
An Anomaly Detection System based on
Ensemble of Detectors with Effective Pruning

Techniques

Amirreza Soudi

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Electrical and Computer Engineering)

at

Concordia University

Montréal, Québec, Canada

January 2016

c© Amirreza Soudi, 2016

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis proposal prepared

By: Amirreza Soudi

Entitled: An Anomaly Detection System based on Ensemble of Detec-

tors with Effective Pruning Techniques

and submitted in partial fulfilment of the requirements for the degree of

Master of Applied Science (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Dr. Rabin Raut, Chair

Dr. Amr M. Youssef, Examiner

Dr. Otmane Ait Mohamed, Examiner

Dr. Abdelwahab Hamou-Lhadj, Supervisor

Approved by

Dr. W. E. Lynch,

Chair Department of Electrical and Computer Engineering

Dr. Amir Asif, Dean Faculty of Engineering and Computer Science

ABSTRACT

An Anomaly Detection System based on Ensemble of Detectors with

Effective Pruning Techniques

Amirreza Soudi

Anomaly detection systems are important tools for security. Unlike signature-based

systems, anomaly detection can be used to detect new attacks for which signatures

are now available.

To this end, anomaly detection techniques rely on machine learning techniques

to model the normal behaviour of the system. This model is used as a baseline for

the detection of anomalies during system operation.

The problem is that there is no one machine learning technique that can provide

good accuracy. What we need is to combine multiple techniques. This is because

ensemble methods have been used to improve the overall detection accuracy in tra-

ditional machine learning.

The combination consists of combining the outputs of several accurate and di-

verse models. To reduce the number of combination, and hence improve the efficiency

of combination, in this thesis, we propose PBC (Pruning Boolean Combination), an

efficient approach for selecting and combining anomaly detectors. PBC relies on

two novel pruning techniques that we have developed to prune redundant and triv-

ial detectors. Compared to existing work, PBC reduces significantly the number of

detectors to combine, while keeping similar accuracy. We show the effectiveness of

PBC when applying it to benchmarks data sets.

Much of the content of this thesis is adapted and expanded from a paper

published at the 2015 IEEE International Conference on Software Quality, Reliability

iii

and Security (QRS). QRS is a merger of the SERE conference (IEEE International

Conference on Software Security and Reliability) and the QSIC conference (IEEE

International Conference on Quality Software) [1].

iv

Dedicated to

My Family

v

ACKNOWLEDGEMENTS

I owe my deepest gratitude to my beloved family, whose boundless love and

continuous encouragement was unremitting source of inspiration for this work, spe-

cially my sister Afsoon who helped me a lot by all means in the past couple of years.

No words can express how grateful I am for your love and support and how much I

love and appreciate you.

My deepest gratitude is to my supervisor, Dr. Abdelwahab Hamou-Lhadj. I

have been amazingly fortunate to have a supervisor who gave me the freedom to

explore on my own, and at the same time the guidance to recover when my steps

faltered. His patience and support helped me overcome many crisis situations and

finish this thesis. I am grateful to him for holding me to a high research standard

and enforcing strict validations for each research result.

Beside I owe a dept of gratitude to my supervisor’s postdoctoral fellow, Dr.

Wael Khreich, who has been always there to listen and give advice. I am deeply

grateful to him for the long discussions that helped me sort out the technical details

of my work.

Many friends have helped me stay sane through these difficult years. I greatly

value their friendship and I deeply appreciate their belief in me. Special thanks to

Ali Sehizadeh, not only for helping me through my master, but also for being warm

hearted friends. I should have my special thank to my friends whose friendship going

back to my bachelor days, thank you to the supportive friend Afshin Moazami.

Special thanks to Elnaz Davoodi and Nassim Masoudifar, for encouraging me along

the way. I am also indebted to my friends, Yashar Zeighami, Masoud Karzand,

Pouya jabbari and Majid Laali for their support, comments and feedback.

vi

I would also like to deeply thank DRDC (Defence R&D Canada), Ericsson,

NSERC (Natural Sciences and Engineering Research Council of Canada), and the

Faculty of Engineering and Computer Science at Concordia University for their fi-

nancial support. This work would not have been possible without them.

Additionally, I would like to thank all members of the Software Behaviour Anal-

ysis (SBA) Research Lab at ECE, Concordia for their friendship and encouragement.

They brought the perfect atmosphere to combine work and life.

vii

TABLE OF CONTENTS

LIST OF FIGURES . x

LIST OF TABLES . xiii

1 Introduction 1

1.1 System Calls . 6

1.2 HMM-based Anomaly Detection using System Call Sequences 7

2 Detector Combination 10

2.1 Boolean Combination of Detectors in the ROC Space 10

2.2 Synthetic Data Set . 12

3 Pruning 28

3.1 Introduction . 28

3.2 Pruning Boolean Combination (PBC) Approach 31

3.2.1 Kappa Measure . 32

3.2.2 Distance Covariance (dCov) and Distance Correlation (dCor)

Measure . 34

3.2.3 MinMax-Kappa Pruning . 35

3.2.4 ROCCH-Kappa Pruning . 36

3.2.5 MinMax-, ROCCH- Pruning with dCor and dCov 37

3.2.6 Expected Value of Boolean Combination 37

3.3 Complexity Analysis . 42

4 Experiment and Results 47

4.1 Experiments on System Call Data set 47

4.2 Results (ADFA) . 49

4.3 Results (Canali) . 55

viii

4.4 Threats to Validity . 58

5 Conclusion 63

5.1 Future Research Opportunities . 64

ix

LIST OF FIGURES

2.1 Lithuanian Data Set . 13

2.2 Banana (Moon) Data Set . 13

2.3 Circle Data Set . 14

2.4 Linear detectors trained on the Lithuanian Data Set 15

2.5 Linear detectors trained on the Banana (Moon) Data Set 15

2.6 Linear detectors trained on the Circle Data Set 16

2.7 ROC comparison on Lithuanian data set before and after first round

of combination . 17

2.8 ROC comparison on Banana data set before and after first round of

combination . 17

2.9 ROC comparison on Circle data set before and after first round of

combination . 18

2.10 Some of best LDAs (Linear Discriminant Analysis) that can be trained

on the Lithuanian data set . 19

2.11 Selected LDA and their respective point compare to current ROC . . 20

2.12 Selected detectors and the respective combined point on the ROC curve 21

2.13 Some of best LDA (Linear Discriminant Analysis) that can be trained

on Banana data set . 22

2.14 Best potential selected detectors on Banana data set 23

2.15 Series of 2 selected LDA (Linear Discriminant Analysis) that can be

trained and combined on the Circle data set 24

2.16 Best potential selected detectors on the Circle data set 25

3.1 Different levels of combination or pruning: sensor level, feature level,

matching score level, and decision level [2]. 29

x

3.2 Selecting accurate detectors . 30

3.3 Selecting diverse detector compares to previously selected 31

3.7 Combination of classifier X and Y lead to C 39

3.8 expected value of all classifiers in the ROC space 41

3.4 Illustration of selected detectors (large blue circles) based on MinMax-

Kappa pruning technique. All remaining detectors (small black dots)

are pruned. 44

3.5 Illustration of selected detectors (large blue circles) based on ROCCH-

Kappa pruning technique. All remaining detectors (small black dots)

are pruned. 45

3.6 Illustration of the selected detectors for combination mapped onto the

ROC space (large blue circles). All other detectors (small black dots)

can be pruned. 46

4.1 One of the ROC curves results of 5-folds cross-validation of Boolean

combination on one fold and evaluated on four folds. The numbers

represent the crisp detectors selected for combination (by each tech-

nique) to achieve about the same operational point as denoted by the

large black circle . 50

4.2 The same ROC curves results of 5-folds cross-validation of Boolean

combination on one fold and evaluated on four folds that was used in

Figure 4.1 with other distance correlation metrics 51

4.3 One of the ROC curves results of 5-folds cross-validation of Boolean

combination on four folds and evaluated on one fold. 53

4.4 The same ROC curves results of 5-folds cross-validation of Boolean

combination on four folds and evaluated on one fold that was used in

fig. 4.3 with other distance correlation metrics. 54

xi

4.5 One of the ROC curves results of 5-folds cross-validation of Boolean

combination on four folds and evaluated on one fold on Canali. 56

4.6 The same ROC curves results of 5-folds cross-validation of Boolean

combination on one fold and evaluated on four folds that was used in

Figure 4.5 with other distance correlation metrics 57

xii

LIST OF TABLES

3.1 Contingency table between two detectors’ decisions 33

4.1 Average AUC values and their standard deviations over the 5FCV for

each techniques. Design on one fold and evaluated on four folds. . . 59

4.2 Comparison of pruning and combination time (seconds) and number

of Boolean operations required to achieve the final ROCCH during

the design phase, and the number of selected detectors during the

operational phase. All values are averaged over 5FCV. 60

4.3 Average AUC values and their standard deviations over the 5FCV for

each techniques. Design on four folds and evaluated on one fold. . . 61

4.4 Average AUC values and their standard deviations over the 5FCV for

each techniques. Design on four folds and evaluated on one fold on

Canali. 62

xiii

Chapter 1

Introduction

Intrusion Detection Systems (IDSs) have become important tools that help security

administrators identify and analyze unauthorized computer or network activities,

from both outsider and insider attacks. The dominant detection methodologies are

signature-based and anomaly-based approaches. Signature-based (or misuse) IDSs

look for events that correspond to the patterns of known attacks. They can provide

a high level of accuracy, however, are limited to only detecting known attacks and

are vulnerable to polymorphic ones (which are capable of changing their signatures

as they propagate).

Anomaly detection systems (ADSs), on the other hand, monitor for signifi-

cant deviations from normal system behavior. They are typically trained (using

machine learning and data mining techniques) on data sets collected over a period

of attack-free activities to learn normal system behavior, and then deployed to de-

tect deviations from the expected system behavior. These deviations are reported as

anomalous events, although they are not necessarily malicious activities or attacks

because they may also correspond to coding or configuration errors. An ADS can

detect novel attacks (not known during training time) but generate large number of

false alarms, because it is difficult to obtain the complete descriptions of complex

1

system behavior, which may change over time.

IDSs can also be categorized depending on their location of deployment into

network- and host-based detection systems (a more comprehensive taxonomy of IDSs

can be found in [3]). Network-based IDSs monitor and analyze traffic to and from all

devices on the network. They may be located anywhere in the network; integrated in

network devices (e.g., switches and routers) or as a standalone device. A host-based

IDS runs on a host computer and monitors sensitive activities on this host, such as

unauthorized access, modification of files, or system calls.

In this work, we focus on host-based anomaly detection using system calls –

the gateway between user and kernel mode. Short sequences of system calls have

been shown to be consistent with normal host operation, and can be used to detect

attacks [4,5]. A large number of research studies have investigated different machine

learning and data mining techniques for detecting anomalies in system call sequences

[5–8].

