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ABSTRACT 
The fast growing use of the Android platform has been 
accompanied with an increase of malwares in Android 
applications. A popular way in distributing malwares in the 
mobile world is through repackaging legitimate apps, embedding 
malicious code in them, and publishing them in app stores. 
Therefore, examining the similarity between the behavior of 
malicious and normal apps can help detect malwares due to 
repacking. Malicious apps operate by keeping their operations 
invisible to the user. They also run long enough to perform their 
malicious tasks. One way to detect malicious apps is to examine 
their service life cycle. In this paper, we examine the service life 
cycle of apps. We extract various features of app services. We use 
these features to classify over 250 normal and malicious apps. Our 
findings show that malicious apps tend to use services to do their 
malicious operation and have no communication with the other 
components of the app, whereas the services in normal apps are 
usually bound to other components and send messages to notify 
users about the operations they perform. The results of this 
exploratory study can be used in the future to design techniques 
for detecting malicious apps using the classification of their 
service features.   

Categories and Subject Descriptors 
D.4.6 [Security and Protection]: Security and Protection- 
Invasive software 

Keywords 
Android Apps; Malware Detection; App Repackaging. 

1. INTRODUCTION 
The growing trend of using smart phones has motivated the 
development of mobile applications (apps) to serve users in a 
variety of areas including entertainment, communication and more 
critical activities such as banking. The number of apps available 
for downloading in leading app stores, Google play store and 
Apple app store, reached 1.5 million in May 2015 [16]. Apps’ 
high popularity has set in motion a burgeoning development of 
malwares. McAfee lab’s threat report shows that the number of 
the newly detected malwares exceeded 700,000 at the end of 
2014. The report indicates an emergence of 387 new threats every 
minute, or more than 6 every second [13]. 

Malware developers are looking for ways to distribute their 
malwares. In the world of mobiles, one of the common 
approaches is repackaging [22]. In repackaging, the malware 
developer usually downloads a popular app, repackages it, 
recompiles it if needed, and embeds the malicious code into the 
app’s code. The new code will be zipped again, signed and 
published in an app store. In fact, attackers use the popular apps in 
order to increase the possibility of spreading malicious apps. A 
recent study has shown that more than 85% of malware samples 
were a repackaged version of legitimate apps [15]. Repackaging 
provides a way to change the code for variety of purposes, not just 
for embedding malwares. It has become a serious concern for app 
developers since they may lose revenues in case their paid app is 
repackaged and published in third party markets. Some free apps 
also gain revenue by advertising in part of their app. The 
repackaged app can be manipulated to change the advertisements. 
Monetary loss is not the only effect. Repackaging may even ruin 
the company’s reputation as shown in [6]. 

As repackaging is a popular way to broadcast malware, in this 
paper, we investigate how malicious code can be embedded into 
legitimate apps. More precisely, we focus on the services and 
notifications that malicious apps provide as opposed to legitimate 
apps. The use of services stems from the fact that malware needs 
to continue operating even if the original app terminates. In 
addition, malicious apps need to provide users with the same 
experience as when using normal apps. Therefore, any malicious 
operation needs to be designed in a way that goes undetected by 
users.  

To achieve this, we examine carefully the life cycle of services in 
Android apps. Based on this, we extract a number of features that 
characterize the services of apps. We use these features to classify 
over 250 legitimate and malicious apps.  The results show that: 

• 68% of malwares that contain services require 
permissions and do not communicate with rest of the 
components in the apps after being started. 

• 92% of the studied legitimate apps notify the user of the 
app about their operation of background services by 
sending notifications or by passing messages or by 
activating visible components in the app.  

• Services in nearly all the malwares and more than 80% 
of the normal apps use permissions requested by the 
app. 

• The apps that upload malicious code through updating 
do not have services. 

• All the services in malwares are started and not bound 
by other components of the apps. 
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Figure 1. Android apps’ service life cycle 

 

2. LIFE CYCLE OF APP’S SERVICES 
A typical Android app contains four types of components: 
Activities, Services, Content providers and Broadcast receivers. 
Activities represent what the user can do with the app. A service 
is a component that runs in the background. A content provider 
manages a shared set of app’s data. A broadcast receiver is a 
component which responds to system-wide broadcast 
announcements such as “the battery is low”.  

Activities, services and broadcast receivers are activated by an 
asynchronous message object called intent. More details about 
components are available in Android developers’ official site [4].  

