
On the Use of Mobile GPU for Accelerating
Malware Detection Using Trace Analysis

Manel Abdellatif, Chamseddine Talhi
Depart. of Software Engineering and IT

École de Technologie Supérieure
Montréal, Québec, Canada

manel.abdellatif.1@ens.etsmtl.ca
Chamseddine.Talhi@etsmtl.ca

Abdelwahab Hamou-Lhadj
Software Behaviour Analysis (SBA)

Research Lab
ECE, Concordia University
Montréal, Québec, Canada

abdelw@ece.concordia.ca

Michel Dagenais
Department of Computer

Engineering
École Polytechnique de Montréal

Montréal, Québec, Canada
michel.dagenais@polymtl.ca

Abstract—Malware detection on mobile phones involves

analysing and matching large amount of data streams against a

set of known malware signatures. Unfortunately, as the

number of threats grows continuously, the number of malware

signatures grows proportionally. This is time consuming and

leads to expensive computation costs, especially for mobile

devices where memory, power and computation capabilities

are limited. As the security threat level is getting worse,

parallel computation capabilities for mobile phones is getting

better with the evolution of mobile graphical processing units

(GPUs). In this paper, we discuss how we can benefit from the

evolving parallel processing capabilities of mobile devices in

order to accelerate malware detection on Android mobile

phones. We have designed and implemented a parallel host-

based anti-malware for mobile devices that exploits the

computation capabilities of mobile GPUs. A series of

computation and memory optimization techniques are

proposed to increase the detection throughput. The results

suggest that mobile graphic cards can be used effectively to

accelerate malware detection for mobile phones.

Index Terms—Malware detection, Parallel processing, Multi-

pattern matching, Trace analysis of mobile phones

I. INTRODUCTION

Smartphones or mobile phones are more and more used in
personal and business life. Their popularity has made them an
attractive target for malicious attacks. In fact, the number of
malicious software and threats is growing significantly for
mobile devices. Recently, Kaspersky Lap reported around 10
million malwares were detected between 2012 and 2013, where
98.10% of all detected malwares in 2013 targeted Android
systems [1].

To ensure a high security level, a typical anti-malware
matches streams of data, generated from mobile devices,
against a large set of known malware signatures, using multi-
matching algorithms. Most of these algorithms use a
Deterministic Finite Automata (DFA) structure. The main
advantage of using a DFA structure is that we can check the
presence of malicious signatures in a single pass of the input
data stream. As the number of malwares grows, the number of
signatures also increases, hindering scalability of mobile anti-
malware systems due to reduced memory and computing
capabilities of mobile devices. A common solution is to offload
malware detection processing to an external server. The
reliance on an external server, however, exposes malware
detection systems to connectivity problems.

In this paper, we explore how mobile GPUs (Graphics
Processing Units), combined with parallelization techniques,
can be used to design an anti-malware system that resides on

the mobile device itself. Both computational capabilities and
memory specifications of mobile GPUs are rapidly evolving,
which makes more intensive applications and GPGPU
(General-Purpose GPU) processing possible. For instance, the
performance of ARM’s mobile graphic cards has been
improved five times in the last two years [2]. As the System-
on-Chip (SoC) industry gained momentum from growing cell
phone sales, ARM introduced more sophisticated GPUs like
Mali T-658, which is one of the most performant ARM GPUs
for mobile devices. It is scalable up to eight cores and gained
up to 10x graphics performance compared to mainstream Mali-
400 MP implementations [2].

In this paper, we discuss how we can effectively use the
power of parallel processing on mobile GPUs to enhance the
security level of the whole system. To our knowledge, this is
the first time the use of mobile GPUs for security is attempted.
More precisely, we show how mobile GPUs can be used to
accelerate malware detection using multi-pattern matching
techniques. We also investigate techniques for compacting
DFA structures in order to scale over the reduced memory of
mobile GPUs.

In summary, the main contributions of the paper are as
follows: We have designed and implemented a high
performance parallel host-based anti-malware on mobile GPU
using behavioral detection techniques. We implemented a
series of optimizations to deal with low memory of mobile
devices and the ever-increasing computing and memory
requirements of malware detection. In order to improve the
performance of our prototype, we focus on the efficient use and
placement of the different data in the hierarchical mobile GPU
memory and reduce the average latencies of memory access.