Warrender and Forrest did one of the early work in this field [5]. They in-

troduced the technique called Sequence Time-Delay Embedding (STIDE), which

"acquires a model of normal behavior by segmenting training data into fixed-length

sequence" [5]. This is done through sliding a detector window of length DW (here-

after DW) over the training data. Each of these sequences obtained from the data

stream is stored in a "normal database" of sequences of length DW . Then a simi-

larity metric is used to establish the degree of similarity between the test data and

the model of normal behaviour that is obtained in the previous step. The sequence

of length DW is obtained from the test data using a sliding window, and for each

length DW sequence the similarity metric simply establishes whether that sequence

exists or not in the normal database [9]. STIDE is a good starting point, but still

has a number of issues. First, the best anomaly detection window size needs to be

defined. Tan et al [9] showed that for the New Mexico data set the minimum window

2

size should be 6, otherwise we are going to miss the detection of some intrusions.

However, they mentioned in their work that a particular window size working for all

data sets cannot be specified. Therefore, the minimum window size should be found

based on the data in the training phase

The other issue with STIDE or other detectors that want to model the normal

behaviour of the system, is that the learning phase is too time consuming, One should

run the system in a very clean environment for a long time. Traces of the normal

behaviour should be stored somewhere. And yet there is no guarantee that it is

possible to model the normal behaviour of the system based on the traces that have

been stored so far. In addition, the normal behaviour of the system will change in

the course of time.

A study by Eskin et al [7] shows, that it is possible to estimate the proper

window size for each data set instead of having a constant one. And by selecting

and working on dynamic window sizes they get improved result. They estimate

the optimal window size by two different techniques. The first method is Entropy

modeling, a method which determines the optimal single window size, and the second,

probability modeling which takes into account context dependent window sizes. In

their work, they used a new method for modeling system call traces using sparse

Markov transducers. By using sparse Markov transducers they were able to estimates

the best window size depending on the specific system calls in the subsequence based

on their performance over the training data [7].

One of the recent studies by Creech et al [7] is a good case that shows that

using machine learning techniques on system call traces to find anomalies is still a

hot topic. They proposed Extreme Learning Machine (ELM), which is a new and

strong technique in the area of the neural network family. The advantage of ELM

in comparison to previous techniques is its speed and scalability. Also, it is a very

lightweight component, while still very accurate. However, based on the data there

3

is an upper limit for its detection. In this thesis, we will address how we can use

this technique alongside other techniques to increase the detection rate or decrease

a false alarm.

Among all the techniques used to detect anomalies on system call traces, tech-

niques based on Hidden Markov Models (HMMs) – probabilistic models for sequential

data – have been shown to produce a high level of detection accuracy [5, 10–18].

The success of an ADS depends largely on the model of normal behavior. A

single HMM may not, however, provide adequate approximation of the underlying

data distribution of a complex host system behavior, due to the many local maxima of

the likelihood function [16]. Ensemble methods have been used to improve the overall

system accuracy by combining the outputs of several accurate and diverse models

[19–22]. In particular, combining the outputs from multiple HMMs, each trained with

a different number of states, in the Receiver Operating Characteristics (ROC) space

according to the Iterative Boolean Combination (IBC), has been shown to provide a

significant improvement in the detection accuracy of system call anomalies [23].

The IBC is a general decision-level combination technique that attempts to

select the decision thresholds (from each input detector) and the Boolean functions

that maximize the overall ROC convex hull of the combined ensemble [23]. As pre-

sented in Algorithm 1, given K soft detectors that assign scores or probabilities to

the input samples, (which can be converted to a crisp detector by setting a thresh-

old on the scores as further detailed in section 2.1) , the IBC algorithm starts by

combining the outputs of the first two detectors (in the order of input), and then

proceeds sequentially by combining the resulting combinations with the outputs of

third detector, and so on, until the Kth detector is combined. It can then re-iterate

to combine the resulting combinations with the original detectors.

The IBC technique provides a practical way for combining relatively large num-

ber of detectors while avoiding the exponential explosion of Boolean combinations.

4

As detailed in Section 3.3, applying all Boolean functions using an exhaustive brute-

force search to determine optimal combinations leads to an exponential number of

combinations, which is prohibitive even for a small number of detectors [24]. Even

the pairwise Bruteforce Boolean Combination (BBC2), which is used as a baseline

reference in our experiments, requires an exponential number of combinations, which

is equal to the square of the number of detectors (see Algorithm 2 without the prun-

ing mechanisms).

However, the sequential combinations of soft detectors according to IBC still

faces challenges, when a large number of detectors (K) is presented for combina-

tions. First, it produces a sequence of combination rules that grows linearly with K

(and the number of iterations), which becomes difficult to analyse and understand.

Furthermore, it makes the algorithm sensitive to the order in which the detectors

are input for combinations, which increases the effort required to find best subset

for operations. In any case, combining all available detectors without any pruning

mechanism may be inefficient due to the redundancy in their outputs.

In this work, we propose an ADS based on a Pruned Boolean Combination

(PBC) algorithm, which employs two novel pruning techniques to select a subset of

diverse and accurate detectors for combination, while discarding the remaining ones.

Although both pruning techniques are based on Cohen’s Kappa [25] measure, they

differ in the way they compute the diversity and accuracy of the selected detectors

for combinations. While the first technique relies only on Kappa measure (MinMax-

Kappa), the second uses both Kappa and the ROC convex hull (ROCCH-Kappa).

Therefore, the PBC approach proposed in this thesis provides an efficient way to

prune and combine large number of detectors. This method avoids the exponential

explosion of combinations of brute-force techniques, and reduces the sequence of

combinations provided by IBC.

5

We evaluated the PBC-based ADS using ADFA Linux Data set (ADFA-LD)1,

which has been recently made publicly available on the website of the University

of New South Wales [26]. The performance of the PBC using both pruning tech-

niques are compared to that of IBC and BBC2 in terms of ROC analysis and time

complexity. The results show that PBC with both pruning techniques are capable

of maintaining similar overall accuracy as measured by the ROC curves to that of

IBC and BBC2. However, the time required for searching and selecting (or prun-

ing) the subset of detectors from the same ensemble of detectors is on average three

magnitudes lower for PBC with MinMax-Kappa pruning than that of BBC2. Fur-

thermore, the experimental results show that PBC with both pruning techniques

always provides two crisp detectors for combination (during the operations), while

IBC provided an average of 11 detectors to achieve the same operating point.

1.1 System Calls

A system call is a request in a Unix-like operating system made via a software

interrupt by an active process for a service performed by the kernel. Users’ requests

are made from higher level applications to the kernel via a platform-dependent set of

system calls. System calls provide an essential interface between a process and the

operating system. Applications must invoke system calls to request kernel services,

such as access to standard input/output, physical devices and network resources.

Every system call has a unique number (known by the kernel) and a set of arguments.

Some example of system calls used for file managements are as follows: open(), read(),

write(), and close(). System call traces have different lengths that depending on the

complexity and execution time of the process. Traces of a wide variety of attacks,

including buffer overflows, symbolic link, decode and SYN floods may appear at the

system call level and differ from normal behavior of privileged processes, ([4]; [27];
1http://www.cybersecurity.unsw.adfa.edu.au/ADFA IDS Datasets/

6

[28]; [29]; [5]). Furthermore, after gaining root privileges on a host, attackers will

typically try to maintain administrative access on the compromised host ([30]), by for

instance installing backdoors and rootkits. Attackers will also attempt to distribute

Trojan horses, using for instance comprised email addresses or shared network folders,

to compromise other systems. These malicious activities may also invoke different

sequences of system calls than those generated during normal execution of a process.

1.2 HMM-based Anomaly Detection using Sys-

tem Call Sequences

The temporal order of system calls is used to represent the normal behavior of a

privileged process, while an unusual burst will occur during an attack [4,5]. In [4,5],

the authors proposed a host-based ADS using a simple sequence matching tech-

nique for detecting anomalous system call sequences, generated from UNIX privi-

leged processes [4]. System call traces provided for training are first segmented into

fixed-length contiguous sequences, using a fixed-size sliding window, shifted by one

symbol to build the normal profile. These sequences are then stored in a database

that represents the normal process behavior. During operations, a sliding window

(having the same size used to construct the normal profile) to scan the system calls

generated by the monitored process for anomalies – sequences that are not found in

the normal database.

Several statistical and machine learning techniques have been investigated over

the last two decades for detecting system call anomalies [6]. Application of machine

learning techniques include neural networks [31], k-nearest neighbors [32], Markov

models [33, 34], Bayesian models [35]. Among these, techniques based on discrete

HMMs have been shown to produce a high level of detection accuracy [5, 10–16,36–

38].

7

A discrete HMM is a stochastic process for sequential data [39,40]. An HMM is

determined by two interrelated mechanisms – a latent Markov chain having a finite

number of states N , and a set of observation probability distributions, each one

associated with a state. Starting from an initial state Si ∈{S1, ...,SN}, determined by

the initial state probability distribution πi, at each discrete-time instant, the process

transits from state Si to state Sj according to the transition probability distribution

aij . The process then emits a symbol vk, from a finite alphabet V = {v1, . . . , vM} of

size M symbols, according to the discrete-output probability distribution bj(vk) of

the current state Sj . HMM is commonly parametrized by λ = (π,A,B), where the

vector π = {πi} is the initial state probability distribution, matrix A = {aij} is the

state transition probability distribution, and matrix B = {bj(vk)} is the state output

probability distribution, (1≤ i, j ≤N and 1≤ k ≤M).

A well trained HMM provides a compact detector that captures the underlying

structure of a process based on the temporal order of system calls, and detects devi-

ations from normal system call sequences with high accuracy and tolerance to noise.

Training an HMM from a sequence (or a block) of observation symbols, o1:T , aims

at estimating HMM parameters λ to best fit the training data. Typically, parame-

ters estimation consists of maximizing the likelihood of the training data over HMM

parameters space, P (o1:T | λ). Since this likelihood depends on the latent states,

there is no known analytical solution to the learning problem. Iterative optimization

techniques, such as the Baum-Welch (BW) algorithm [41], are applied to estimate

the HMM parameters over several training iterations, until the likelihood function

is maximized. During operation, the likelihood of a new observation sequence o1:T

given a trained HMM λ, P (o1:T | λ) is typically evaluated by using the Forward-

Backward (FB) algorithm [39,40]. Setting a threshold on the output probabilities of

HMM, provides a decision whether the sequence is normal or anomalous.