From the perspective of the user who runs an app, the app’s 
components can be divided into two parts. The first part consists 
of the foreground part, which contains activities that a user can 
use. Activities are, in fact, components that should provide the 
same experience to the user in both between the repackaged and 
the original app. The second part of the app is the background 
components including services, broadcast receivers and content 
providers operating in the background and the operation’s result is 
send to the user in activities. By this categorization, if a malware 
wants to operate for a long time, hidden from the user, it should 
be added to background components. This is why, in this study, 
we focus on analyzing the life cycle of services.  

In AndroidManifest.xml, a service is defined by a <service> tag. 
It has attributes such as name, exported attributes that show if 
other applications can use this service, and an intent filter, which 
lets the Android system respond to intents. The service is 
implemented in Java as the subclass of Service. The class name 
has to be similar to the name defined in AndroidManifest.xml for 
the service. A service in Android can started in two forms, started 
or bound. In the started form, a service is started by an another 

component of the app by calling method startService(). It will 

continue to run indefinitely in the background even if the user 
switches to other applications. It will be stopped by calling 

stopSelf() or stopService() methods. In the bound form, a 

component is bound to a service that it uses by calling the method 

bindService(). A bound service offers client-server interface, 

allowing the components to interact with each other. A bound 
service is destroyed as soon as another application component is 
unbound. Usually, for long running operations and single tasks, 

the startService() will be used.  

Based on the nature of usage for two kinds of the service forms, 
started and bound, if a stealthy operation wants to be added to an 

app it can be embedded in service and start it with startService(). 

Thus, it will have a chance to run indefinitely in a device. Since it 
is the user who decides which activity should operate while 
running an app, the bound service, whose public methods are 
called by the activity, is indirectly controlled by the user. But 
when an activity runs a service, the service can continue running 
even if the user quits running the app. 

When the implemented task for a service is finished, the service 
usually notifies the user of its completion. Notifying a user of a 
service operation can be performed using these approaches:  

• By generating a notification object and passing it to the 
system. Notifications may contain actions, which can start 
an activity.  

• By starting an activity since activities are the foregrounded 
components and users can see the results of the task done 
in services. 

• Through message passing by having the component give 
permission to the service to send a message by passing 
message-handler to the service while starting it. Some 
protocols such as AIDL are designed to let other 
applications use the service of other applications. They are 
also based on the message handling approach. 

The Android system tries to keep an application process alive as 
long as possible, but sometimes it needs to kill some processes to 
reclaim memory for new processes. It terminates processes based 
on their level of importance to the user. For example, the 



processes containing activities the user interacts with are given 
highest priority. It should be noted that services that are 
terminated may be restarted as standalone with a starting form, 
instead of a bound form. 

Considering the event-driven nature of Android applications, we 
can group the operations performed in a service into two 
categories. The first one contains all operations that can start after 
the service is created by an activity. It will continue to operate, 
and finish after finishing its operation. The user can be notified of 
the finished task. The second category contains tasks that are 
executed in special situations. For example, the service start to 
work when a broad cast receiver start them when a particular even 
happen such as the event of receiving messages or emails. In fact, 
it is the system who indirectly started the service. 

A broadcast receiver is defined through the <receiver> tag in 
AndroidManifest.xml of the application. It also contains an 
attribute, set to “true” if it can receive messages from sources 
outside its application, “false” otherwise. The default value 
depends on whether the broadcast receiver contains intent filters. 
The absence of any filters means that it can be invoked only by 
Intent objects that specify its exact class name. So the default 
value is "false". On the other hand, the presence of at least one 
filter implies that the broadcast receiver is intended to receive 
intents broadcasted by the system or other applications, so the 
default value is “true". 

When a receiver is defined by intent filter, it lets the other app or 
components of the app send implicit intents to this receiver. 
However, an app can define the intent filter in the receiver to 
obtain the implicit intents that may not target the particular 
application, for example, getting alarms or receiving messages 
from the system. It can also be a way to restart a service or 
activity inside an app. As we will show in the next section, we 
will examine this feature to see if malicious apps behave in such a 
way or not. Note that a broadcast receiver can only be started; it 
cannot be bound to a service.  

Figure 1 illustrates the communication of a service during its life 
cycle. This figure shows how a user as an actor in the lifecycle of 
components can start a service and be notified from the service 
operation. It should be noted that in this figure, instead of activity, 
there can be any other type of app’s component.  

