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Abstract—Malware detection on mobile phones involves 

analysing and matching large amount of data streams against a 

set of known malware signatures. Unfortunately, as the 

number of threats grows continuously, the number of malware 

signatures grows proportionally. This is time consuming and 

leads to expensive computation costs, especially for mobile 

devices where memory, power and computation capabilities 

are limited. As the security threat level is getting worse, 

parallel computation capabilities for mobile phones is getting 

better with the evolution of mobile graphical processing units 

(GPUs). In this paper, we discuss how we can benefit from the 

evolving parallel processing capabilities of mobile devices in 

order to accelerate malware detection on Android mobile 

phones. We have designed and implemented a parallel host-

based anti-malware for mobile devices that exploits the 

computation capabilities of mobile GPUs. A series of 

computation and memory optimization techniques are 

proposed to increase the detection throughput. The results 

suggest that mobile graphic cards can be used effectively to 

accelerate malware detection for mobile phones. 

 

Index Terms—Malware detection, Parallel processing, Multi-

pattern matching, Trace analysis of mobile phones 

I. INTRODUCTION 

Smartphones or mobile phones are more and more used in 
personal and business life. Their popularity has made them an 
attractive target for malicious attacks. In fact, the number of 
malicious software and threats is growing significantly for 
mobile devices. Recently, Kaspersky Lap reported around 10 
million malwares were detected between 2012 and 2013, where 
98.10% of all detected malwares in 2013 targeted Android 
systems [1].  

To ensure a high security level, a typical anti-malware 
matches streams of data, generated from mobile devices, 
against a large set of known malware signatures, using multi-
matching algorithms. Most of these algorithms use a 
Deterministic Finite Automata (DFA) structure. The main 
advantage of using a DFA structure is that we can check the 
presence of malicious signatures in a single pass of the input 
data stream. As the number of malwares grows, the number of 
signatures also increases, hindering scalability of mobile anti-
malware systems due to reduced memory and computing 
capabilities of mobile devices. A common solution is to offload 
malware detection processing to an external server. The 
reliance on an external server, however, exposes malware 
detection systems to connectivity problems. 

In this paper, we explore how mobile GPUs (Graphics 
Processing Units), combined with parallelization techniques, 
can be used to design an anti-malware system that resides on 

the mobile device itself.  Both computational capabilities and 
memory specifications of mobile GPUs are rapidly evolving, 
which makes more intensive applications and GPGPU 
(General-Purpose GPU) processing possible. For instance, the 
performance of ARM’s mobile graphic cards has been 
improved five times in the last two years [2]. As the System-
on-Chip (SoC) industry gained momentum from growing cell 
phone sales, ARM introduced more sophisticated GPUs like 
Mali T-658, which is one of the most performant ARM GPUs 
for mobile devices. It is scalable up to eight cores and gained 
up to 10x graphics performance compared to mainstream Mali-
400 MP implementations [2]. 

In this paper, we discuss how we can effectively use the 
power of parallel processing on mobile GPUs to enhance the 
security level of the whole system. To our knowledge, this is 
the first time the use of mobile GPUs for security is attempted. 
More precisely, we show how mobile GPUs can be used to 
accelerate malware detection using multi-pattern matching 
techniques. We also investigate techniques for compacting 
DFA structures in order to scale over the reduced memory of 
mobile GPUs.  

In summary, the main contributions of the paper are as 
follows: We have designed and implemented a high 
performance parallel host-based anti-malware on mobile GPU 
using behavioral detection techniques. We implemented a 
series of optimizations to deal with low memory of mobile 
devices and the ever-increasing computing and memory 
requirements of malware detection. In order to improve the 
performance of our prototype, we focus on the efficient use and 
placement of the different data in the hierarchical mobile GPU 
memory and reduce the average latencies of memory access.  

II. BACKGROUND 

Multi-pattern matching algorithms have extensively been 
used by intrusion detection systems (IDS) and malware 
scanners. GPUs are used in accelerating multi-pattern matching 
due to their high efficiency level and the evolving computation 
capabilities compared to CPUs. In this section we introduce the 
Aho-Corasick (AC for short) [4] multi-pattern matching 
algorithm which is the core of our detection framework. Then, 
we introduce the OpenCL programming model that we used as 
well as some mobile malware detection paradigms.  