8

Some researchers investigated the effect of the number of states on the per-

formance of HMM detectors, and found that N value may have a great impact on

the overall performance [16,42]. In particular, combining the outputs from multiple

HMMs, each trained with a different N value, in the ROC space according to the IBC

technique (as described in the next section), has been shown to provide a significant

improvement in the detection accuracy of system call anomalies [23].

9

Chapter 2

Detector Combination

2.1 Boolean Combination of Detectors in the ROC

Space

This section provides information about ROC analysis and summarizes the Boolean

combination in the ROC space [23]. A crisp detector outputs a decision or a class

label (e.g., normal or anomaly) while a soft detector such as HMM assigns scores to

the input samples, which can be converted to a crisp detector by setting a decision

threshold on the scores. Given the responses of a crisp detector on a validation set,

the true positive rate (tpr) is the proportion of positives correctly classified over the

total number of positive samples. The false positive rate (fpr) is the proportion

of negatives incorrectly classified over the total number of negative samples. The

positive (or target) class is typically the class of interest, which is the anomalous

class for an ADS.

A ROC curve is a plot of tpr against fpr [43]. A crisp detector produces a single

data point in the ROC space, while a soft detector produces a ROC curve by varying

the decision thresholds. In practice, an empirical ROC plot is obtained by connecting

the observed (tpr,fpr) pairs of a soft detector at each decision threshold. A point a is

10

superior to another point b in the ROC space, if fpr(a)≤ fpr(b) and tpr(a)≥ tpr(b).

The ROC convex hull (ROCCH) is therefore the outer envelope connecting superior

points in the ROC space. A ROC curve allows to visualize the performance of

detectors and to select optimal operational points, without committing to a single

decision threshold or to fixed error costs. The area under the ROC curve (AUC),

or under the ROCCH, provides a general measure for evaluation and selection of

detectors [43].

The IBC is a general decision-level combination technique that attempts to

select the decision thresholds (from each input detector) and the Boolean functions

that maximize the overall ROCCH of the combined ensemble [23]. The core of IBC

(only for the first iteration) is described in Algorithm 1.

The IBC applies each Boolean function to combine the responses corresponding

to each decision threshold from the first detector to those from the second detector.

Fused responses are then mapped to vertices in the ROC space, and their ROC

convex hull (ROCCH) is computed. Vertices that are superior to the ROCCH of

original detectors are then selected. The set (S) of decision thresholds from each

detector and Boolean functions corresponding to these vertices is stored, and the

ROCCH is updated to include emerging vertices. The responses corresponding to

each decision threshold from the third detector are then combined with the responses

of each emerging vertex, and so on, until the last detector in the pool is combined.

The BC technique yields a final ROCCH for visualization and selection of operating

points, and the set of selected thresholds and Boolean functions, S, for each vertex

on the composite ROCCH to be applied during operations. Although not shown in

Algorithm 1, the original IBC algorithm can iterate by re-combining the resulting

combination (of all detectors) on the ROCCH with each of the original detectors

(sequentially) until the ROCCH stops improving [23].

11

However, as stated previously, combining all available detectors without prun-

ing may be inefficient due to the redundancy in their outputs. The sequential com-

binations of soft detectors, illustrated in the loop in line 16 of Algorithm 1, produces

a sequence of combination rules that grows linearly with K (and the number of iter-

ations), which becomes difficult to track, analyse and understand when the value of

K becomes large. In addition, the IBC algorithm is sensitive to the order in which

the detectors are input for combinations, which increases the effort required to find

best subset for operations.

2.2 Synthetic Data Set

To better explain the reason for choosing the proper combination of detectors among

millions of trained detectors, in this section, examples of training, pruning and com-

bining detectors on a synthetic data set are discussed.

For this purpose, three known synthetic data sets are chosen [44].

1. Lithuanian

2. Banana (Moon)

3. Circle

Unlike the n-dimensional real data sets, it is possible to plot synthetic data

sets and to illustrate the trained models generated by them. This would assist an

individual to observe what happens when unnecessary trained models are pruned

and only those that can increase the detection accuracy remain.

Figure 2.1, 2.2 and 2.3 shows the Lithuanian, Banana and Circle data sets.

Figure 2.4, 2.5 and 2.6 show the related trained models on these data sets.

Another purpose of this example is to show that we can reach the same level of

detection by combining very simple and naïve model detectors, instead of spending

time to find the proper model and to train that model on the data set, which is

12

Figure 2.1: Lithuanian Data Set

Figure 2.2: Banana (Moon) Data Set

13

Figure 2.3: Circle Data Set

usually a time consuming task. In this example, hundreds of linear detectors are

trained the data set. In order to have diverse learner detectors, we changed the

ratio of data and their label during training to obtain as many diverse detectors as

possible.

Another purpose of this example is to show that we can reach the same level of

detection by combining simple and naïve model detectors, instead of spending time

to find the proper model and to train that model on the data set. In this example,

hundreds of linear detectors are trained on data set. In order to have diverse learner

detectors, the ratio of data and their label during the training process are changed

to obtain as many diverse detectors as possible.

Figure 2.4, 2.5 and 2.6show different trained detectors on these synthetic

data sets respectively. None of them, however, can detect all the classes. Yet by

combining these simple detectors, a better data set classification is achieved as it is

shown later.

14

Figure 2.4: Linear detectors trained on the Lithuanian Data Set

Figure 2.5: Linear detectors trained on the Banana (Moon) Data Set

15

Figure 2.6: Linear detectors trained on the Circle Data Set

By selecting the right models and combining them the detection rate ma in-

crease, as shown in Figures 2.8, 2.7 and 2.9. The figures on the left show the original

detectors and their ROC before combination. After selecting the proper detectors

and combining them together (i.e. after just one iteration) the accuracy portrayed

on the right figure is achievable, which show the combined detectors (in yellow) and

their improved ROC curve. The next step is to show whether combination provides

a better result or not, and how to obtain the same result just by combining parts of

the trained models.

16

(a) ROC before combination (b) ROC after combination

Figure 2.7: ROC comparison on Lithuanian data set before and after first round of

combination

(a) ROC before combination (b) ROC after combination

Figure 2.8: ROC comparison on Banana data set before and after first round of

combination

17

(a) ROC before combination (b) ROC after combination

Figure 2.9: ROC comparison on Circle data set before and after first round of com-

bination

For each data set, it is concluded there is no single detector that can classify

the data set properly.

As it is shown in Figure 2.10, with just one Linear Discriminant Analysis

(LDA), it is not possible to classify the entire classes with 100% accuracy. To obtain

a more accurate result, however, two of these detectors may be chosen and combined.

As shown in Figure 2.11, a detector from Figure 2.10a and detectors from 2.10d are

selected and combined.

18

(a) (b)

(c) (d)

(e) (f)

Figure 2.10: Some of best LDAs (Linear Discriminant Analysis) that can be trained

on the Lithuanian data set

19

(a) First selected LDA (b) Second selected LDA

Figure 2.11: Selected LDA and their respective point compare to current ROC

If these two detectors with an AND operation are combined, as shown in

Figure 2.12, , a more reasonable result is obtained. The red point is the mapping

of the combined detectors. If new ROC based on this new generated point will be

recalculated, a greater AUC is achieved.

20

Figure 2.12: Selected detectors and the respective combined point on the ROC curve

A similar approach can be applied to the Banana data set. As it is shown in

Figure 2.13, like the Lithuania data set, it is not possible to classify the data set

completely with one detector. In this specific example, at least three detectors are

needed to precisely classify the data in an accurate way.

Given the fact that three detectors are needed for data set classification, com-

bining the selected detectors shown in Figure 2.13a, Figure 2.13c and Figure2.13f

may result in achieving the highest accuracy among all other detectors. Figure 2.14

portraits the whole mentioned detectors in one plot

21

(a) (b)

(c) (d)

(e) (f)

Figure 2.13: Some of best LDA (Linear Discriminant Analysis) that can be trained

on Banana data set

22

Figure 2.14: Best potential selected detectors on Banana data set

These examples show that it is not always necessary to train complex models,

which takes time and resources, over the data set to obtain the best result possible.

The same result can be achieved by combining two or more simple models, which can

be trained much faster. Also by increasing the number these simple models, most of

the cases (including the outliers) in the data set may be covered.

Moreover, due to the imperfection nature of likely every model, training the

complex models would not guarantee the best achievable result. Therefore, a com-

bination is needed to enhance the outcome. Since it is not possible to train and to

combine thousands of models, our approach on how to select a set of meaningful

models to improve the expected result will be shown in the next chapter.

The Circle data set is a good example where combining in an iterative way

improves the accuracy shown in Figure 2.15. W. Since it is not possible to combine

any two detectors which could classify the whole data set, the entire detectors are

selected and combined two by two iteratively. The result of classifying iteratively

23

the whole data set with the help of a few simple detectors is shown in Figure 2.16.

(a) (b)

(c) (d)

(e) (f)

Figure 2.15: Series of 2 selected LDA (Linear Discriminant Analysis) that can be

trained and combined on the Circle data set

24

Figure 2.16: Best potential selected detectors on the Circle data set

25

Algorithm 1: IBC(D1,D2, . . . ,DK ,V): Iterative Boolean Combination
input : K soft detectors (D1,D2, . . . ,DK) and a validation set V of size |V|

output: ROCCH of combined detectors.

- Each vertex is the result of 2 to K combination of crisp detectors.

- Each combination selects the best decision thresholds from different

detectors (Di, tj) and Boolean function (stored in the set S)

1 nk← number of decision thresholds of Dk using V // num. of vertices on ROC(Dk).

2 BooleanF unctions←{a∧ b,¬a∧ b,a∧¬b,¬(a∧ b),a∨ b,¬a∨ b,a∨ ¬b,¬(a∨ b),a⊕ b,a≡ b}

3 compute ROCCH1 of the first two detectors (D1 and D2)

4 allocate F an array of size: [2,n1×n2] // temporary storage of combination results.

5 foreach bf ∈BooleanF unctions do

6 for i← 1 to n1 do

7 R1← (D1, ti) // responses of D1 at decision threshold ti using V.

8 for j← 1 to n2 do

9 R2← (D2, tj) // responses of D2 at decision threshold tj using V.

10 Rc← bf(R1,R2) // combine responses using current Boolean func.

11 compute (tpr,fpr) of Rc using V // map combination to ROC plane

12 push (tpr,fpr) onto F

13 compute ROCCH2 of all ROC points in F

14 nev ← number of emerging vertices

15 S2←{(D1, ti),(D2, tj), bf} // set of selected decision thresholds from each detector and Boolean functions for emerging

vertices.

