
Understanding the Service Life Cycle of Android Apps: An
Exploratory Study

Kobra Khanmohammadi, Mohammad Reza Rejali, Abdelwahab Hamou-Lhadj
Software Behaviour Analysis (SBA) Research Lab,

Department of Electrical and Computer Engineering,
Concordia University, Montreal, QC, Canada

{k_khanm, mrejali, abdelw}@ece.concordia.ca

ABSTRACT
The fast growing use of the Android platform has been
accompanied with an increase of malwares in Android
applications. A popular way in distributing malwares in the
mobile world is through repackaging legitimate apps, embedding
malicious code in them, and publishing them in app stores.
Therefore, examining the similarity between the behavior of
malicious and normal apps can help detect malwares due to
repacking. Malicious apps operate by keeping their operations
invisible to the user. They also run long enough to perform their
malicious tasks. One way to detect malicious apps is to examine
their service life cycle. In this paper, we examine the service life
cycle of apps. We extract various features of app services. We use
these features to classify over 250 normal and malicious apps. Our
findings show that malicious apps tend to use services to do their
malicious operation and have no communication with the other
components of the app, whereas the services in normal apps are
usually bound to other components and send messages to notify
users about the operations they perform. The results of this
exploratory study can be used in the future to design techniques
for detecting malicious apps using the classification of their
service features.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Security and Protection-
Invasive software

Keywords
Android Apps; Malware Detection; App Repackaging.

1. INTRODUCTION
The growing trend of using smart phones has motivated the
development of mobile applications (apps) to serve users in a
variety of areas including entertainment, communication and more
critical activities such as banking. The number of apps available
for downloading in leading app stores, Google play store and
Apple app store, reached 1.5 million in May 2015 [16]. Apps’
high popularity has set in motion a burgeoning development of
malwares. McAfee lab’s threat report shows that the number of
the newly detected malwares exceeded 700,000 at the end of
2014. The report indicates an emergence of 387 new threats every
minute, or more than 6 every second [13].

Malware developers are looking for ways to distribute their
malwares. In the world of mobiles, one of the common
approaches is repackaging [22]. In repackaging, the malware
developer usually downloads a popular app, repackages it,
recompiles it if needed, and embeds the malicious code into the
app’s code. The new code will be zipped again, signed and
published in an app store. In fact, attackers use the popular apps in
order to increase the possibility of spreading malicious apps. A
recent study has shown that more than 85% of malware samples
were a repackaged version of legitimate apps [15]. Repackaging
provides a way to change the code for variety of purposes, not just
for embedding malwares. It has become a serious concern for app
developers since they may lose revenues in case their paid app is
repackaged and published in third party markets. Some free apps
also gain revenue by advertising in part of their app. The
repackaged app can be manipulated to change the advertisements.
Monetary loss is not the only effect. Repackaging may even ruin
the company’s reputation as shown in [6].

As repackaging is a popular way to broadcast malware, in this
paper, we investigate how malicious code can be embedded into
legitimate apps. More precisely, we focus on the services and
notifications that malicious apps provide as opposed to legitimate
apps. The use of services stems from the fact that malware needs
to continue operating even if the original app terminates. In
addition, malicious apps need to provide users with the same
experience as when using normal apps. Therefore, any malicious
operation needs to be designed in a way that goes undetected by
users.

To achieve this, we examine carefully the life cycle of services in
Android apps. Based on this, we extract a number of features that
characterize the services of apps. We use these features to classify
over 250 legitimate and malicious apps. The results show that:

• 68% of malwares that contain services require
permissions and do not communicate with rest of the
components in the apps after being started.

• 92% of the studied legitimate apps notify the user of the
app about their operation of background services by
sending notifications or by passing messages or by
activating visible components in the app.

• Services in nearly all the malwares and more than 80%
of the normal apps use permissions requested by the
app.

• The apps that upload malicious code through updating
do not have services.