II. BACKGROUND

Multi-pattern matching algorithms have extensively been
used by intrusion detection systems (IDS) and malware
scanners. GPUs are used in accelerating multi-pattern matching
due to their high efficiency level and the evolving computation
capabilities compared to CPUs. In this section we introduce the
Aho-Corasick (AC for short) [4] multi-pattern matching
algorithm which is the core of our detection framework. Then,
we introduce the OpenCL programming model that we used as
well as some mobile malware detection paradigms.

A. Aho-Corasick Pattern Matching Algorithm

 The Aho-Corasick [4] algorithm has been widely used for
multiple pattern matching. This algorithm is simple and
capable to locate a finite set of key words within a given input
stream in a single pass. The algorithm consists of two steps:
pre-processing and processing. During pre-processing, a

deterministic finite automaton structure is built from given
patterns. Then, in the processing step, the engine detects the
presence of patterns from an input string in a single pass.

Fig. 1. AC state machine relative to patterns "AB",

"ABC", "BEKE", and "EK".

In order to reduce outgoing transitions of each state, AC
DFA integrates another kind of transitions, defined as failure
transitions. Failure transitions are represented by dotted lines in
Figure 1. They are used to backtrack any pattern that starts
from any position of the input string. The DFA structure can be
described by three tables: the state transition table (where valid
transitions are stored), the failure transition table containing the
reference of the different failure transitions in the DFA, and
finally the output states table where final states are stored.
Given the input character from an input stream and the current
state of the finite state machine, a valid transition is checked by
the machine to determine the next state. If there is no valid
transition, a redirection to the state pointed by the failure
transition is done. So the engine reads the same input character
until it a valid transition is found.

B. OpenCL programming model

OpenCL [3] is an open industry standard and a framework
for parallel programming of heterogeneous systems composed
of devices with different capabilities such as CPUs and GPUs.
The OpenCL platform model consists of a host and one or
more OpenCL devices. Each device contains one or more
compute unit. Each compute unit contains several processing
elements. The host offloads parallel tasks to a device within
special functions called kernels that are compiled at runtime by
an OpenCL driver. Parallel jobs are executed by threads called
work items. A hierarchical memory model is defined by
OpenCL containing several types of memories like global,
local and private memories. In order to achieve higher
performance and maximum use of the limited computation
resources on a mobile platform, partitioning the tasks between
CPU and GPU, exploring efficient algorithmic parallelism, and
optimizing the memory access are needed to be carefully
considered.

III. ARCHITECTURE

Our framework, which is illustrated by Figure 2, is divided
into three blocks: pre-processing, trace collection, and
processing block.

The pre-processing block is located outside the mobile
phone. It uses as input malware signatures. In our architecture,
we use a combination of patterns of raw system calls reflecting
malicious behaviour as signatures [5]. We can also use for
example bytecode signatures or permissions’ patterns. We
convert malware signatures into DFA structure that will be

used later by a multi-pattern matching algorithm in order to
detect the presence of a malware on the device. With a DFA
structure, we can check the presence of malicious signatures in
a single pass of the input data stream.

Fig. 2. The framework architecture

Figure 3 shows the transition states matrix TSM that
illustrates the AC automaton structure. The row index
corresponds to the automaton states and the column index
denotes system calls index. Thus, for a given state i and an
input system call j TSM[i][j] indicates the next state to reach.
As the number of malwares grows, the number of signatures
also increases. As a result, the DFA structure becomes memory
consuming and needs to be compacted in order to scale with
the small device memory. Many DFA compacting techniques
can be exploited such as eliminating failure transitions or using
special state encoding scheme to allow memory efficient use of
DFA. This issue will be detailed in the next section.

The second block of our architecture is the trace collection
block. It is responsible for recording application events and
their behaviour by tracking the different system calls made by
the processes on the embedded devices at runtime. We use for
this goal the Strace tool [6], which is a useful diagnostic and
debugging tool that records and intercepts system calls with
their arguments. Only raw system calls are kept in our trace
files. These traces will be scanned in parallel by the processing
block in order to detect a malicious behaviour.