16 for k← 3 to K do

17 allocate F of size: [2,nk×nev]

18 foreach bf ∈BooleanF unctions do

19 for i← 1 to nev do

20 Ri← Sk−1(i) // responses from previous combinations.

21 for j← 1 to nk do

22 Rk← (Dk, tj)

23 Rc← bf(Ri,Rk)

24 compute (tpr,fpr) of Rc using V

25 push (tpr,fpr) onto F

26 compute ROCCHk of all ROC points in F

27 nev ← number of emerging vertices

28 Sk←{Sk−1(i),(Dk, tj), bf}

// Sk is the set of the selected subsets from the previous combinations; the decision thresholds from the newly-combined detector;

and the Boolean functions that yields to the emerging vertices on the ROCCH.

29 store Sk : 2≤ k ≤K

30 return ROCCHK

26

Algorithm 2: PBC(D1,D2, . . . ,DK ,V): Pruned Boolean Combination
input : K soft detectors (D1,D2, . . . ,DK) and a validation set V of size |V|

output: ROCCH of combined detectors.

- Each vertex is the result of exact 2 combination of crisp detectors.

- Each combination selects the best decision thresholds from different

detectors (Di, tj) and Boolean function (stored in the set S)

1 nk← number of decision thresholds of Dk using V // num. of vertices on ROC(Dk).

2 let n =
∑K

k=1 nk

3 BooleanF unctions←{a∧ b,¬a∧ b,a∧¬b,¬(a∧ b),a∨ b,¬a∨ b,a∨ ¬b,¬(a∨ b),a⊕ b,a≡ b}

4 allocate C an array of size: [|V|,n] // storage of all crisp detectors’ decisons.

5 convert soft detectors to crisp detectors

6 for i← 1 to K do

7 for j← 1 to ni do

8 R← (Di, tj) // responses of Di at decision threshold tj using V.

9 push R onto C

10 choose Pruning Technique {MinMax-Kappa, ROCCH-Kappa}

11 reduce n to U // U � n: is a user defined max number of detectors

12 return Cselected←C - Pruned Detectors

// Subset of size U detectors selected from all original detectors and returned for combination

13 allocate F an array of size: [2,U2× size(BooleanF unctions)] // temporary storage of combination results.

14 foreach bf ∈BooleanF unctions do

15 for i← 1 to U do

16 R1← Cselected[i] // Retrieve Decision Vector

17 for j← 1 to U do

18 R2← Cselected[j]

19 Rc← bf(R1,R2) // combine responses using current Boolean func.

20 compute (tpr,fpr) of Rc using V // map combination to ROC plane

21 push (tpr,fpr) onto F

22 compute ROCCH of all ROC points in F

23 nev ← number of emerging vertices

24 S←{(D1, ti),(D2, tj), . . . ,(Dk, tk), bf} // set of selected decision thresholds from each detector and Boolean functions for

emerging vertices.

25 store S; return ROCCH

27

Chapter 3

Pruning

3.1 Introduction

Pruning is a very popular practice for decreasing the cost and time of combining

multiple detectors. There are two main challenges when it comes to pruning. The

first one is to determine where pruning should be applied (e.g., feature level, model

level, etc.) and the second challenge is to determine the pruning criteria.

Generally speaking, pruning can be done at four different levels: sensor level,

feature level, matching score level, and decision level [2], as illustrated in Figure 3.1

In this thesis, the main focus of pruning detectors is at the decision level.

However, there are some scenarios that requires pruning at the matching score level.

For example, when there are thousands of detectors; it is not beneficial to convert

them into a few response vectors and combine everything together. The reason is

that we will have too many redundant response vectors, which hinders the efficiency

of the pruning process.

After seeing different levels where pruning can be applied, the question is how

to prune the pool of available detectors and make a basket of reasonable detectors.

To have a reasonable basket of remaining detectors, two criteria should be considered.

28

Figure 3.1: Different levels of combination or pruning: sensor level, feature level,

matching score level, and decision level [2].

Firstly, we have to define some accurate detectors in the basket, with this we

guarantee that the minimum accuracy we obtain after pruning and the combination

is not worse than any of the detectors we had in the pool. Also, by choosing and

combining the accurate ones, we increase the probability of getting better results

than combining two random or naïve detectors.

The second criteria is the diversity in the basket of detectors. If very similar

detectors are selected in the basket, we should not expect to see a major improvement

after combining. One way to increase the diversity of the basket is to try to find and

select detectors that complement the errors of already selected detectors. Since we

have already selected accurate detectors in the basket, it is a good practice to choose

the detectors that complement the errors these detectors exhibit.

To see the importance of diversity and how it can help to improve the result of

the combination, we show in the following example, the importance of selecting the

29

initial detectors and respective detectors compare to them especially, the ones that

tries to complement first detector’s errors. By combining these two detectors with

a right Boolean operator we will reach a very promising result. As it is shown in

Figure 3.2, among all the trained detectors, we only need to find a way to select one

detector that is accurate,and in Figure 3.3, we demonstrate how to select a detector,

that is very diverse to previously selected ones in order to increase the chance of

getting better results after combining. The two selected detectors in Figure 3.2 and

Figure 3.3 are completing each other errors.

Figure 3.2: Selecting accurate detectors

30

Figure 3.3: Selecting diverse detector compares to previously selected

3.2 Pruning Boolean Combination (PBC) Approach

In this section, we describe our Pruned Boolean Combination (PBC) algorithm,

which is based on two novel pruning techniques that select a subset of diverse and

accurate detectors for combination, while discarding the remaining ones, this hap-

pened at decision level. PBC can avoid both the exponential explosion of combina-

tions provided by the brute-force approach and the sequential combination of IBC.

The main difference is that the PBC algorithm proceeds by thresholding all available

soft detectors into crisp ones. This step is, in fact, not essential for PBC because

thresholding could be done outside the algorithm and the crisp detectors are directly

input for pruning. In contrast with IBC, all available crisp detectors are input to one

31

of the proposed pruning techniques, MinMax-Kappa or ROCCH-Kappa described

in Section 3.2.3 and 3.2.4, to select the best subset of crisp detectors for Boolean

combination and control its size U (i.e., the number of combined detectors). Without

pruning brute-force pairwise combination of all available detectors may not be feasi-

ble for large number of detectors, O(N2) (where N is number of available detectors),

for further details see Section 3.3.

After seeing the main pruning idea in Section 3.2.3 and 3.2.4 we introduce a

different distance correlation (measure of agreement between vectors or dependence

coefficient) 3.2.2 rather than kappa to show that the results of PBC are consistent,

and as long as a proper measure is used we can get promising result either using it

with MinMax- or ROCCH-. In Section 3.2.5 we explained how we used the MinMax

and ROCCH technique again and just changed the measure of agreement from kappa

to dCor or dCov to prune the pool of detectors.

The boost in performance achieved with an ensemble of detectors is often at-

tributed to the concept of diversity. While it is generally accepted that an ensemble

should contain diverse models to improve the performance, there is no clear definition

of diversity neither a consensus about the measure of diversity and its computation.

In practice, several measures of diversity have been proposed to quantify the level of

agreement or measure the dependency among the ensemble members [45].

3.2.1 Kappa Measure

Cohen’s Kappa statistic (or simply Kappa hereafter) is one of the well-known and

widely used measure of agreement between raters [25]. Kappa has lately gained some

popularity for ensemble combination, especially the Kappa-error diagrams which help

visualizing individual accuracy and diversity in a two dimensional plot [46,47]. Our

pruning techniques, described in the next sections, are based on Kappa and inspired

by the Kappa-error diagram only for visualization of Kappa against the false positives

32

and true positives (as shown in Figures 3.4 and 3.5).

Table 3.1: Contingency table between two detectors’ decisions

D2 correct D2 wrong

D1 correct a b

D1 wrong c d

Consider the contingency table of two detectors, D1 and D2, presented in

Table 3.1, where, for instance, a is the number of examples on which both detectors

agree. The sum of all element in Table 3.1 is equal to the size of validation set, a+

b+c+d= |V|. The Kappa (κ) measure between two detectors is therefore computed

based on the element of the contingency table according to Equation 3.1.

κ=
2(ad− bc)

(a+ b)(b+d) + (a+ c)(c+d) (3.1)

Kappa takes on values between −1 and 1; lower values means a high level of disagree-

ment or more diverse opinions, while higher values indicate a high level of agreement

or similarity in responses between detectors. When both detectors provide the same

vector of decisions (they agree on every example) then κ = 1. On the other hand,

when κ= 0 the detectors are independent (any agreement is totally due to chance).

Negative Kappa values can be interpreted as both detectors agrees less than what

would be expected just by chance. More importantly, negative values account for

negative correlations, which can be useful for combination, but this rarely occurs in

practice [46].

33

3.2.2 Distance Covariance (dCov) and Distance Correlation

(dCor) Measure

Distance correlation is a measure of statistical dependence between two vectors of

arbitrary. The measure of dependence is zero if and only if the random variables

are statistically independent. Distance correlation is a new measure of dependence

between random vectors introduced by [48].

In order to understand the definition of distance covariance and distance cor-

relation we should first start with distance covariance.

Assume we have two random vectors, the vectors are Xn and Yn, k = 1,2, ...,n.

Firstly we should compute all pairwise distances:

aj,k = ||Xj−Xk||

bj,k = ||Yj−Yk||

By this, we computed the n by n distance matrices (aj, k) and (bj, k). After

this we need to calculate all doubly centered distances:

Aj,k := aj,k− āj.− ā.k + ā.. (3.2)

Bj,k := bj,k− b̄j.− b̄.k + b̄.. (3.3)

In equation 3.2 āj. is the j-th row mean, ā.k is the k-th column mean, and ā..

is the grand mean of the distance matrix of the X sample. The exact same notation

applies on b too. One thing to note is that in the matrices of centered distances Aj,k

and Bj,k sum of all rows and all columns equal to zero.

By having all of these value we can calculate the distance covariance like this:

dCov2
n(X,Y) := 1

n2

n∑
j,k=1

Aj,kBj,k (3.4)

34

Interesting point about distance covariance is that we can define it with help

of Pearson’s covariance.

dCov2(X,Y) := cov(||X−X ′||, ||Y −Y ′||)−2cov(||X−X ′||, ||Y −Y ′′||) (3.5)

After calculating the distance covariance we can use it to calculate distance

correlation, The distance correlation of two random vectors is calculated by dividing

their distance covariance by the product of their distance standard deviations.

dCor(X,Y) := dCov(X,Y)√
dV ar(X)dV ar(Y)

(3.6)

3.2.3 MinMax-Kappa Pruning

The proposed pruning technique starts by computing the Kappa values between each

detector’s decision vector and the true decision labels (or ground truth), and then

sorting them in ascending order. Detectors with large Kappa values (κ≈ κmax) are

accurate and hence should be selected; however, they provide less diverse decisions

among themselves. Therefore, the technique attempts to select complementary de-

tectors by choosing those with Kappa values close to κ ≈ κmin. In practice, κmax

and κmin values depend on the data and the detectors. Trivial detectors (providing

always either positive or negative decisions) also reside at κmin ≈ 0. In such cases,

these are filtered out before selected the complementary detectors. When detectors

with negative Kappa values exist, it is always beneficial to select them since they

provide detectors with negative correlations or complementary errors compared those

with κmax.