As shown in Figure 1, the user’s role is important for this study 
since malware that attempts to hide itself, would operate stealthy 
by avoiding any communication with the user. A suspicious 
behavior may motivate users to use expert tools to detect and 
remove malwares. In addition, malwares that perform malicious 
operations that involve user interactions such as sending messages 
to user contacts or alarm the user of erasing the files are usually 
not published on reliable app stores such Google play store [18]. 
They are published on third party (untrusted) app stores.  

With the focus on services of an app, we can define each app by 
the set of services it has. Each service consists of some features 
which characterize the app’s behavior. The defined features are 
summarized as follows: 

• Service permissions used by the service; a service that does 
not need any permission does not perform any malicious 
operation.  

• Notifications generated by a service to show if it has 
interactions with the user; it can be done by generating 

notifications or sending messages to any message handler, 
which is passed to a service while starting it. 

• List of activities which start the service or bound to the 
service; if a service is bound to a component, it has access 
to its public method. Thus, it is indirectly connected to 
other components and will die as soon as other components 
unbind it. 

• List of activities started directly by the service; as activities 
are visible to users, it can be a way of notifying the user of 
the operation of service. 

• List of broadcast receivers in the app that start a service; 
these broadcast receivers are defined by their intent filters. 
They can help determine when a service starts to perform 
actions. Note that a broadcast receiver cannot be bound to a 
service. 

The list of services is easily extracted from AndroidManifest.xml 
file.  The tag <uses-permissions> in AndroidManfest.xml shows 
that permissions are needed by the app. These tags are usually 
defined independently from the components, making difficult to 
know which components use which permissions. Thus, we need to 
study the application code and APIs used in each class to identify 
the permissions used by a service. In the AndroidManifest.xml, 
each component android:name attribute specifies the class name 
of the component in the corresponding Java code.  

We used a tool called Androguard1 to extract the methods called 
in a class and permissions used by them. We wrote a python script 
over Androguard that recursively follows the methods called in a 
service class, starting from callback method onStartCommand() 
and onBind(). All the permissions used in these methods specify 
the permissions of the service.  

We were also curious to know if a service notifies the user of its 
operations. As such, we extracted all the notification objects 
generated in the methods called during the service life cycle. 
Apart from that, we also extracted direct call for activities. As 
activities run in the foreground, they inform the user of the 
operations done in service. As discussed in the previous section, 
our assertion is that stealthy services don’t do this. In this regard, 
we also extract the messages passed by the service to other 
components. The tool Androguard let us find the object 
Notification and Message in a service. The other feature needed to 
be extracted was the broadcast receivers and activities, which call 
the service as well as activities called by the service. When a 
service is started by a broadcast receiver, it shows the special 
situation in the device that a service is called, such as “a message 
received” or “battery is low”.  

3. EXPERIMENT 

3.1 Dataset 
To investigate our assertion, we studied a set of malwares to 
observe how they will behave. We also studied a set of normal 
applications to see if their services behaved differently. The 
Genome malware dataset [5] was used for our study. The 
legitimate apps are downloaded from Google play store in April 
2015. We downloaded 200 apps randomly from the first twenty 
categories in Goggle play store; ten apps from each category.  

                                                                 
1https://code.google.com/p/androguard/ 



3.2 Analysis and results 
As we explained, malwares try to hide themselves by running in 
background services and having no communication. We can 
classify the feature of the services as follows. The first feature, 
PERMISSION, represents the permissions used during the service 
life span. The second, MESSAGE, is the notifications or messages 
passed to activities or shown to the user. These two features were 
extracted just by running a script that we have developed.  

We also needed to extract two other features. The first one, 
CALL_ACTIVITY, shows if the service calls other activities after 
finishing its operation informing the user when the operation is 
done. The second one, SERVICE_BOUND, depicts if the service 
is bound because the bound services are alive until the 
component, which binds them is alive. To extract 
CALL_ACTIVITY and SERVICE_BOUND and study the apps’ 
“smali” code2, assembly for the dex format, we used APKTOOL3.  