A. Aho-Corasick Pattern Matching Algorithm 

 The Aho-Corasick [4] algorithm has been widely used for 
multiple pattern matching. This algorithm is simple and 
capable to locate a finite set of key words within a given input 
stream in a single pass. The algorithm consists of two steps: 
pre-processing and processing. During pre-processing, a 



deterministic finite automaton structure is built from given 
patterns. Then, in the processing step, the engine detects the 
presence of patterns from an input string in a single pass. 

 

 
Fig. 1. AC state machine relative to patterns "AB", 

"ABC", "BEKE", and "EK". 

In order to reduce outgoing transitions of each state, AC 
DFA integrates another kind of transitions, defined as failure 
transitions. Failure transitions are represented by dotted lines in 
Figure 1. They are used to backtrack any pattern that starts 
from any position of the input string. The DFA structure can be 
described by three tables: the state transition table (where valid 
transitions are stored), the failure transition table containing the 
reference of the different failure transitions in the DFA, and 
finally the output states table where final states are stored. 
Given the input character from an input stream and the current 
state of the finite state machine, a valid transition is checked by 
the machine to determine the next state. If there is no valid 
transition, a redirection to the state pointed by the failure 
transition is done. So the engine reads the same input character 
until it a valid transition is found. 

B. OpenCL programming model 

OpenCL [3] is an open industry standard and a framework 
for parallel programming of heterogeneous systems composed 
of devices with different capabilities such as CPUs and GPUs. 
The OpenCL platform model consists of a host and one or 
more OpenCL devices. Each device contains one or more 
compute unit. Each compute unit contains several processing 
elements. The host offloads parallel tasks to a device within 
special functions called kernels that are compiled at runtime by 
an OpenCL driver. Parallel jobs are executed by threads called 
work items. A hierarchical memory model is defined by 
OpenCL containing several types of memories like global, 
local and private memories. In order to achieve higher 
performance and maximum use of the limited computation 
resources on a mobile platform, partitioning the tasks between 
CPU and GPU, exploring efficient algorithmic parallelism, and 
optimizing the memory access are needed to be carefully 
considered.  

III.  ARCHITECTURE 

Our framework, which is illustrated by Figure 2, is divided 
into three blocks: pre-processing, trace collection, and 
processing block.   

The pre-processing block is located outside the mobile 
phone. It uses as input malware signatures. In our architecture, 
we use a combination of patterns of raw system calls reflecting 
malicious behaviour as signatures [5]. We can also use for 
example bytecode signatures or permissions’ patterns. We 
convert malware signatures into DFA structure that will be 

used later by a multi-pattern matching algorithm in order to 
detect the presence of a malware on the device. With a DFA 
structure, we can check the presence of malicious signatures in 
a single pass of the input data stream. 

 
Fig. 2. The framework architecture 

Figure 3 shows the transition states matrix TSM that 
illustrates the AC automaton structure. The row index 
corresponds to the automaton states and the column index 
denotes system calls index. Thus, for a given state i and an 
input system call j TSM[i][j] indicates the next state to reach. 
As the number of malwares grows, the number of signatures 
also increases. As a result, the DFA structure becomes memory 
consuming and needs to be compacted in order to scale with 
the small device memory. Many DFA compacting techniques 
can be exploited such as eliminating failure transitions or using 
special state encoding scheme to allow memory efficient use of 
DFA. This issue will be detailed in the next section.  

The second block of our architecture is the trace collection 
block. It is responsible for recording application events and 
their behaviour by tracking the different system calls made by 
the processes on the embedded devices at runtime. We use for 
this goal the Strace tool [6], which is a useful diagnostic and 
debugging tool that records and intercepts system calls with 
their arguments. Only raw system calls are kept in our trace 
files. These traces will be scanned in parallel by the processing 
block in order to detect a malicious behaviour. 

The core block of our architecture is the processing block. It 
is responsible for analysing application traces and 
communicating data to the GPU for further processing. The 
CPU offloads the stream of an application’s traces to the GPU. 
The input stream is divided into several segments. Every work-
group is responsible for scanning a given segment. Each byte 
of the input stream segment is allocated to a thread that checks 
the presence of malicious pattern from its starting position. If 
there is no valid transition, the thread terminates and starts the 
check from another position which is equal to the current 
starting position plus the total thread number of the processing 
block. As a result, there is no need to keep failure transitions on 
the DFA since GPU threads do not need to backtrack the state 
machine.  