• All the services in malwares are started and not bound
by other components of the apps.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SPSM'15, October 12, 2015, Denver, Colorado, USA.
Copyright 2015 ACM. ISBN 978-1-4503-3819-6/15/10 ... $15.00.

User

User

User

Activity or system

User

Display to

userMessage

Bind

Call Methods

start

stop

Unbind

start

stop

User

Service

Service

a. Binding service

b. Starting Service

Start + Send

Message Handler

stop

Activity

Activity

stop

Figure 1. Android apps’ service life cycle

2. LIFE CYCLE OF APP’S SERVICES
A typical Android app contains four types of components:
Activities, Services, Content providers and Broadcast receivers.
Activities represent what the user can do with the app. A service
is a component that runs in the background. A content provider
manages a shared set of app’s data. A broadcast receiver is a
component which responds to system-wide broadcast
announcements such as “the battery is low”.

Activities, services and broadcast receivers are activated by an
asynchronous message object called intent. More details about
components are available in Android developers’ official site [4].

From the perspective of the user who runs an app, the app’s
components can be divided into two parts. The first part consists
of the foreground part, which contains activities that a user can
use. Activities are, in fact, components that should provide the
same experience to the user in both between the repackaged and
the original app. The second part of the app is the background
components including services, broadcast receivers and content
providers operating in the background and the operation’s result is
send to the user in activities. By this categorization, if a malware
wants to operate for a long time, hidden from the user, it should
be added to background components. This is why, in this study,
we focus on analyzing the life cycle of services.

In AndroidManifest.xml, a service is defined by a <service> tag.
It has attributes such as name, exported attributes that show if
other applications can use this service, and an intent filter, which
lets the Android system respond to intents. The service is
implemented in Java as the subclass of Service. The class name
has to be similar to the name defined in AndroidManifest.xml for
the service. A service in Android can started in two forms, started
or bound. In the started form, a service is started by an another

component of the app by calling method startService(). It will

continue to run indefinitely in the background even if the user
switches to other applications. It will be stopped by calling

stopSelf() or stopService() methods. In the bound form, a

component is bound to a service that it uses by calling the method

bindService(). A bound service offers client-server interface,

allowing the components to interact with each other. A bound
service is destroyed as soon as another application component is
unbound. Usually, for long running operations and single tasks,

the startService() will be used.

Based on the nature of usage for two kinds of the service forms,
started and bound, if a stealthy operation wants to be added to an

app it can be embedded in service and start it with startService().

Thus, it will have a chance to run indefinitely in a device. Since it
is the user who decides which activity should operate while
running an app, the bound service, whose public methods are
called by the activity, is indirectly controlled by the user. But
when an activity runs a service, the service can continue running
even if the user quits running the app.

When the implemented task for a service is finished, the service
usually notifies the user of its completion. Notifying a user of a
service operation can be performed using these approaches:

• By generating a notification object and passing it to the
system. Notifications may contain actions, which can start
an activity.

• By starting an activity since activities are the foregrounded
components and users can see the results of the task done
in services.

• Through message passing by having the component give
permission to the service to send a message by passing
message-handler to the service while starting it. Some
protocols such as AIDL are designed to let other
applications use the service of other applications. They are
also based on the message handling approach.

The Android system tries to keep an application process alive as
long as possible, but sometimes it needs to kill some processes to
reclaim memory for new processes. It terminates processes based
on their level of importance to the user. For example, the

processes containing activities the user interacts with are given
highest priority. It should be noted that services that are
terminated may be restarted as standalone with a starting form,
instead of a bound form.

Considering the event-driven nature of Android applications, we
can group the operations performed in a service into two
categories. The first one contains all operations that can start after
the service is created by an activity. It will continue to operate,
and finish after finishing its operation. The user can be notified of
the finished task. The second category contains tasks that are
executed in special situations. For example, the service start to
work when a broad cast receiver start them when a particular even
happen such as the event of receiving messages or emails. In fact,
it is the system who indirectly started the service.