We extracted the features for all legitimate apps downloaded from 
Google play store and the malware dataset. The results are shown 
in Table 2. We use the following labels to refer to groups of the 
various features of services: 

• A: NO PERMISSION 

• B: PERMISSION and MESSAGE 

• C: PERMISSION and NO MESSAGE and NO  
CALL_ACTIVITY and NO SERVICE_BOUND  

• D: PERMISSION and NO MESSAGE and 
(CALL_ACTIVITY or  SERVICE_BOUND) 

• E: NO SERVICE 

• F: NO IMPLIMENTATION 

Note that in this table, having “NO” before the feature’s name 
means that the app contains at least one service that does not have 
this feature. For example NO MESSAGE means that the app 
contains a service which does not send messages or notifications. 

While studying the apps’ services, we have found that some of the 
apps do not have any services and as such, we categorized them as 
NO SERVICE. There were some apps that contain only definition 
for a service in AndroidManifest.xml but the service does not 
implemented in the source code they have been categorized as NO 
IMPLEMENTATION. This may be due to the developer’s 
mistake in keeping unnecessary service definitions in 
AndroidManifest.XML.  

It should be noted that if there is an app containing services with 
different features, we take into account the most restrictive 
services. For example, if a normal app contains two services 
where the first one is PERMISSION and MESSAGE and the 
second one is PERMISSION and NO MESSAGE and 
CALL_ACTIVITY, we put it in the third group in Table 1.  

Apps that contain services with NO PERMISSION show that they 
have safe services. Clearly, a service performing malicious 
operation needs permissions. As it is shown in Table 1, the 
number of these apps in the legitimate apps dataset is 25 out of 
200 (12%) and in the malicious app dataset is 1 out of 65 (1.5%).  

The number of apps with PERMISSION, NO MESSAGE, 
CALL_ACTIVITY shows a significant difference between the 

                                                                 
2https://code.google.com/p/smali/ 
3http://ibotpeaches.github.io/Apktool/ 

apps in the malware dataset and those in the legitimate app 
dataset. 

The number of apps in Group D which shows the services who are 
bound to a component and will stop after the component unbind 
it; and in group B which shows the services with MESSAGE are 
significantly large in normal apps. On the other hand, the number 
of apps in group C, which shows the apps with services that have 
no connection with rest of the app after being started, are larger 
than other groups in the malware dataset. These results show that 
malwares and normal apps have different behavior with respect to 
the service lifecycle and its connections and communication with 
the rest of the app. 

In order to have a better understanding of malicious apps that 
have NO SERVICE or NO PERMISSION, we further examined 
sample malicious apps. We use the code of malware and 
information provided by Zhou et al. [22] and by Felt et al. in [9].  

Among the group of malwares that do not have services, 
FakeNetFlix and FakePlayer ask for user credential information 
directly from the user via an activity component. This sort of 
malwares is easily detectable by a security expert. DroidDeluxe 
and some version of Asroot do not have malicious operations. 
They get root privilege by exploiting a vulnerability during 
installation. Similarly, DroidKungFuUpdate, AnServerBot, 
BaseBridge and Plankton get root privilege to download and 
install malicious apps. SMSReplicator, Walkinwat, YZHC do not 
have services and do the malicious operation when an event is 
received by a broadcast receiver. For example, SMSReplicator has 
a broadcast receiver that listens to the incoming message and 
forward it to the selected number.  

AnserverBot is a malware that asks users for update and installs 
the malicious payload. Therefore, the services in the malware 
itself do not need permissions.  

ADAR, which has PERMISSION and MESSAGE, use media 
player to send notifications. One version of Asroot and 
BaseBridge also use notifications while updating for malicious 
payload. SNDApps notification is sent by a service in the 
repackaged app that the malicious payload added to the original 
app. It was the only sample in the malware dataset that adds the 
malicious operation to the existing service of a legitimate app. 
However, there was another service related to malware in 
particular. This shows that studying the content of messages in a 
service can help detect suspicious services. 

4. RELATED WORK 
The increased rate of Android apps has been accompanied by an 
increase in malware spread in app stores. Below are some security 
issues raised by the increase of malware:  

• Users are not aware that by giving some permission to an app, 

they may cause security issues. 

• Attackers have the same capability to develop malware and 

upload them in marketplaces as legitimate developers. 

• Although official Android app store sites investigate apps 

before uploading them to the store it is not clear how these 

investigations are carried out and to what extent. In [6], the 

authors show that some malware were uploaded in Android 

market place such as DroidDream Trojan in 2011. 