In this section, we discuss several optimization techniques in 
order to increase the performance of mobile malware detection 
using GPUs. These optimizations are structured into two parts: 
host code optimizations and kernel code optimizations.    

A. Host code optimizations  

Total memory requirements optimization: With the ever 
increasing number of malware signatures and the small 



memory size of mobile GPUs, we need to optimize memory 
usage in order to achieve a high security level on a mobile 
phone. In our framework, three DFA structures compacting 
techniques are applied to deal with more malware signatures. 
The first one consists of eliminating failure transitions since we 
allocate a thread for each input string byte that checks the 
presence of a pattern from its start position. Then we eliminate 
the final states table by reordering the numbering of such states 
and allocating for each one a number greater than the total 
states number [7]. Finally, we apply P3FSM [8] algorithm on 
the DFA structure to have a more compacted dataset. This 
technique offers an effective coding of state machine and deals 
with the excessive memory requirement of a DFA structure. 

 
Fig. 3. State Transition Matrix 

IV. OPTIMIZATION TECHNIQUES  

 

Load balancing configuration: It is an important aspect of 
OpenCL device processing elements to be performed on both 
host and device levels. At the host level, we have to choose 
carefully how to send trace files to the device in order to 
perform parallel scan. Three scenarios are considered and 
detailed in the next section. For the device side, every kernel is 
executed with the specification of the work-items distribution 
size. This is performed by specifying tow parameters, which 
are the global work size and the local work size. The first one is 
the number of work-items to be processed for each dimension 
and the second one is the number of work-items in a work-
group for each dimension. To achieve high performance, it is 
recommended to maximize the global work size in order to 
fully utilize the GPU. For the local work size, the OpenCL 
developer’s guide recommends to put it to Null if no data is 
shared between work-items, and let the driver device determine 
the most suitable work group size value. In our case, work-
items are sharing data. So we have to determine explicitly local 
work size in order to enhance the performance of our 
architecture.   

B. Kernel code optimizations : effective use of memory types:  

Typical GPUs have hierarchical memory model 
architecture. There are four types of memories: global, 
constant, local and private. Global memory is visible to all the 
compute units on a device.  All transfers between the host and 
the device are transfers to and from the device's global 
memory. Constant memory is also visible to all of the compute 
units on the device. In addition, any element of constant 
memory is accessible by all work-items. Local memory is a 
memory that belongs to a compute-unit and shared by all the 
work-items within a work-group. The private memory belongs 
to a work-item and is not accessible for other work-items. The 
access to constant memory is much faster than global memory 

access. That’s why we have to choose carefully where to locate 
our data in order to maximize the framework performance. 

V. EVALUATION 

In this section, we evaluate the effectiveness of our 
architecture to detect malwares on a mobile device using GPU 
and parallel processing. For our experiments, we used 
Qualcomm Snapdragon  801 [9], quad-core CPU at 2.5 GHz 
and a Qualcomm Adreno 330 GPU integrated on a Sony Xperia 
mobile phone. We use, as benchmark, a dataset of malicious 
system calls patterns that we generated from different malware 
families. To evaluate the performance of our framework, we 
measure the throughput and acceleration rate over the 
sequential approach. The adjustment of threads’ number is 
studied in order to guarantee the maximum use of GPU and 
achieve higher throughput. To assess memory usage and 
throughput, several configurations are measured in our 
experiments. In our experiments, the system throughput is 
defined as: 

 
Throughput = Input Stream Size / (Thost/device+TGPU+Tdevice/host)     

(1) 
 

where Thost/device is the transfer data time from host to the GPU, 
TGPU is the processing time of input stream data on GPU, and 
Tdevice/host is the transfer data time from GPU to the host. 

The number of threads: In this experiment, we focus on the 
regulation of local work-group size. It must be specified before 
queuing any kernel that is executed on the device. For each 
configuration, we calculate the relative throughput as described 
by Equation (1). Figure 4 shows that the best throughput is 
obtained with 16 threads per work-group. Then we notice that 
the more we increase the number of thread, the worse the 
throughput.  