A broadcast receiver is defined through the <receiver> tag in
AndroidManifest.xml of the application. It also contains an
attribute, set to “true” if it can receive messages from sources
outside its application, “false” otherwise. The default value
depends on whether the broadcast receiver contains intent filters.
The absence of any filters means that it can be invoked only by
Intent objects that specify its exact class name. So the default
value is "false". On the other hand, the presence of at least one
filter implies that the broadcast receiver is intended to receive
intents broadcasted by the system or other applications, so the
default value is “true".

When a receiver is defined by intent filter, it lets the other app or
components of the app send implicit intents to this receiver.
However, an app can define the intent filter in the receiver to
obtain the implicit intents that may not target the particular
application, for example, getting alarms or receiving messages
from the system. It can also be a way to restart a service or
activity inside an app. As we will show in the next section, we
will examine this feature to see if malicious apps behave in such a
way or not. Note that a broadcast receiver can only be started; it
cannot be bound to a service.

Figure 1 illustrates the communication of a service during its life
cycle. This figure shows how a user as an actor in the lifecycle of
components can start a service and be notified from the service
operation. It should be noted that in this figure, instead of activity,
there can be any other type of app’s component.

As shown in Figure 1, the user’s role is important for this study
since malware that attempts to hide itself, would operate stealthy
by avoiding any communication with the user. A suspicious
behavior may motivate users to use expert tools to detect and
remove malwares. In addition, malwares that perform malicious
operations that involve user interactions such as sending messages
to user contacts or alarm the user of erasing the files are usually
not published on reliable app stores such Google play store [18].
They are published on third party (untrusted) app stores.

With the focus on services of an app, we can define each app by
the set of services it has. Each service consists of some features
which characterize the app’s behavior. The defined features are
summarized as follows:

• Service permissions used by the service; a service that does
not need any permission does not perform any malicious
operation.

• Notifications generated by a service to show if it has
interactions with the user; it can be done by generating

notifications or sending messages to any message handler,
which is passed to a service while starting it.

• List of activities which start the service or bound to the
service; if a service is bound to a component, it has access
to its public method. Thus, it is indirectly connected to
other components and will die as soon as other components
unbind it.

• List of activities started directly by the service; as activities
are visible to users, it can be a way of notifying the user of
the operation of service.

• List of broadcast receivers in the app that start a service;
these broadcast receivers are defined by their intent filters.
They can help determine when a service starts to perform
actions. Note that a broadcast receiver cannot be bound to a
service.

The list of services is easily extracted from AndroidManifest.xml
file. The tag <uses-permissions> in AndroidManfest.xml shows
that permissions are needed by the app. These tags are usually
defined independently from the components, making difficult to
know which components use which permissions. Thus, we need to
study the application code and APIs used in each class to identify
the permissions used by a service. In the AndroidManifest.xml,
each component android:name attribute specifies the class name
of the component in the corresponding Java code.

We used a tool called Androguard1 to extract the methods called
in a class and permissions used by them. We wrote a python script
over Androguard that recursively follows the methods called in a
service class, starting from callback method onStartCommand()
and onBind(). All the permissions used in these methods specify
the permissions of the service.

We were also curious to know if a service notifies the user of its
operations. As such, we extracted all the notification objects
generated in the methods called during the service life cycle.
Apart from that, we also extracted direct call for activities. As
activities run in the foreground, they inform the user of the
operations done in service. As discussed in the previous section,
our assertion is that stealthy services don’t do this. In this regard,
we also extract the messages passed by the service to other
components. The tool Androguard let us find the object
Notification and Message in a service. The other feature needed to
be extracted was the broadcast receivers and activities, which call
the service as well as activities called by the service. When a
service is started by a broadcast receiver, it shows the special
situation in the device that a service is called, such as “a message
received” or “battery is low”.

3. EXPERIMENT

3.1 Dataset
To investigate our assertion, we studied a set of malwares to
observe how they will behave. We also studied a set of normal
applications to see if their services behaved differently. The
Genome malware dataset [5] was used for our study. The
legitimate apps are downloaded from Google play store in April
2015. We downloaded 200 apps randomly from the first twenty
categories in Goggle play store; ten apps from each category.