The core block of our architecture is the processing block. It
is responsible for analysing application traces and
communicating data to the GPU for further processing. The
CPU offloads the stream of an application’s traces to the GPU.
The input stream is divided into several segments. Every work-
group is responsible for scanning a given segment. Each byte
of the input stream segment is allocated to a thread that checks
the presence of malicious pattern from its starting position. If
there is no valid transition, the thread terminates and starts the
check from another position which is equal to the current
starting position plus the total thread number of the processing
block. As a result, there is no need to keep failure transitions on
the DFA since GPU threads do not need to backtrack the state
machine.

In this section, we discuss several optimization techniques in
order to increase the performance of mobile malware detection
using GPUs. These optimizations are structured into two parts:
host code optimizations and kernel code optimizations.

A. Host code optimizations

Total memory requirements optimization: With the ever
increasing number of malware signatures and the small

memory size of mobile GPUs, we need to optimize memory
usage in order to achieve a high security level on a mobile
phone. In our framework, three DFA structures compacting
techniques are applied to deal with more malware signatures.
The first one consists of eliminating failure transitions since we
allocate a thread for each input string byte that checks the
presence of a pattern from its start position. Then we eliminate
the final states table by reordering the numbering of such states
and allocating for each one a number greater than the total
states number [7]. Finally, we apply P3FSM [8] algorithm on
the DFA structure to have a more compacted dataset. This
technique offers an effective coding of state machine and deals
with the excessive memory requirement of a DFA structure.

Fig. 3. State Transition Matrix

IV. OPTIMIZATION TECHNIQUES

Load balancing configuration: It is an important aspect of
OpenCL device processing elements to be performed on both
host and device levels. At the host level, we have to choose
carefully how to send trace files to the device in order to
perform parallel scan. Three scenarios are considered and
detailed in the next section. For the device side, every kernel is
executed with the specification of the work-items distribution
size. This is performed by specifying tow parameters, which
are the global work size and the local work size. The first one is
the number of work-items to be processed for each dimension
and the second one is the number of work-items in a work-
group for each dimension. To achieve high performance, it is
recommended to maximize the global work size in order to
fully utilize the GPU. For the local work size, the OpenCL
developer’s guide recommends to put it to Null if no data is
shared between work-items, and let the driver device determine
the most suitable work group size value. In our case, work-
items are sharing data. So we have to determine explicitly local
work size in order to enhance the performance of our
architecture.

B. Kernel code optimizations : effective use of memory types:

Typical GPUs have hierarchical memory model
architecture. There are four types of memories: global,
constant, local and private. Global memory is visible to all the
compute units on a device. All transfers between the host and
the device are transfers to and from the device's global
memory. Constant memory is also visible to all of the compute
units on the device. In addition, any element of constant
memory is accessible by all work-items. Local memory is a
memory that belongs to a compute-unit and shared by all the
work-items within a work-group. The private memory belongs
to a work-item and is not accessible for other work-items. The
access to constant memory is much faster than global memory

access. That’s why we have to choose carefully where to locate
our data in order to maximize the framework performance.

V. EVALUATION

In this section, we evaluate the effectiveness of our
architecture to detect malwares on a mobile device using GPU
and parallel processing. For our experiments, we used
Qualcomm Snapdragon 801 [9], quad-core CPU at 2.5 GHz
and a Qualcomm Adreno 330 GPU integrated on a Sony Xperia
mobile phone. We use, as benchmark, a dataset of malicious
system calls patterns that we generated from different malware
families. To evaluate the performance of our framework, we
measure the throughput and acceleration rate over the
sequential approach. The adjustment of threads’ number is
studied in order to guarantee the maximum use of GPU and
achieve higher throughput. To assess memory usage and
throughput, several configurations are measured in our
experiments. In our experiments, the system throughput is
defined as:

Throughput = Input Stream Size / (Thost/device+TGPU+Tdevice/host)

(1)

where Thost/device is the transfer data time from host to the GPU,
TGPU is the processing time of input stream data on GPU, and
Tdevice/host is the transfer data time from GPU to the host.

The number of threads: In this experiment, we focus on the
regulation of local work-group size. It must be specified before
queuing any kernel that is executed on the device. For each
configuration, we calculate the relative throughput as described
by Equation (1). Figure 4 shows that the best throughput is
obtained with 16 threads per work-group. Then we notice that
the more we increase the number of thread, the worse the
throughput.