 
Fig. 4. Local work-group resizing 

Memory types: We compared several memory configurations 
that are listed in Table 1. The data used are: transition_table 
which contains information about the different transitions of 
the DFA structure, the input_buffer which contains application 
traces that will be analyzed and the result_buffer that contains 
processing results. As results must be sent to the CPU and 
written to the result_buffer, it always must be placed on the 
global memory. Both constant and local memory size is much 
lower than the GPU global memory. As the size of 
transition_table is important, we cannot place it as a full block 
in the constant memory neither in local memory. Only its first 
part transition_tableP1 is placed on these memory types for 
some configurations listed on Table 1. The second part of the 
table transition_tableP2 is located in global memory for the 
same configurations.  



Table 1. Different memory allocation configurations for the framework 
data structures 

Figure 5 shows the relative throughput of the different 
configurations. As we can see, the best throughput is obtained 
with Config4. The constant memory access time is faster than 
the access time of global memory. Comparing to the second 
configuration, with the use of constant memory, a gain of 
around 19% in performance is obtained. We keep this type of 
configuration in the following experiments.  

Acceleration: We compare the performance of our framework 
with one that does not parallel processing. As we can see in 
Figure 5, all configurations of the parallel processing perform 
better than the serial processing.  An acceleration of around 
three times is obtained with the parallel processing on the 
mobile GPU using Conf4.  

 
Fig. 5. Serial processing throughput vs parallel processing 

Applications trace files scanning management: In this 
section, we experiment with different scenarios of scanning 
trace files for every application. The first scenario is to consider 
a fixed length GPU input buffer to which we send sequentially 
trace files. The input buffer is dedicated to only one trace file 
per application at the same time. Every application traces will 
be profiled in parallel in order to detect a malicious behavior.  

The second scenario is almost the same as the first one. The 
only difference consists in the use of the input buffer. We send 
sequentially trace files to the input buffer. If, at a given time, 
there is a space left in the input buffer we send immediately the 
following application trace file. As a result the input buffer will 
be always fully used except at the end of scanning the final 
application trace file.  

The third scenario is to consider also a fixed length GPU 
input buffer, but that has multiple entries. In other words, we 
send to the input buffer multiple application trace files 
simultaneously and profile them in parallel. In order to estimate 
the optimal number of applications that can be scanned in 
parallel we collected system calls traces from 100. 

Android applications were executed normally during 3 
minutes each on a Sony Xperia Z smartphone operating on 

Android 4.4.4. For the third scenario, we considered input 
stream buffers divided by 5, 10 and 15 segments, and for every 
buffer each segment is dedicated to an input application trace 
file. GPU profiling threads are equally distributed for each 
segment. More threads will be allocated per input buffer 
segment in order to have a balanced distribution of the parallel 
scanning processing. We found that the third scenario performs 
well when the input buffer is divided to 10 segments. As a 
result, the optimal number of applications that we can scan in 
parallel with this configuration is 10. 

In order to study the effectiveness of the three scenarios we 
considered different sizes of input stream buffers. As we can 
see in Figure 6, the third scenario has always the best 
throughput. In fact, for the first scenario, there is waste of 
allocated resources because the input buffer is not fully 
exploited. Moreover for the tow first configurations more data 
transfers are required to process all the application traces. As a 
result, the processing overhead becomes more important with 
such scenarios. On the other hand, the parallel processing of 
applications trace files simultaneously gives much less 
processing overhead due to its effectiveness in exploiting the 
GPU input buffer allocation and processing. We notice that the 
bigger the input buffer is, the faster the total execution time 
become. In fact, several data large transfers between the CPU 
and GPU are much better than many small ones. Finally, we 
notice that the framework throughput is dominated by data 
transfers between the host and the device which consist of 70% 
of the total processing time. 

 
Fig. 6. Performance of the trace files scanning scenarios 

Table 2. Memory requirement of PFAC and P3FSM 

Number of patterns PFAC (KB) P3FSM (KB) 

2000 67677 8922 

2200 74398 9234 

10000 678937 50765 

16000 806554 60432 

17600 809321 74380 

Memory requirement: Storing a DFA structure on the GPU is 
memory consuming especially that mobile GPU memory is 
small. Table 2 lists the difference in memory requirement 
between PFAC DFA and P3FSM. The best result is obtained 
with P3FSM that compacts the DFA structure by around 10 
times comparing to standard PFAC DFA. With PFAC, the limit 
number of patterns that we can work with on our mobile GPU 
is 2200 patterns. Applying P3FSM compacting technique 
allows as to work with 17600 patterns witch is much better. 