 



  

Table 1. Results of classifying Apps based on their services 

Category 
A: NO 

PERMISSION 

B: 
PERMISSION 

and 
MESSAGE 

C: PERMISSION 
and NO MESSAGE 

and NO  
CALL_ACTIVITY 

and NO 
SERVICE_BOUND 

D: PERMISSION 
and NO MESSAGE 

and 
(CALL_ACTIVITY 

or  
SERVICE_BOUND 

E: NO 
SERVICE 

F: NO 
IMPLIMENTATION 

Normal 
(200) 

25 (12%) 58 (29%) 14(7%) 76 (38%) 19 (9.5%) 8 (4%) 

Malwares 
(65) 

1 (1.5%) 3 (5%) 39(60%) 14(21%) 8 (12%) 0 (0%) 

 
The increased number of malware in Android apps has motivated 
researchers to work on developing several detection techniques. 
Studies conducted in detecting malwares in desktop applications 
are used to study the Android apps in order to identify malicious 
behavior of the apps. Studying the similarity of apps is a detection 
approach as malwares in Android use repackaging to embed the 
malware in legitimate code [22]. There is no perfect method that 
could provide the desired accuracy in detecting malware and the 
most common issues are summarized as follows. 

Struggles related to the use of machine learning algorithms: Some 
approaches [1, 3, 10, 14, 19, 20] use machine learning algorithms 
to learn the characteristics and behavior of malware and build 
clusters of malware families to detect zero-day malwares. 
Features used to learn malware behaviors are permissions [7, 19], 
intent [20], API [3, 19], system calls and smartphone features 
such as battery usage, memory, CPU and Network [2]. The main 
drawback of these approaches is that they need to have more than 
one malware sample in a family to learn their behavior.  

Dynamic loading and Native code: Some malware like Base-
Bridge and DroidKungFu Android malware [23] extract the actual 
malicious payload from external places rather than the original 
applications themselves. Thus, static analysis approaches [19] 
cannot detect them. To detect the malicious operations in native 
codes, it is suggested to study the OS interactions [18]. Detecting 
malicious code in dynamic loading and native code in Android 
apps still suffer from computational complexity [24]. 

Obfuscation: Detecting malware based on signatures has always 
suffered from the problem of obfuscation. To this end, behavioral 
graph models are used to learn malware behavior [8, 11, 12, 17, 
20, and 23]. In these studies, the graph is used to find the structure 
of malware behavior, which is different from normal apps. 
Several studies have been proposed [8, 11, and 23]]. These 
approaches suffer from computation and memory usage overhead. 
Moreover, they fail to identify certain usages of 
instances/methods, which are encrypted or use Java reflection and 
native code. 

Curse of studying the similarity of Apps:. Some studies focus on 
detecting the similarity of apps by analyzing the user interface of 
the apps. Since the two apps (the original and the repackaged one) 
are designed to offer the same experience and have a high chance 
of being downloaded the repackaged version has the same UI as 
the original version of the app. Zhang et al. [21] extracted the 
graph containing the activity component of the app and compared 
the similarity of the graph, extracted from the original and the 
repackaged apps. Shao et al. [15] followed the same idea but 
instead of using the activity component, they studied the similarity 
of  resources  in  the  two  apps. Zhou et al. [24] considered  that  

 
repackaged apps are published in third-party app stores and 
studied the instruction sequences in apps and measured the 
similarity of apps based on similar instructions. They found that 
the similarity between apps in the official Android marketplace 
and in third-party market places. Besides the computational 
overhead of these approaches, the main constraint is that they 
need to compare apps two by two to find the similar ones. They 
also cannot detect if the repackaged version contains malware or 
just minor changes such as ads, or contain no changes and are just 
resigned and published in third party app stores.   

5. CONCLUSION AND FUTURE WORK 
In this paper, we examined the service life cycle of apps to 
understand how malicious apps due to repacking and normal apps 
vary in terms of the services they offer.  We found that malicious 
apps tend to start a service to perform malicious operations and 
have no connection to the other components of the app. However, 
services in normal applications are bound to other components 
and send message and notifications to users.  

We intend in the future to continue examining the variations that 
exist between malicious apps and normal apps by studying their 
services. The results should lead to effective techniques for 
detecting malicious apps that would not require comparing apps in 
a large store of apps. We are always investigating other features 
besides service features.    
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