

terminates statementsentity declaration

comment line

type

identifier

The Interface (connects the entity to its environment)

23

Identifiers
•Case insensitive

•Characters can only be:

•First character must be a letter

•Last character must not be an underscore

•No adjacent underscores

Extended identifiers
•Any length

•Must be delimited by \ \ leading & trailing backslashes

•All graphic characters

•Within backslashes any characters in any order can appear
(exception is backslash which has to appear in pair)

•Is case sensitive

•An extended identifier is different from any keyword or basic
identifier

• a – z

• A – Z

• 0 – 9

• _ (underscore)

24

Port declaration(provides communication channels between the entity and its environment)

port

(A, B : in BIT;

Z : out BIT);

Reserved word

Beginning of

Any legal identifier

Predefined types

Value of ‘0’ or ‘1’

Keywords can be

in

out

inout

linkage

buffer

Information

on direction

of flow

End of

Is a tri-state and bidirectional

Is similar to inout but is available within the

architecture and can be updated by one source only

25

Data Type Values Example

Bit

Bit_vector

Boolean

Integer

Real

Time

Character

String

‘1’, ‘0’

(array of bits)

True, False

-20, 0, 1, 5090…

200.0, -2.0E2

10 us, 7 ns, 150 ps

‘c’, ‘z’, ‘5’, ‘#’, etc.

(Array of characters)

Q <= ‘1’;

BYTE <= “00010101”;

flag <= True;

ACC <= ACC + 2;

C1 = V2 * 5.3;

output <= ‘0’ after 2 ns;

DataOut <= ‘Y’;

ADD <= “MEM” ;

--Fundamental Data Types

26

architecture DATA_FLOW of OR_2 is

begin

Z <= A or B ;

end DATA_FLOW ;

Name of the architecture
any legal identifier

Association of
architecture

headerheader

Statement
Part

Closes
architecture

optional

Body declaration (architecture)

The Body defines input out put relations

declaration
part of objects to
be used within the
block

27

Z <= A or B ; End of
assignment

Logical operator

Assignment
operator

Signal assignment statement

*** “Anytime the input signal A and or B changes
value the signal assignment statement executes
and computes a new value for the output signal.”
This is called “Signal Transformation.”

Other operators:
and

or

xor

xnor

nand

nor

not

The operators

28

-- Interface ………… 1

entity XOR_2 is ……………… 2

Port ……………… .3

(A,B : in BIT; Z : out BIT); …………… 4

end XOR_2; ……………… 5

-- Body ………… …6

architecture DATA_FLOW of XOR_2 is …7

signal Sig 1, Sig 2: BIT; ……… 8

begin ………………9

Sig 1 <= A and not B; …………… ..10

Sig 2 <= B and not A; ………………11

Z <=Sig1 or Sig 2; ……………12

end DATA_FLOW; ……………13

Signal

Declaration

Reserved

word

Concurrent

assignment

statement

Concurrency

29

Modeling method

Structural (A description of the entity by components instantiation where the structure is explicit)

such as gates and their interconnection

Behavioral Algorithmic (A description of the entity by sequential statements representing

behavior but no structural information)

Like adding two binary numbers 0001 +1010

Data Flow (A description of the entity by the use of concurrent statements to

represent behavior implying structure)

Like logic equation Z= A xor B

Mixed any mixture of behavioral and structural

30

Behavioral / Structural

Behavioral is easier to think about as it is similar to

writing software code.

It is based on the functionality of the blocks

It executes sequentially so it takes more time.

Structural is based on interconnecting tested

working components.

Data flow the assignment is based on logic

expressions

The difference is really in the process and signal

assignment/variable assignment/scheduling and the

delta function

31

MUX

A

B

C

D

CLK Control

Structural Synthesis

MUX

A

B

C

D

CLK Control

if t=0, then D<=0

else D<=DATA;

behavioral Synthesis

Behavior

representation

32

Configuration Statement

• It is used to bind the entity used with the

architecture that is desired.

• Example:

for all : OR_2 use entity OR_2 (data_Flow)

33

STD

Provides declarations for predefined

constructs in VHDL.

WORK

The working library into which design

units are presently being analyzed are stored.

(ie. design entities).