The MinMax-Kappa pruning technique takes two parameters, the total num-

ber of detectors and the ratio of detectors to be selected close to κmax and κmin.

In our experiments, we experimented with different parameters sets and presented

35

the results for 50 selected detectors with a ration of 50% (which means half of the

detectors are selected from the region with higher values of Kappa, while the remain

half are chosen from the region with lower values). In fact, these are user-defined

parameters that are constrained by the resources available during operations. Our

experiments showed that the results of the pruning algorithms are not very sensitive

to small changes in these parameters

Figure 3.4 shows an example of the selected detectors from our experiment,

according to the MinMax-Kappa technique. The Kappa values (on the X-axis) for

the same selected detectors are plotted against false positive (Figure 3.4a) and true

positive (Figure 3.4b) rates. These points (large, blue) are the selected detectors,

Cselected in Algorithm 2. All remaining detectors (small points) are pruned. For

illustration, Figure 3.6a map the selected point to the ROC space, which could also

be compared to our second pruning technique.

3.2.4 ROCCH-Kappa Pruning

This technique also tries to select accurate detectors and then find a set of detectors

with complimentary errors. In contrast with MinMax-Kappa, this technique con-

siders the detectors that are on the facet of the ROCCH in the ROC space. These

detectors are selected since they are the most accurate available detectors that covers

the whole range of fpr and tpr trade-off. The Kappa measure is then used to select

diverse detectors with reference to those on ROCCH. The technique computes the

Kappa value of each detector on the ROCCH and all the remaining detectors, sort

the resulting values in ascending order. Detectors with larger values of Kappa are

discarded, since they provide similar decisions (or errors) to those provided by the

select detectors (on the ROCCH).

The most diverse detectors are those that provide negative or close to zero

Kappa values (κ ≤ 0), however are not trivial detectors (providing always either

36

positive or negative decisions). The only parameter of the ROCCH-Kappa is the

number of detectors to be selected for each detector on the ROCCH. In practice, the

number of detectors on the ROCCH is small ([3-20] detectors). Figure 3.5 shows an

example of the selected detectors from our experiment, according to the ROCCH-

Kappa technique, where the Kappa values (on the X-axis) for the selected detectors

are plotted against false positive (Figure 3.5a) and true positive (Figure 3.5b) rates.

Similarly, these selected points (large, blue) are the Cselected in Algorithm 2, while

all remaining detectors (small points) can be pruned. Figure 3.6b map the detectors

selected by ROCCH-Kappa to the ROC space, which could be compared to those

selected by MinMax-Kappa in Figure 3.6a.

3.2.5 MinMax-, ROCCH- Pruning with dCor and dCov

These techniques are using the logic we proposed in section 3.2.3 and section 3.2.4.

The novelty behind them is to use newer and stronger distance correlation, which is

described in section 3.2.2. With the help of these two new metrics and integrating

them with MinMax and ROCCH techniques; we are more confident in the perfor-

mance of our PBC method. With this approach the newly proposed PBC method is

working well and is stable at all times. More specifically because we use this method

with a rational measure of agreement, we can expect to get the reasonable results.

Here in both dCor and dCov; if the result of comparing two different vectors

is equal to 0 indicates that the vectors are surely independent of each other; and if

the result is equal to 1, it means they are exactly similar to each other.

3.2.6 Expected Value of Boolean Combination

Expected Value of Boolean Combination (EVBC) Our other approach for pruning

classifiers is using Expected value. To do that we calculate expected values of combi-

nations of each classier with every other classifiers. This is an iterative method that

37

would be applied on every classifier we have. First we select a classifier, classifier

X. To calculate expected value of a combination we need to choose another classifier

such as classifier Y from our pool of classifiers. Since we have 10 different Boolean

operations we could produce 10 different new classifiers by combining classifier X

and Y. Here, we explain our formula for one of the Boolean operation but we could

easily extend it for all the rest.

As we explained earlier we could identify each classifier by its TPR-FPR on

ROC curve, therefore we want to calculate expected value of TPR-FPR of the new

classifier. To calculate TPR and FPR of the combination (tprC ,fprC) from Classifier

X with (TPRX ,FPRX) and classifier Y with (TPRY ,FPRY) we use the equations

below:

TPRC =B1×TPRX ×TPRY +B2×TPRX × (1−TPRY)+

B3× (1−TPRX)×TPRY +B4× (1−TPRX)× (1−TPRY) (3.7)

FPRC =B1×FPRX ×FPRY +B2×FPRX × (1−FPRY)+

B3× (1−FPRX)×FPRY +B4× (1−FPRX)× (1−FPRY)) (3.8)

Which B1, B2, B3, B4 is binary representation of our Boolean operation (And

= ’1000’, OR = ’1110’, XOR = ’0110’, etc.) For example for XOR we would have:

TPRC = 0×TPRX ×TPRY + 1×TPRX × (1−TPRY)+

1× (1−TPRX)×TPRY + 0× (1−TPRX)× (1−TPRY) (3.9)

38

FPRC = 0×FPRX ×FPRY + 1×FPRX × (1−FPRY)+

1× (1−FPRX)×FPRY + 0× (1−FPRX)× (1−FPRY)) (3.10)

Now we have 3 classifiers X, Y and the combination of them using XOR oper-

ation (Classifier C) as it’s shown in the picture below. Now we need to evaluate the

goodness of classifier C compared to X and Y. Area Under the Curve (AUC) is a

function, which can be used to evaluate the goodness. Based on the coordination of

each classifier on ROC curve we can compute AUC of the classifier with the following

formula:

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Detector X

Detector YDetector C

Figure 3.7: Combination of classifier X and Y lead to C

We compute AUC for classifier X, Y and C and keep classifier C only if its

AUC is greater than AUC of both classifiers X and Y. Greater AUC means that our

classifier is much closer to the ground truth (which will give us the TPR = 1 and FPR

39

= 0). If AUCC is greater than AUCX and AUCY we keep the difference in AUC as the

improvement of that classifier with the specific Boolean operation used. The variable

that keeps the improvement for classifier X is IMP as defined below: IMPX =

AUCC −Max(AUCX ,AUCY) We calculate IMPX for all 10 Boolean operations

and add them to the previous value. At the end, IMPX has the expected value

of all of the combination possible between classifiers X and Y using 10 Boolean

operations. We repeat these steps for classifier X in combination with the rest of

classifiers, choosing one each time as a new classifier Y and update IMPX . The

final IMPX value has the total expected value of the improvement with respect to

all the combinations if we select classifier X. After we compute IMPX for classifier

X and the rest of classifiers we will update the value in our table in a TPRX FPRX

position with IMPX . We repeat all these steps for every classifier we have and

update their IMP in the table and then we can create a table shown below with each

cell representing the expected value of the classifier combinations getting improved.

We select that classifier with the most improvement.

40

Figure 3.8: expected value of all classifiers in the ROC space

As shown in Figure 3.8 the representation of that table if we use color plotting.

The red region shows classifiers with higher IMP and the blue region shows classifier

with low IMP. That means if we select our basket of classifiers from red region we

would have a higher chance to get better classifiers after combination of those pruned

classifiers. Our assumption for creating above table was that we have all the possible

classifiers with 2 digits precision and after computing all possible combination for

41

all the classifiers we set the value of each cell below minor diameter to zero (all the

classifiers below random line) since want to evaluate goodness of classifiers better

than random guess. We can re-produce the same table by computing the expected

value of combination just for the classifiers that already we have; by doing that we

will get the below table (plot) and we can prune our classifier based on this new

table.

3.3 Complexity Analysis

Given K soft detectors, let ni be the number of decision thresholds or crisp detectors

produced by each of the soft detector Di, i = 1, . . . ,K, on the validation set V. Let

n = ∑K
i=1ni the total number of crisp detectors in the ensembles, and navg = n/K

the average number of crisp detectors produced by soft detectors.

A brute-force search for optimal combination is infeasible in practice due to

the doubly exponential combinations. In fact, for n crisp detectors there are 2n

possible outcomes that can be combined in 22n ways, which makes the brute-force

combination impractical even for small n values [24]. Even only pairwise combination

of n crisp detectors, which requires O(n2) Boolean operations, may not be feasible in

practise for large n values. The sequential combination of the IBC algorithm reduces

its worst-case time complexity to O(n2
avg +Knavg) Boolean operations.

Both pruning techniques are capable of reducing the size of the selected subset

of detectors (for Boolean combination) up to a user defined maximum number (U).

The worst-case time complexity required by MinMax-Kappa technique to select U

crisp detectors (and prune the rest) is O(n(logn+1)+U2). It requires about n(logn+

1) operations for computing and sorting the Kappa values for all crisp detectors, and

U2 for the pairwise Boolean combinations of the U retained detectors. For ROCCH-

Kappa technique however the worst-case time complexity is of the order O(n(logn+

42

nev) +U2), where nev is the number of emerging vertices which is typically around

ten. The additional nev factor is due to the computation of Kappa is repeated nev

times for each emerging point on the ROCCH. For numerical comparison, Table 4.2

shows the average time for each combination and pruning technique used in our

experiments.

43

1.0 0.5 0.0 0.5 1.0

Kappa

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls

e
 P

o
si

ti
v
e
 R

a
te

(a) κ-fpr diagram

1.0 0.5 0.0 0.5 1.0

Kappa

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

(b) κ-tpr diagram

Figure 3.4: Illustration of selected detectors (large blue circles) based on MinMax-

Kappa pruning technique. All remaining detectors (small black dots) are pruned.

44

1.0 0.5 0.0 0.5 1.0

Kappa

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls

e
 P

o
si

ti
v
e
 R

a
te

(a) κ-fpr diagram

1.0 0.5 0.0 0.5 1.0

Kappa

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

(b) κ-tpr diagram

Figure 3.5: Illustration of selected detectors (large blue circles) based on ROCCH-

Kappa pruning technique. All remaining detectors (small black dots) are pruned.

45

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Original Crisp Classifiers

Selected Crisp Classifiers

(a) MinMax-Kappa pruning

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Original Crisp Classifiers

Selected Crisp Classifiers

(b) ROCCH-Kappa pruning

Figure 3.6: Illustration of the selected detectors for combination mapped onto the

ROC space (large blue circles). All other detectors (small black dots) can be pruned.

46

Chapter 4

Experiment and Results

4.1 Experiments on System Call Data set

We evaluate the accuracy and efficiency of our pruning techniques using a modern sys-

tem call data set, called ADFA Linux Data set (ADFA-LD), which has been recently

made publicly available on the website of the University of New South Wales [26].