Fig. 4. Local work-group resizing

Memory types: We compared several memory configurations
that are listed in Table 1. The data used are: transition_table
which contains information about the different transitions of
the DFA structure, the input_buffer which contains application
traces that will be analyzed and the result_buffer that contains
processing results. As results must be sent to the CPU and
written to the result_buffer, it always must be placed on the
global memory. Both constant and local memory size is much
lower than the GPU global memory. As the size of
transition_table is important, we cannot place it as a full block
in the constant memory neither in local memory. Only its first
part transition_tableP1 is placed on these memory types for
some configurations listed on Table 1. The second part of the
table transition_tableP2 is located in global memory for the
same configurations.

Table 1. Different memory allocation configurations for the framework
data structures

Figure 5 shows the relative throughput of the different
configurations. As we can see, the best throughput is obtained
with Config4. The constant memory access time is faster than
the access time of global memory. Comparing to the second
configuration, with the use of constant memory, a gain of
around 19% in performance is obtained. We keep this type of
configuration in the following experiments.

Acceleration: We compare the performance of our framework
with one that does not parallel processing. As we can see in
Figure 5, all configurations of the parallel processing perform
better than the serial processing. An acceleration of around
three times is obtained with the parallel processing on the
mobile GPU using Conf4.

Fig. 5. Serial processing throughput vs parallel processing

Applications trace files scanning management: In this
section, we experiment with different scenarios of scanning
trace files for every application. The first scenario is to consider
a fixed length GPU input buffer to which we send sequentially
trace files. The input buffer is dedicated to only one trace file
per application at the same time. Every application traces will
be profiled in parallel in order to detect a malicious behavior.

The second scenario is almost the same as the first one. The
only difference consists in the use of the input buffer. We send
sequentially trace files to the input buffer. If, at a given time,
there is a space left in the input buffer we send immediately the
following application trace file. As a result the input buffer will
be always fully used except at the end of scanning the final
application trace file.

The third scenario is to consider also a fixed length GPU
input buffer, but that has multiple entries. In other words, we
send to the input buffer multiple application trace files
simultaneously and profile them in parallel. In order to estimate
the optimal number of applications that can be scanned in
parallel we collected system calls traces from 100.

Android applications were executed normally during 3
minutes each on a Sony Xperia Z smartphone operating on

Android 4.4.4. For the third scenario, we considered input
stream buffers divided by 5, 10 and 15 segments, and for every
buffer each segment is dedicated to an input application trace
file. GPU profiling threads are equally distributed for each
segment. More threads will be allocated per input buffer
segment in order to have a balanced distribution of the parallel
scanning processing. We found that the third scenario performs
well when the input buffer is divided to 10 segments. As a
result, the optimal number of applications that we can scan in
parallel with this configuration is 10.

In order to study the effectiveness of the three scenarios we
considered different sizes of input stream buffers. As we can
see in Figure 6, the third scenario has always the best
throughput. In fact, for the first scenario, there is waste of
allocated resources because the input buffer is not fully
exploited. Moreover for the tow first configurations more data
transfers are required to process all the application traces. As a
result, the processing overhead becomes more important with
such scenarios. On the other hand, the parallel processing of
applications trace files simultaneously gives much less
processing overhead due to its effectiveness in exploiting the
GPU input buffer allocation and processing. We notice that the
bigger the input buffer is, the faster the total execution time
become. In fact, several data large transfers between the CPU
and GPU are much better than many small ones. Finally, we
notice that the framework throughput is dominated by data
transfers between the host and the device which consist of 70%
of the total processing time.

Fig. 6. Performance of the trace files scanning scenarios

Table 2. Memory requirement of PFAC and P3FSM

Number of patterns PFAC (KB) P3FSM (KB)

2000 67677 8922

2200 74398 9234

10000 678937 50765

16000 806554 60432

17600 809321 74380

Memory requirement: Storing a DFA structure on the GPU is
memory consuming especially that mobile GPU memory is
small. Table 2 lists the difference in memory requirement
between PFAC DFA and P3FSM. The best result is obtained
with P3FSM that compacts the DFA structure by around 10
times comparing to standard PFAC DFA. With PFAC, the limit
number of patterns that we can work with on our mobile GPU
is 2200 patterns. Applying P3FSM compacting technique
allows as to work with 17600 patterns witch is much better.