1https://code.google.com/p/androguard/

3.2 Analysis and results
As we explained, malwares try to hide themselves by running in
background services and having no communication. We can
classify the feature of the services as follows. The first feature,
PERMISSION, represents the permissions used during the service
life span. The second, MESSAGE, is the notifications or messages
passed to activities or shown to the user. These two features were
extracted just by running a script that we have developed.

We also needed to extract two other features. The first one,
CALL_ACTIVITY, shows if the service calls other activities after
finishing its operation informing the user when the operation is
done. The second one, SERVICE_BOUND, depicts if the service
is bound because the bound services are alive until the
component, which binds them is alive. To extract
CALL_ACTIVITY and SERVICE_BOUND and study the apps’
“smali” code2, assembly for the dex format, we used APKTOOL3.

We extracted the features for all legitimate apps downloaded from
Google play store and the malware dataset. The results are shown
in Table 2. We use the following labels to refer to groups of the
various features of services:

• A: NO PERMISSION

• B: PERMISSION and MESSAGE

• C: PERMISSION and NO MESSAGE and NO
CALL_ACTIVITY and NO SERVICE_BOUND

• D: PERMISSION and NO MESSAGE and
(CALL_ACTIVITY or SERVICE_BOUND)

• E: NO SERVICE

• F: NO IMPLIMENTATION

Note that in this table, having “NO” before the feature’s name
means that the app contains at least one service that does not have
this feature. For example NO MESSAGE means that the app
contains a service which does not send messages or notifications.

While studying the apps’ services, we have found that some of the
apps do not have any services and as such, we categorized them as
NO SERVICE. There were some apps that contain only definition
for a service in AndroidManifest.xml but the service does not
implemented in the source code they have been categorized as NO
IMPLEMENTATION. This may be due to the developer’s
mistake in keeping unnecessary service definitions in
AndroidManifest.XML.

It should be noted that if there is an app containing services with
different features, we take into account the most restrictive
services. For example, if a normal app contains two services
where the first one is PERMISSION and MESSAGE and the
second one is PERMISSION and NO MESSAGE and
CALL_ACTIVITY, we put it in the third group in Table 1.

Apps that contain services with NO PERMISSION show that they
have safe services. Clearly, a service performing malicious
operation needs permissions. As it is shown in Table 1, the
number of these apps in the legitimate apps dataset is 25 out of
200 (12%) and in the malicious app dataset is 1 out of 65 (1.5%).

The number of apps with PERMISSION, NO MESSAGE,
CALL_ACTIVITY shows a significant difference between the

2https://code.google.com/p/smali/
3http://ibotpeaches.github.io/Apktool/

apps in the malware dataset and those in the legitimate app
dataset.

The number of apps in Group D which shows the services who are
bound to a component and will stop after the component unbind
it; and in group B which shows the services with MESSAGE are
significantly large in normal apps. On the other hand, the number
of apps in group C, which shows the apps with services that have
no connection with rest of the app after being started, are larger
than other groups in the malware dataset. These results show that
malwares and normal apps have different behavior with respect to
the service lifecycle and its connections and communication with
the rest of the app.

In order to have a better understanding of malicious apps that
have NO SERVICE or NO PERMISSION, we further examined
sample malicious apps. We use the code of malware and
information provided by Zhou et al. [22] and by Felt et al. in [9].

Among the group of malwares that do not have services,
FakeNetFlix and FakePlayer ask for user credential information
directly from the user via an activity component. This sort of
malwares is easily detectable by a security expert. DroidDeluxe
and some version of Asroot do not have malicious operations.
They get root privilege by exploiting a vulnerability during
installation. Similarly, DroidKungFuUpdate, AnServerBot,
BaseBridge and Plankton get root privilege to download and
install malicious apps. SMSReplicator, Walkinwat, YZHC do not
have services and do the malicious operation when an event is
received by a broadcast receiver. For example, SMSReplicator has
a broadcast receiver that listens to the incoming message and
forward it to the selected number.