The ADFA-LD data set is generated by exploiting various security vulnerabilities

in a Ubuntu operating system (OS) hosting a web server. The systems consists of

a fully patched Ubuntu Linux 11.04 OS with an Apache 2.2.17 web server, PHP

5.3.5 server side scripting engine, TikiWiki 8.1 content management system, FTP

server, MySQL 14.14 database management system and an SSH server. First they

collect normal system call traces by letting users perform basic operations, such as

web browsing and Latex document preparations under controlled situations. The

anomalous system call traces are collected while the system is being under six types

of attack vectors resulting in a total of 60 attacks. These attacks were launched by a

certified penetration tester against the system and included web-based exploitation,

simulated social engineering, poisoned executable, remotely triggered vulnerabili-

ties, remote password brute-force attacks and system manipulation. The authors of

47

the ADFA-LD have organized the data set into 833 normal traces for training the

anomaly detectors, and 4373 normal traces and 60 anomalous traces for testing.

In our experiments, we used the following experimental setup. First, we trained

20 HMMs with different numbers of states (i.e., K = 20 soft detectors), using the

833 normal traces provided for training in the ADFA-LD data set. On average, the

output of each HMM is thresholded into navg = 100 thresholds or crisp detectors,

which provides n=K×navg = 20×100 = 2000 crisp detectors in the ensemble.

The objective is to choose the most accurate subset from this ensemble for

combination while pruning the remaining detectors according to our MinMax-Kappa

or ROCCH-Kappa technique. Then, the ROC curves and AUC results are compared

to those of IBC and the pairwise brute-force Boolean Crisp combination (BBC2).

BBC2 is another baseline, which is the PBC Algorithm 2, but without any pruning

mechanism.

For evaluation of performance, a 5-fold cross-validation (5FCV) is applied to

the test set comprising the 4373 normal and the 60 anomalous traces. Since the

number of anomalous traces is relatively small with reference to the normal ones, we

applied the cross validation to partition the normal and anomalous sets separately,

such that we keep the same ratio (normal to anomalous) and guarantee that all folds

include the anomalies. Accordingly, each fold contains 874 traces selected at random

from the 4373 normal traces and 12 attacks traces selected at random from the 60

attack traces.

In contrast with the standard way of applying the 5FCV, we used one fold for

computing the Boolean combination according to each of the combination technique,

and the remaining four folds (i.e., 3498 normal traces and 48 attack traces) are used

for evaluating and benchmarking the detection performance. This is because we

wanted to test the boost in performance while using a small number of anomalies

during combination. The results are shown in section 4.2.

48

For the second data set, we used the Canali data set [49]. The data was

generated from 10 different machines. Our models, which are 4 HMMs and 5 SVMs,

are trained on the normal data from: anubis-good + machine1 + ... + machine9,

and the scores that we used are computed on the test data: machine10 that consist

of (23 normal traces) + malware (5855 anomalous traces).

With this data set, in contrast with ADFA that we showed the boost in result

with a small number of anomalies we want to show even when anomalies are the

majority of the test set with PBC technique there is a boost in result. Here again we

applied the PBC technique with help of different distance correlation metric (Kappa,

Distance Covariance, Distance Correlation) and compare the result with BBC2 and

IBC. For Canali we used 5FCV approach as well. The result are shown in section 4.3.

4.2 Results (ADFA)

Figure 4.1 shows the ROC curves and the AUC performance for both pruning tech-

niques proposed in this paper (MinMax- and ROCCH-Kappa) compared to those

of IBC and BBC2 (PBC with no pruning mechanism). And Figure 4.2 shows the

same ROC (the same fold) for both MinMax- and ROCCH- technique with different

distance correlation as discussed in section 3.2.5.

These results are for one of the 5FCV experiments (the combinations are com-

puted on one fold and evaluated on four) as described in Section 4.1. As shown in

the figure the results are comparable both in term of AUC values and the shape of

the ROC curves. This is also confirmed in Table 4.1, where the AUC values of each

combination technique is averaged over the 5FCV experiments.

49

6

5

7

8

9
10

11

12

1

2

3

4

Figure 4.1: One of the ROC curves results of 5-folds cross-validation of Boolean

combination on one fold and evaluated on four folds. The numbers represent the

crisp detectors selected for combination (by each technique) to achieve about the

same operational point as denoted by the large black circle

Table 4.2 shows the average over the 5FCV of the pruning time (for MinMax-

Kappa, ROCCH-Kappa, MinMax-dCor, MinMax-dCov, ROCCH-dCor, ROCCH-

dCov), combination time, and number of Boolean operations required by each tech-

nique to achieve the final ROCCH (as shown in Figure 4.1 and Figure 4.2 for one

fold).

We set the maximum number of selected detectors to U = 50 for all the above-

mentioned techniques (this can be further optimized, but gave good trade-off between

performance and time complexity). Therefore, the input to these pruning techniques

50

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Original Crisp Classifiers

ROCCH (MinMax-dCor) AUC = 0.967

ROCCH (pairwise-dCor) AUC = 0.962

ROCCH (MinMax-dCov) AUC = 0.967

ROCCH (pairwise-dCov) AUC = 0.962

EVBC, AUC = 0.946

BBC2, AUC = 0.972

IBC, AUC = 0.971

Figure 4.2: The same ROC curves results of 5-folds cross-validation of Boolean com-

bination on one fold and evaluated on four folds that was used in Figure 4.1 with

other distance correlation metrics

is n= 2000 crisp detectors, while the output is a subset of a maximum size of 50 de-

tectors provided for Boolean combination (in PBC Algorithm). MinMax-Kappa took

about 1.6 seconds in average to select the best subset, while ROCCH-Kappa took

about ten times more due the nev factor, which is described in Section 3.3, to prune

the ensemble of n= 2000 detectors. Furthermore, MinMax-Kappa is able to select a

smaller number of detectors than U = 50 on average and computes the Kappa val-

ues once, which explains the reduction in combination time and number of Boolean

operations compared to those of ROCCH-Kappa, as shown in Table 4.2. Thereby, al-

though both techniques provide similar AUC performance, MinMax-Kappa is slightly

51

preferred due to its improved efficiency compared to ROCCH-Kappa.

Table 4.2 also shows that our MinMax-Kappa techniques was able to achieve the

same AUC performance of BBC2 (the pairwise Boolean combination of the 2000 de-

tectors), by selecting less than 50 detectors out of the 2000 ones. More interestingly,

MinMax-Kappa achieved these results with an average time of three magnitudes

lower than that of BBC2, and about 200 times fewer Boolean operations.

Compared to IBC, MinMax-Kappa requires, on average, slightly more combi-

nation time and a larger number of Boolean operations to achieve the same AUC

performance. However, the number of selected detectors and Boolean functions re-

quired to realize each vertex on the ROCCH is on average five times more according

to our experiments. For instance, to achieve the final operating points denoted with a

large black circle on Figure 4.1, MinMax-Kappa uses two detectors and one Boolean

function according to the following formula:

¬D1⊕D2

Note that in Figure 4.1, we only shown the number of crisp detectors not to clutter

the figures (i.e., 1 means D1)

Similarly, ROCCH-Kappa uses the following detectors and Boolean function to achieve

similar operating point:

¬D3⊕D4

However to achieve similar point of operations, IBC requires eight detectors combined

according to the following Boolean operations:

(((((((D5⊕D6)∧¬D11)∧D7)⊕D8)≡D9)∨D10)∧D12)

The average number of combined detectors on the final ROCCH over the 5FCV

is about 10 detectors when using IBC compared to two detectors when using PBC

with MinMax-Kappa pruning as shown in the last column of Table 4.2. This sequence

of combination rules grows linearly with the number of soft detector K, which makes

52

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Original Crisp Classifiers

MinMax-Kappa, AUC = 0.988

ROCCH-Kappa, AUC = 0.983

BBC2, AUC = 0.990

IBC, AUC = 0.994

Figure 4.3: One of the ROC curves results of 5-folds cross-validation of Boolean

combination on four folds and evaluated on one fold.

IBC results difficult to analyse and understand for largeK values. In contrast to IBC,

the combination of two detectors according to combination of PBC with MinMax-

Kappa are insensitive to order in which detectors are input to the algorithm, which

makes the search for the best subset of detectors easier. However, MinMax-Kappa

requires an optimization of the maximum number of detectors U that trades off the

complexity and the accuracy. Setting an ADS based on two HMMs into operations,

requires less time and memory resources to provide the output probabilities of the

input system call sequences. In addition, operating a small number of detectors

becomes critical in application of anomaly detection mobile security, due to the

constraint on power resources.

53

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Original Crisp Classifiers

ROCCH (MinMax-dCor) AUC = 0.985

ROCCH (pairwise-dCor) AUC = 0.983

ROCCH (MinMax-dCov) AUC = 0.982

ROCCH (pairwise-dCov) AUC = 0.983

EVBC, AUC = 0.946

BBC2, AUC = 0.990

IBC, AUC = 0.994

Figure 4.4: The same ROC curves results of 5-folds cross-validation of Boolean com-

bination on four folds and evaluated on one fold that was used in fig. 4.3 with other

distance correlation metrics.

We conducted an alternative case study to check the impact on ROC and AUC

performance of all Boolean techniques, when the number of anomalies is increased

during the design phase. Therefore, instead of using one fold (comprising 12 attack

traces and 874 normal traces) for selecting the crisp detectors and the corresponding

Boolean functions, as described in Section 4.1, we used 4 folds (48 attack traces and

3498 normal traces) and one fold for evaluation of performance.

Figure 4.3 and figure 4.4 show the ROC curves and the AUC performance for

all techniques, PBC with MinMax-Kappa, ROCCH-Kappa, MinMax-dCor, MinMax-

dCov, ROCCH-dCor, ROCCH-dCov, IBC and BBC2. Again, the presented results

54

are for one of the 5FCV experiments (but the combinations are computed on four

folds and evaluated on one). As shown in the figure, all techniques provide compa-

rable results; however, with a large improvement in detection accuracy over those

presented in Figure 4.1. For instance, for detecting all attacks (tpr = 100%) the false

positive rate is now fpr ≈ 2% compared to fpr ≈ 16% in Figure 4.1. This boost in

performance can be also seen in Table 4.3 in terms of average AUC values for each

combination technique over the 5FCV experiments. The results of this experiments

show, as expected, that when the system is provided with more normal or attack

traces, the overall performance of all Boolean combination techniques improves. In

such cases, there is no need to retrain the original detectors (HMMs in our case),

which is a time consuming process, but the design phase of Boolean combination

techniques must be repeated. This provides an advantage for IBC and PBC, since

they are efficient in selecting the detectors for final operations. However, our PBC

approach will always provide two detectors for each emerging point on the ROCCH,

which is less costly to operate and easier to analyse in real-world setting.