VI. RELATED WORK 

Parallel processing techniques have been widely used over 
the years in order to improve the performance of multi-pattern 

Memory 
Config. 

Global 
Memory 

Constant  
Memory 

Local       
Memory 

 Conf1 transition_table 

input_buffer 

result_buffer 
NA NA 

 Conf2 transition_table 

result_buffer 
NA input_buffer 

 

 Conf3 transition_table 
result_buffer 

input_buffer NA 

 Conf4 transition_tableP2 

result_buffer 

transition_tableP1 

 

input_buffer 

 

 Conf5 transition_tableP2 

input_buffer 

result_buffer 

transition_tableP1 

 

NA 

 Conf6 transition_tableP2 

result_buffer 

input_buffer 

 

transition_t

ableP1 



matching algorithms and this is due to the rapid advent of 
GPGPUs. Both hardware and software techniques are used to 
accelerate multi-pattern searching. On one hand, common 
hardware supported techniques use GPU [7][10][8], FPGA [11] 
as well as Cell/B.E processors [12]. Parallel multi-pattern 
matching software based approaches [13][14] exploits 
multicore processors to accelerate the overall processing.   

Perhaps, the first implementation of parallel regular 
expression searching and multi-pattern matching was in Gnort 
[15][16]. For performance issues, Gnort utilizes a multi-pattern 
matching technique that uses a high memory DFA structure. A 
maximum throughput of 2.3 GB/s is achieved. Many studdies 
have been conducted to optimize the Aho-Corasick [4] string 
matching algorithm. An example is the Parallel Failureless-AC 
Algorithm (PFAC) [8]. There, all failure transitions of the DFA 
were removed so that there is no need to backtrack the state 
machine used, reducing the complexity of the algorithm. 
Arudchutha et al. [13] proposed an adaptation of the Aho-
Corasick algorithm for multicore CPUs using POSIX thread 
utility. The pattern-set is divided into smaller ones and 
allocated for each CPU thread. This approach performs better 
than Herath et al. [14] implementation where they applied the 
same techniques but considered smaller deterministic state 
machines with failure transitions. Tran et al. [17] proposed a 
parallel implementation of the Aho-Corasick algorithm on an 
Nvidia desktop GPU that focuses on efficient scheduling of the 
off-ship global memory loads and the storage in the desktop 
GPU global memory. A speed-up of 222x was achieved 
compared to a sequential version of the same algorithm running 
on a 2.2Ghz Core2Duo Intel processor. Huang et al. [10] 
implemented a Wu-Manber-like multi-pattern matching 
algorithm on GPUs and achieved a maximum speed twice as 
fast as the modified Wu-Manber algorithm used in Snort [18]. 
Vasiliadis et al. [19] worked on a massively parallel antivirus 
engine based on ClamAV [20], called Gravity. A parallel pre-
scanning of patterns is done through the Geforce GTX GPU, 
reaching a throughput of 40GB/s.  

Many DFA compacting techniques have been proposed in 
the literature. Compression and bitmap [21] were proposed to 
improve the memory efficiency of the Aho-Corasick algorithm. 
Tan and Sherwood [22] introduced a memory-efficient, multi-
pattern matching engine based on the bit-split techniques and 
string partitioning. Vespa et al [8] proposed a memory-
efficient, portable and scalable string matching engine called 
P3FSM. One entry in memory is required for each state. The 
code for each state contains all the information about the 
possible next state. 

VII. CONCLUSION  

In this paper, we have designed and implemented a parallel 
host-based anti-malware for Android mobile devices based on 
the use of GPUs. Our framework capitalizes on the use of the 
highly threaded architecture of mobile GPUs, as well as the 
parallel nature of malware scanning to achieve end-to-end 
throughput in the order of 333 Mbits/s. This result is three 
times faster than the serial version running on a mobile CPU. 
To accelerate mobile malware detection on GPU, we used 
different types of GPU memories and explored the optimal 
buffer size for input streams data as well as the best scanning 
process scenario. In order to overcome the problem of the low 
memory of mobile GPUs and to deal with more malware 
signatures, series of memory compacting techniques were 
applied.  
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