VI. RELATED WORK

Parallel processing techniques have been widely used over
the years in order to improve the performance of multi-pattern

Memory
Config.

Global
Memory

Constant
Memory

Local
Memory

 Conf1 transition_table

input_buffer

result_buffer
NA NA

 Conf2 transition_table

result_buffer
NA input_buffer

 Conf3 transition_table
result_buffer

input_buffer NA

 Conf4 transition_tableP2

result_buffer

transition_tableP1

input_buffer

 Conf5 transition_tableP2

input_buffer

result_buffer

transition_tableP1

NA

 Conf6 transition_tableP2

result_buffer

input_buffer

transition_t

ableP1

matching algorithms and this is due to the rapid advent of
GPGPUs. Both hardware and software techniques are used to
accelerate multi-pattern searching. On one hand, common
hardware supported techniques use GPU [7][10][8], FPGA [11]
as well as Cell/B.E processors [12]. Parallel multi-pattern
matching software based approaches [13][14] exploits
multicore processors to accelerate the overall processing.

Perhaps, the first implementation of parallel regular
expression searching and multi-pattern matching was in Gnort
[15][16]. For performance issues, Gnort utilizes a multi-pattern
matching technique that uses a high memory DFA structure. A
maximum throughput of 2.3 GB/s is achieved. Many studdies
have been conducted to optimize the Aho-Corasick [4] string
matching algorithm. An example is the Parallel Failureless-AC
Algorithm (PFAC) [8]. There, all failure transitions of the DFA
were removed so that there is no need to backtrack the state
machine used, reducing the complexity of the algorithm.
Arudchutha et al. [13] proposed an adaptation of the Aho-
Corasick algorithm for multicore CPUs using POSIX thread
utility. The pattern-set is divided into smaller ones and
allocated for each CPU thread. This approach performs better
than Herath et al. [14] implementation where they applied the
same techniques but considered smaller deterministic state
machines with failure transitions. Tran et al. [17] proposed a
parallel implementation of the Aho-Corasick algorithm on an
Nvidia desktop GPU that focuses on efficient scheduling of the
off-ship global memory loads and the storage in the desktop
GPU global memory. A speed-up of 222x was achieved
compared to a sequential version of the same algorithm running
on a 2.2Ghz Core2Duo Intel processor. Huang et al. [10]
implemented a Wu-Manber-like multi-pattern matching
algorithm on GPUs and achieved a maximum speed twice as
fast as the modified Wu-Manber algorithm used in Snort [18].
Vasiliadis et al. [19] worked on a massively parallel antivirus
engine based on ClamAV [20], called Gravity. A parallel pre-
scanning of patterns is done through the Geforce GTX GPU,
reaching a throughput of 40GB/s.

Many DFA compacting techniques have been proposed in
the literature. Compression and bitmap [21] were proposed to
improve the memory efficiency of the Aho-Corasick algorithm.
Tan and Sherwood [22] introduced a memory-efficient, multi-
pattern matching engine based on the bit-split techniques and
string partitioning. Vespa et al [8] proposed a memory-
efficient, portable and scalable string matching engine called
P3FSM. One entry in memory is required for each state. The
code for each state contains all the information about the
possible next state.

VII. CONCLUSION

In this paper, we have designed and implemented a parallel
host-based anti-malware for Android mobile devices based on
the use of GPUs. Our framework capitalizes on the use of the
highly threaded architecture of mobile GPUs, as well as the
parallel nature of malware scanning to achieve end-to-end
throughput in the order of 333 Mbits/s. This result is three
times faster than the serial version running on a mobile CPU.
To accelerate mobile malware detection on GPU, we used
different types of GPU memories and explored the optimal
buffer size for input streams data as well as the best scanning
process scenario. In order to overcome the problem of the low
memory of mobile GPUs and to deal with more malware
signatures, series of memory compacting techniques were
applied.

ACKNOWLEDGMENT

This research is partly supported by a grant from NSERC,
DRDC Valcartier (QC), and Ericsson Canada.

REFERENCES

[1] V. Chebyshev, and R. Unuchek, "Mobile Malware Evolution: 2013”
White paper available on http://securelist.com/analysis/kaspersky-
security-bulletin/58335/ mobile-malware-evolution-2013/

[2] “ARM,” at http://www.arm.com/products/multimedia/mali-cost-
efficient-graphics/index.php

[3] “The OpenCL 1.2 specification,” at http://www.khronos.org/opencl,
2012.