4.3 Results (Canali)

Figure 4.5 shows the ROC curves and the AUC performance for both pruning tech-

niques proposed in this paper (MinMax- and ROCCH-Kappa) compared to those of

IBC and BBC2 (PBC with no pruning mechanism). They are all applied on Canali

data set in order to confirm the consistency of PBC technique regardless of the data

set. Figure 4.6 demonstrates the same ROC (the same fold) for both MinMax- and

ROCCH- technique with different distance correlation as discussed in section 3.2.5.

These results belong to one of the 5FCV experiments (the combinations are

computed on one fold and evaluated on four) as described in Section 4.1. As shown

in this figure the results are comparable both in terms of AUC values and the shape

55

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Original Crisp Classifiers

MinMax-Kappa, AUC = 0.960

ROCCH-Kappa, AUC = 0.972

BBC2, AUC = 0.975

IBC, AUC = 0.970

Figure 4.5: One of the ROC curves results of 5-folds cross-validation of Boolean

combination on four folds and evaluated on one fold on Canali.

of the ROC curves. This is also confirmed in Table 4.4, where the AUC values of

each combination technique are averaged over the 5FCV experiments.

In this experiment;we set the maximum number of selected detectors to U = 50

for all of the above-mentioned techniques similar to what we did for ADFA 4.2.

Therefore, the inputs to these pruning techniques are n = 900 crisp detectors (4

different HMMS and 5 SVMs each thresholded 100 times), while the output is a

subset of a maximum size of 50 detectors provided for Boolean combination (in PBC

Algorithm).

Compared to ADFA’s result in 4.2 here we can see that ROCCH-Kappa gen-

erates even better results than IBC, however the difference is not significant yet it

56

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Original Crisp Classifiers

ROCCH (MinMax-dCor) AUC = 0.955

ROCCH (pairwise-dCor) AUC = 0.966

ROCCH (MinMax-dCov) AUC = 0.956

ROCCH (pairwise-dCov) AUC = 0.966

EVBC, AUC = 0.951

BBC2, AUC = 0.975

IBC, AUC = 0.970

Figure 4.6: The same ROC curves results of 5-folds cross-validation of Boolean com-

bination on one fold and evaluated on four folds that was used in Figure 4.5 with

other distance correlation metrics

persuade us more to use PBC; Since by using PBC we are guaranteed that our final

formula is shorter and we have much fewer number of combinations that leads to less

calculation time which saves CPU cycles (and get the result very much faster).

Running PBC as discussed in section 3.2 with completely new data set such

as Canali (which is for Windows) and getting promising result is a proof that PBC

technique is applicable on various data sets as long as having a diverse detectors

trained on the them.

The key for PBC to work well is to have as many diverse detectors as possible.

And therefore the complexity of the detectors is not a determining factor and

57

we only need to keep the diversity of the pool of detectors high. With the help of PBC

we prune the pool to create the basket of detectors for combination. In conclusion,

PBC with reasonable distance correlation tries to select few samples from each set

of detectors such that it represents the original pool.

4.4 Threats to Validity

A threat to internal validity exists in the implementation of the IBC, BBC2 and

PBC algorithms as well as in conducting the experiments for anomaly detection. We

have mitigated this threat by manually verifying the outputs.

We have conducted experiments using only one system call data set derived

from the Linux operating system, which consists a threat to external validity of this

study. More experiments are therefore required to generalize the presented results

to other data sets, operating systems and other software vulnerabilities.

Evasion attacks could also pose a threat to validity. For instance, mimicry

attacks try to mimic the normal system behavior will go undetected with the ADSs

that are based on individual system calls or their temporal order [50]. Mimicry

attacks could be conducted by an attacker who is able to launch his attack without

tempering the normal order of system calls by, for instance, replacing foreign system

call sequences (which can be easily detected) with normal ones or by using system

call arguments [50].

The manifestations of such mimicry attacks could be detected by including

additional features, such as system call arguments [51], return values extracted from

the call stack information [52], and the user identity [53]. An added advantage of

multiple detector systems, combined without our PBC, is that they can combine

different detectors trained on various features, such as system call arguments, return

values and other information flow features to help mitigating such evasion attacks.

58

Table 4.1: Average AUC values and their standard deviations over the 5FCV for

each techniques. Design on one fold and evaluated on four folds.

Method Name Mean Std

BBC2 0.97426 0.001

IBC 0.97276 0.001

MinMax-Kappa 0.97074 0.003

ROCCH-Kappa 0.97051 0.003

EVBC 0.94472 0

MinMax-dCor 0.9673 0.006

ROCCH-dCor 0.97067 0.005

MinMax-dCov 0.96515 0.004

ROCCH-dCov 0.97051 0.005

59

Table 4.2: Comparison of pruning and combination time (seconds) and number of

Boolean operations required to achieve the final ROCCH during the design phase,

and the number of selected detectors during the operational phase. All values are

averaged over 5FCV.

Design Phase Operations

Method Pruning Combination # Boolean # Combined

Name Time Time operations detectors

BBC2 N/A 16364 4,000,000 2

IBC N/A 11 11,000 11

MinMax-Kappa 1.6 15 19,701 2

ROCCH-Kappa 11.8 38 37,701 2

EVBC 370 13 ... 2

MinMax-dCor 74 16 19,701 2

ROCCH-dCor 190 30 37,701 2

MinMax-dCov 64 17 19,701 2

ROCCH-dCov 185 37 37,701 2

60

Table 4.3: Average AUC values and their standard deviations over the 5FCV for

each techniques. Design on four folds and evaluated on one fold.

Method Name Mean Std

BBC2 0.98177 0.00636

IBC 0.98003 0.01127

MinMax-Kappa 0.97806 0.00640

ROCCH-Kappa 0.97578 0.00585

EVBC 0.94472 0

MinMax-dCor 0.9725 0.012

ROCCH-dCor 0.9752 0.005

MinMax-dCov 0.96268 0.011

ROCCH-dCov 0.9753 0.005

61

Table 4.4: Average AUC values and their standard deviations over the 5FCV for

each techniques. Design on four folds and evaluated on one fold on Canali.

Method Name Mean Std

BBC2 0.97398 0.008

IBC 0.97141 0.006

MinMax-Kappa 0.95884 0.005

ROCCH-Kappa 0.9716 0.008

EVBC 0.95074 0.006

MinMax-dCor 0.95426 0.006

ROCCH-dCor 0.96451 0.006

MinMax-dCov 0.9616 0.011

ROCCH-dCov 0.96451 0.006

62

Chapter 5

Conclusion

In this thesis, we proposed PBC, an efficient approach for selecting and combining

anomaly detectors, which relies on novel pruning techniques. Our pruning technique

is based on measure of agreement between detectors (here, we used Kappa, Distance

Covariance and Distance Correlation).

The main advantage in the design phase is that, the PBC is able to select

a small subset of diverse and accurate detectors for Boolean combinations, while

discarding the remaining ones. The PBC’s goal is to make a basket of detectors that

complements each other’s errors while still being accurate and meaningful.

Our pruning techniques we developed at the core of PBC rely on maximum

and minimum of each metrics (MinMax-Kappa, MinMac-dCor, MinMax-dCov) and

on the ROC convex hull (ROCCH-Kappa, ROCCH-dCor, ROCCH-dCov). This

approach enables our technique to aggressively prune redundant and trivial detectors.

The results on ADFA-LD system call data sets and Canali show that PBC with

both pruning techniques are capable of maintaining similar overall accuracy as mea-

sured by the ROC curves to that of IBC and BBC2 which we used for baseline cases.

Therefore, our proposed PBC-based ADS is able to prune and combine large number

63

of detectors without suffering from the exponential explosion in number of combina-

tions provided with the pairwise brute-force Boolean combination techniques. This

has been shown analytically (in the time complexity analysis) and confirmed in the

experimental results.

The core of our pruning technique is choosing a good measure of agreement.

Our experiments show that if we use a good and strong metric in combination with

either MinMax or ROCCH techniques; the PBC works well and leads to promising

results.

During the operational phase, PBC with both pruning techniques only pro-

vides two crisp detectors for each combination, while IBC requires an average of 11

detectors to achieve the same operating point (in terms of true and false positive

rates).

In addition to above advantages, the proposed PBC approach is also versatile

and can be applied to combine any soft or crisp detectors or two-class classifiers in

a wide range of applications that requires combination of decisions.

5.1 Future Research Opportunities

For future work, we can extend our pruning technique to many different levels. Here

we mainly focused only on pruning and combining in the decision level; however, there

is plenty of opportunities to investigate and incorporate this technique in different

levels; especially on the matching score level as you can see in Figure 3.1.

Another interesting direction is to investigate the potential improvements made

by re-combining the resulting combinations with the selected detectors. We can also

perform more iteration and find a solution to optimize the maximum number of

iterations that we apply on our data set. We recommend to explore other measures

of diversity to determine whether there is one good solution for every data set.

64

We also intend to implement this new techniques in TotalADS [54], a tool we

have developed to support multiple anomaly detectors. Finally, we need to investi-

gate how we can reduce the size of traces to enable better scalability. Example of

trace abstraction techniques are presented in [55,56].

65

Bibliography

[1] A. Soudi, W. Khreich, and A. Hamou-Lhadj, “An anomaly detection system

based on ensemble of detectors with effective pruning techniques,” in Software

Quality, Reliability and Security (QRS), 2015 IEEE International Conference

on, pp. 109–118, Aug 2015.

[2] Q. Tao and R. Veldhuis, “Threshold-optimized decision-level fusion and its ap-

plication to biometrics,” Pattern Recogn., vol. 42, pp. 823–836, May 2009.

[3] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection sys-

tem: A comprehensive review,” Journal of Network and Computer Applications,

vol. 36, no. 1, pp. 16 – 24, 2013.

[4] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff, “A sense of self for unix

processes,” in Security and Privacy, 1996. Proceedings., 1996 IEEE Symposium

on, pp. 120–128, May 1996.

[5] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using sys-

tem calls: alternative data models,” in Security and Privacy, 1999. Proceedings

of the 1999 IEEE Symposium on, pp. 133–145, 1999.

[6] S. Forrest, S. Hofmeyr, and A. Somayaji, “The evolution of system-call mon-

itoring,” in Computer Security Applications Conference, 2008. ACSAC 2008.

Annual, pp. 418–430, Dec 2008.

66

[7] G. Creech and J. Hu, “A semantic approach to host-based intrusion detection

systems using contiguousand discontiguous system call patterns,” Computers,

IEEE Transactions on, vol. 63, pp. 807–819, April 2014.