Libraries (Predefined)

34

Libraries

The design entities can be stored in libraries

Libraries and their storage and implementation are achieved outside VHDL. VHDL is

only the language that facilitates the usage of the libraries and its contents ie., the

design entities.

•Any VHDL entity that can be analyzed is a COMPLETE DESIGN ENTITY

•* analysis means checking the syntax and symantic of a design entity statically.

•* simulate means checking the behaviour of the modelled entity dynamically.

* There are two pre-defined libraries in VHDL:

STD The standard IEEE library that holds many predefined types such as BIT.

Many of these types are used almost like a reserved word because they are

already predefined in the STD library.

WORK This is the working library, where we store our currently analysed design

entities

35

Structural modeling is the description of set of interconnected components that

are previously defined, compiled and verified.

Real Life Design and Implementation

1) Design the board

2) Design the chips

3) Place sockets on the board

4) Put the chips in the socket

That is exactly how VHDL operates

1) Design an entity that is the board

2) Design the entities that are the chips

3) You have components that are the sockets

4) Design entities are put in the socket

A VHDL STRUCTURAL Model interconnects the instances of chip sockets

holding the chips.

Structural Modeling

36

A_IN

B_IN

A_IN

C_IN

B_IN

C_IN

A1

A2

A3

TEMP1

TEMP2

TEMP3

OR1
C_OUT

--Interface

entity CARRY is

port

(A_IN, B_IN, C_IN : in BIT;

C_OUT : out BIT);

end CARRY;

--Body

architecture STRUCTURAL of CARRY is

-Declaration of components

component AND_2 port (A, B : in BIT ; Z : out BIT); end component ;

component OR_3 port (A, B, C : in BIT ; Z : out BIT); end component;

--Declare Signals

signal TEMP1, TEMP2, TEMP3 : BIT ;

begin

-Connect Logic Operators to Describe Schematic

A1: AND_2 port map (A_IN, B_IN, TEMP1) ;

A2: AND_2 port map (A_IN, C_IN, TEMP2) ;

A3: AND_2 port map (B_IN, C_IN, TEMP3) ;

O3: OR_3 port map (TEMP1, TEMP2, TEMP3, C_OUT) ;

end STRUCTURAL ;

37

entity FULL_ADDER is

port (A_IN,B_IN,C_IN : in BIT;

SUM, CARRY : out BIT);

end FULL_ADDER;

architecture DATA_FLOW of FULL_ADDER is

signal S1,S2,S3: BIT;

begin

S1 <= A_IN xor B_IN;

SUM <= S1 xor C_IN;

S2 <= S1 and C_IN;

S3 <= A_IN and B_IN;

CARRY <= S2 or S3;

end DATA_FLOW;

DATA_FLOW CONSTRUCTS

38

AND Gate simulation

39

Passgate simulation

40

library ieee;

use ieee.std_logic_1164.all;

entity Full_Adder is

-- generic (TS : TIME := 0.11 ns; TC : TIME := 0.1 ns);

port (X, Y, Cin: in std_logic; Cout, Sum: out std_logic);

end Full_Adder;

architecture Concurrent of Full_Adder is

begin

Sum <= X xor Y xor Cin after 0.11 ns ;

Cout <= (X and Y) or (X and Cin) or (Y and Cin) after 0.11 ns;

end Concurrent;

What Synthesis Programs do ?

Synthesis programs are large packages that contain many algorithms for processing

the VHDL Code, which generally include :

Check the Syntax and Semantics of the Code

Deduce the logic and state elements

Optimize the technology independent functions (Boolean and State optimization)

Map the optimized structure to the target technology (Place and Route)

Evaluate the Structure performance (Timing, Power and Area)

Perform technology-dependent to obtain better final result.

It is important to note that there is a different synthesis paths

with different synthesis packages from different companies,

And that not everything that can be simulated can be synthesized.

You always have to refer to the synthesis packages to see the sequential

construct or the module that you have selected is it synthesizable or not.

Points to watch for

• The way the code is written will greatly affect the

size and speed of the synthesized circuit.

• For test bench, you may write unsenthesizable

structures to test your circuit.

• Always use hierarchy, regularity, modularity and

locality in your code.

• Insert comments to describe the variables and your

construct.

• Write: date, author, name of the entity in the first

line of your entity.