[4] A. Aho and M. Corasick, 'Efficient string matching: an aid to
bibliographic search', Commun. ACM, vol. 18, no. 6, pp. 333-340,
1975.

[5] Y-D Lin, Y-C Lai, C-H Chen, H-C Tsai, “Identifying android
malicious repackaged applications by thread-grained system call
sequences,” Elsevier Computers & Security, vol. 39, p. 340-350, 2013.

[6] STrace manual, Retrieved February 20, 2015,
http://man7.org/linux/man-pages/man1/strace.1.html

[7] Cheng-Hung Lin; Sheng-Yu Tsai; Chen-Hsiung Liu; Shih-Chieh
Chang; Shyu, J.-M., "Accelerating String Matching Using Multi-
Threaded Algorithm on GPU," Global Telecommunications
Conference (GLOBECOM 2010), 2010 IEEE , vol., no., pp.1,5, 6-10
Dec. 2010.

[8] Vespa, L.; Mathew, M.; Ning Weng, "P3FSM: Portable Predictive
Pattern Matching Finite State Machine," Application-specific Systems,
Architectures and Processors, 2009. ASAP 2009. 20th IEEE
International Conference on, vol., no., pp.219, 222, 7-9 July 2009.

[9] “Qualcomm,” at
https://www.qualcomm.com/products/snapdragon/processors/801

[10] N. Huang, H. Hung, S. Lai, Y. Chu, and W. Tsai, “A GPU-Based
Multiple-Pattern Matching Algorithm for Network Intrusion Detection
Systems,” In Proc. of the International Conference on Advanced
Information Networking and Applications, pp. 62-67, 2008

[11] B. W. Watson and G. Zwaan, “A taxonomy of keyword pattern
matching algorithms,” Computing Science Note 92/27, Eindhoven
University of Technology, The Netherlands, 1992.

[12] D. P. Scarpazza, O. Villa, F. Petrini, “Exact multi-pattern string
matching on the cell/be processor,” In Proc. of the 5th Conference on
Computing Frontiers, pp. 33-42, 2008.

[13] S. Arudchutha, T. Nishanthy, R. G. Ragel, “String matching with
multicore CPUs: Performing better with the Aho-Corasick algorithm,”
In Proc. of the 8th IEEE International Conference on Industrial and
Information Systems, pp. 231-236, 2013.

[14] D. Herath, C. Lakmali, R. Ragel, “Accelerating string matching for
bio-computing applications on multi-core CPUs,” In Proc. of the 7th
IEEE International Conference on Industrial and Information Systems,
pp. 1-6, 2012.

[15] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S.
Ioannidis, “Gnort: High Performance Network Intrusion Detection
Using Graphics Processors,” In Proc. of the 11th International
Symposium on Recent Advances in Intrusion Detection, 2008.

[16] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. P. Markatos, and S.
Ioannidis, “Regular Expression Matching on Graphics Hardware for
Intrusion Detection,” In Proc. of the 12th International Symposium on
Recent Advances in Intrusion Detection, 2009.

[17] N. P. Tran, M. Lee, S. Hong, J. Choi, “High throughput parallel
implementation of Aho-Corasick algorithm on a GPU,” In Proc. of the
IEEE 27th International Symposium on Parallel and Distributed
systems (Workshops & PhD Forum), pp. 1807-1816, 2013.

[18] M. Roesch, “Snort—Lightweight Intrusion Detection for Networks,”
In Proc. of 15th Systems Administration Conference, 1999.

[19] G. Vasiliadis, S. Ioannidis, “Gravity: a massively parallel antivirus
engine,” In International Symposium on Recent Advances in Intrusion
Detection, pp. 79-96, 2010.

[20] “CLAMAV,” at http://www.clamav.net
[21] N. Tuck et al., “Deterministic Memory-Efficient String Matching

Algorithms for Intrusion Detection,” INFOCOM, pp. 333–40, 2004.
[22] L. Tan and T. Sherwood, “A High Throughput String Matching

Architecture for Intrusion Detection and Prevention,” In Proc. of the
32nd Annual International Symposium on Computer Architecture, pp.
112–22, 2005.