[8] E. Yolacan, J. Dy, and D. Kaeli, “System call anomaly detection using multi-

hmms,” in Software Security and Reliability-Companion (SERE-C), 2014 IEEE

Eighth International Conference on, pp. 25–30, June 2014.

[9] K. Tan and R. Maxion, “"why 6?" defining the operational limits of stide, an

anomaly-based intrusion detector,” in Security and Privacy, 2002. Proceedings.

2002 IEEE Symposium on, pp. 188–201, 2002.

[10] Y. Du, H. Wang, and Y. Pang, “A hidden markov models-based anomaly intru-

sion detection method,” in Intelligent Control and Automation, 2004. WCICA

2004. Fifth World Congress on, vol. 5, pp. 4348–4351, June 2004.

[11] B. Gao, H.-Y. Ma, and Y.-H. Yang, “Hmms (hidden markov models) based on

anomaly intrusion detection method,” in Machine Learning and Cybernetics,

2002. Proceedings. 2002 International Conference on, vol. 1, pp. 381–385 vol.1,

2002.

[12] X. Hoang and J. Hu, “An efficient hidden markov model training scheme for

anomaly intrusion detection of server applications based on system calls,” in

Networks, 2004. (ICON 2004). Proceedings. 12th IEEE International Confer-

ence on, vol. 2, pp. 470–474 vol.2, Nov 2004.

[13] J. Hu, “Host-based anomaly intrusion detection,” in Handbook of Information

and Communication Security, pp. 235–255, 2010.

67

[14] W. Wang, X.-H. Guan, and X.-L. Zhang, “Modeling program behaviors by hid-

den markov models for intrusion detection,” in Machine Learning and Cyber-

netics, 2004. Proceedings of 2004 International Conference on, vol. 5, pp. 2830–

2835, Aug 2004.

[15] X. Zhang, P. Fan, and Z. Zhu, “A new anomaly detection method based on

hierarchical hmm,” in Parallel and Distributed Computing, Applications and

Technologies, 2003. PDCAT’2003. Proceedings of the Fourth International Con-

ference on, pp. 249–252, Aug 2003.

[16] W. Khreich, E. Granger, R. Sabourin, and A. Miri, “Combining hidden markov

models for improved anomaly detection,” in Communications, 2009. ICC ’09.

IEEE International Conference on, pp. 1–6, June 2009.

[17] A. Sultana, A. Hamou-Lhadj, and M. Couture, “An improved hidden markov

model for anomaly detection using frequent common patterns,” in Communi-

cations (ICC), 2012 IEEE International Conference on, pp. 1113–1117, June

2012.

[18] S. Murtaza, A. Sultana, A. Hamou-Lhadj, and M. Couture, “On the comparison

of user space and kernel space traces in identification of software anomalies,” in

Software Maintenance and Reengineering (CSMR), 2012 16th European Con-

ference on, pp. 127–136, March 2012.

[19] J. Kittler, M. Hatef, R. Duin, and J. Matas, “On combining classifiers,” Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. 20, pp. 226–239,

Mar 1998.

[20] T. G. Dietterich, “Ensemble methods in machine learning,” in Proceedings of the

First International Workshop on Multiple Classifier Systems, pp. 1–15, 2000.

68

[21] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms. Wiley-

Interscience, 2004.

[22] Z.-H. Zhou, Ensemble methods: foundations and algorithms. CRC Press, 2012.

[23] W. Khreich, E. Granger, A. Miri, and R. Sabourin, “Boolean combination of

classifiers in the roc space,” in Pattern Recognition (ICPR), 2010 20th Interna-

tional Conference on, pp. 4299–4303, Aug 2010.

[24] M. Barreno, A. Cardenas, and D. Tygar, “Optimal roc curve for a combination of

classifiers.,” Advances in Neural Information Processing Systems (NIPS), MIT

Press, pp. 57–64, 2008.

[25] W. W. Cohen, “Fast effective rule induction,” in In Proceedings of the Twelfth

International Conference on Machine Learning, pp. 115–123, Morgan Kauf-

mann, 1995.

[26] G. Creech and J. Hu, “Generation of a new ids test dataset: Time to retire

the kdd collection,” in Wireless Communications and Networking Conference

(WCNC), 2013 IEEE, pp. 4487–4492, April 2013.

[27] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using sequences

of system calls,” Journal of Computer Security, vol. 6, pp. 151–180, 1998.

[28] A. P. Kosoresow and S. A. Hofmeyr, “Intrusion detection via system call traces,”

IEEE Software, vol. 14, pp. 35–42, 1997.

[29] A. B. Somaayaji, Operating System Stability and Security through Process Home-

ostasis. Phd thesis, University of New Mexico, 2002.

[30] W. L. S. Kevin D. Mitnick, The Art of Intrusion: The Real Stories Behind the

Exploits of Hackers, Intruders and Deceivers. Wiley, 2 2005.

69

[31] A. K. Ghosh, A. Schwartzbard, and M. Schatz, “Learning program behavior pro-

files for intrusion detection,” in Proceedings of the 1st Conference on Workshop

on Intrusion Detection and Network Monitoring - Volume 1, ID’99, pp. 6–6,

1999.

[32] Y. Liao and V. Vemuri, “Use of k-nearest neighbor classifier for intrusion detec-

tion1,” Computers & Security, vol. 21, no. 5, pp. 439 – 448, 2002.

[33] S. Jha, K. Tan, and R. A. Maxion, “Markov chains, classifiers, and intrusion

detection,” in Proceedings of the Computer Security Foundations Workshop,

pp. 206–219, 2001.

[34] C. Marceau, “Characterizing the behavior of a program using multiple-length

n-grams,” in Proceedings of the 2000 Workshop on New Security Paradigms,

pp. 101–110, 2000.

[35] C. Kruegel, D. Mutz, W. Robertson, and F. Valeur, “Bayesian event classifi-

cation for intrusion detection,” in Computer Security Applications Conference,

2003. Proceedings. 19th Annual, pp. 14–23, Dec 2003.

[36] F. Gao, J. Sun, and Z. Wei, “The prediction role of hidden markov model

in intrusion detection,” in Electrical and Computer Engineering, 2003. IEEE

CCECE 2003. Canadian Conference on, vol. 2, pp. 893–896 vol.2, May 2003.

[37] Y.-S. Chen and Y.-M. Chen, “Combining incremental hidden markov model

and adaboost algorithm for anomaly intrusion detection,” in Proceedings of the

ACM SIGKDD Workshop on CyberSecurity and Intelligence Informatics, pp. 3–

9, 2009.

[38] P. Wang, L. Shi, B. Wang, Y. Wu, and Y. Liu, “Survey on hmm based anomaly

intrusion detection using system calls,” in Computer Science and Education

(ICCSE), 2010 5th International Conference on, pp. 102–105, Aug 2010.

70

[39] “A survey of techniques for incremental learning of {HMM} parameters,” In-

formation Sciences, vol. 197, pp. 105 – 130, 2012.

[40] L. Rabiner, “A tutorial on hidden markov models and selected applications in

speech recognition,” Proceedings of the IEEE, vol. 77, pp. 257–286, Feb 1989.

[41] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization technique

occurring in the statistical analysis of probabilistic functions of markov chains,”

The Annals of Mathematical Statistics, vol. 41, no. 1, pp. 164–171, 1970.

[42] D.-Y. Yeung and Y. Ding, “Host-based intrusion detection using dynamic and

static behavioral models,” Pattern Recognition, vol. 36, no. 1, pp. 229 – 243,

2003.

[43] T. Fawcett, “An introduction to {ROC} analysis,” Pattern Recognition Letters,

vol. 27, no. 8, pp. 861 – 874, 2006.

[44] R. P. W. Duin, “Prtools - version 3.0 - a matlab toolbox for pattern recognition,”

in Proc. of SPIE, p. 1331, 2000.

[45] L. Kuncheva, “That elusive diversity in classifier ensembles.,” in Lecture Notes

in Computer Science, vol. 2652 of Lecture Notes in Computer Science, pp. 1126–

1138, Springer, 2003.

[46] D. D. Margineantu and T. G. Dietterich, “Pruning adaptive boosting,” in Pro-

ceedings of the Fourteenth International Conference on Machine Learning, ICML

’97, pp. 211–218, 1997.

[47] L. I. Kuncheva, “A bound on kappa-error diagrams for analysis of classifier

ensembles.,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 3, pp. 494–501, 2013.

[48] G. J. Székely, M. L. Rizzo, et al., “Brownian distance covariance,” The annals

of applied statistics, vol. 3, no. 4, pp. 1236–1265, 2009.

71

[49] D. Canali, A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda,

“A quantitative study of accuracy in system call-based malware detection,” in

Proceedings of the 2012 International Symposium on Software Testing and Anal-

ysis, pp. 122–132, 2012.

[50] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion detection

systems,” in Proceedings of the 9th ACM Conference on Computer and Com-

munications Security, CCS ’02, pp. 255–264, 2002.

[51] S. Bhatkar, A. Chaturvedi, and R. Sekar, “Dataflow anomaly detection,” in

Security and Privacy, 2006 IEEE Symposium on, pp. 15 pp.–62, May 2006.

[52] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong, “Anomaly detection

using call stack information,” in Security and Privacy, 2003. Proceedings. 2003

Symposium on, pp. 62–75, May 2003.

[53] U. Larson, D. Nilsson, E. Jonsson, and S. Lindskog, “Using system call informa-

tion to reveal hidden attack manifestations,” in Security and Communication

Networks (IWSCN), 2009 Proceedings of the 1st International Workshop on,

pp. 1–8, May 2009.

[54] S. Murtaza, A. Hamou-Lhadj, W. Khreich, and M. Couture, “Total ads: Auto-

mated software anomaly detection system,” in Source Code Analysis and Manip-

ulation (SCAM), 2014 IEEE 14th International Working Conference on, pp. 83–

88, Sept 2014.

[55] A.Hamou-Lhadj, “The concept of trace summarization,” in Proceedings of the

1st International Workshop on Program Comprehension through Dynamic Anal-

ysis (PCODA’05), pp. 43–47, 2005.

[56] S. Murtaza, W. Khreich, A. Hamou-Lhadj, and M. Couture, “A host-based

anomaly detection approach by representing system calls as states of kernel

72

modules,” in Software Reliability Engineering (ISSRE), 2013 IEEE 24th Inter-

national Symposium on, pp. 431–440, Nov 2013.

73

	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	System Calls
	HMM-based Anomaly Detection using System Call Sequences

	Detector Combination
	Boolean Combination of Detectors in the ROC Space
	Synthetic Data Set

	Pruning
	Introduction
	Pruning Boolean Combination (PBC) Approach
	Complexity Analysis

	Experiment and Results
	Experiments on System Call Data set
	Results (ADFA)
	Results (Canali)
	Threats to Validity

	Conclusion
	Future Research Opportunities