AnserverBot is a malware that asks users for update and installs
the malicious payload. Therefore, the services in the malware
itself do not need permissions.

ADAR, which has PERMISSION and MESSAGE, use media
player to send notifications. One version of Asroot and
BaseBridge also use notifications while updating for malicious
payload. SNDApps notification is sent by a service in the
repackaged app that the malicious payload added to the original
app. It was the only sample in the malware dataset that adds the
malicious operation to the existing service of a legitimate app.
However, there was another service related to malware in
particular. This shows that studying the content of messages in a
service can help detect suspicious services.

4. RELATED WORK
The increased rate of Android apps has been accompanied by an
increase in malware spread in app stores. Below are some security
issues raised by the increase of malware:

• Users are not aware that by giving some permission to an app,

they may cause security issues.

• Attackers have the same capability to develop malware and

upload them in marketplaces as legitimate developers.

• Although official Android app store sites investigate apps

before uploading them to the store it is not clear how these

investigations are carried out and to what extent. In [6], the

authors show that some malware were uploaded in Android

market place such as DroidDream Trojan in 2011.

Table 1. Results of classifying Apps based on their services

Category
A: NO

PERMISSION

B:
PERMISSION

and
MESSAGE

C: PERMISSION
and NO MESSAGE

and NO
CALL_ACTIVITY

and NO
SERVICE_BOUND

D: PERMISSION
and NO MESSAGE

and
(CALL_ACTIVITY

or
SERVICE_BOUND

E: NO
SERVICE

F: NO
IMPLIMENTATION

Normal
(200)

25 (12%) 58 (29%) 14(7%) 76 (38%) 19 (9.5%) 8 (4%)

Malwares
(65)

1 (1.5%) 3 (5%) 39(60%) 14(21%) 8 (12%) 0 (0%)

The increased number of malware in Android apps has motivated
researchers to work on developing several detection techniques.
Studies conducted in detecting malwares in desktop applications
are used to study the Android apps in order to identify malicious
behavior of the apps. Studying the similarity of apps is a detection
approach as malwares in Android use repackaging to embed the
malware in legitimate code [22]. There is no perfect method that
could provide the desired accuracy in detecting malware and the
most common issues are summarized as follows.

Struggles related to the use of machine learning algorithms: Some
approaches [1, 3, 10, 14, 19, 20] use machine learning algorithms
to learn the characteristics and behavior of malware and build
clusters of malware families to detect zero-day malwares.
Features used to learn malware behaviors are permissions [7, 19],
intent [20], API [3, 19], system calls and smartphone features
such as battery usage, memory, CPU and Network [2]. The main
drawback of these approaches is that they need to have more than
one malware sample in a family to learn their behavior.

Dynamic loading and Native code: Some malware like Base-
Bridge and DroidKungFu Android malware [23] extract the actual
malicious payload from external places rather than the original
applications themselves. Thus, static analysis approaches [19]
cannot detect them. To detect the malicious operations in native
codes, it is suggested to study the OS interactions [18]. Detecting
malicious code in dynamic loading and native code in Android
apps still suffer from computational complexity [24].

Obfuscation: Detecting malware based on signatures has always
suffered from the problem of obfuscation. To this end, behavioral
graph models are used to learn malware behavior [8, 11, 12, 17,
20, and 23]. In these studies, the graph is used to find the structure
of malware behavior, which is different from normal apps.
Several studies have been proposed [8, 11, and 23]]. These
approaches suffer from computation and memory usage overhead.
Moreover, they fail to identify certain usages of
instances/methods, which are encrypted or use Java reflection and
native code.

Curse of studying the similarity of Apps:. Some studies focus on
detecting the similarity of apps by analyzing the user interface of
the apps. Since the two apps (the original and the repackaged one)
are designed to offer the same experience and have a high chance
of being downloaded the repackaged version has the same UI as
the original version of the app. Zhang et al. [21] extracted the
graph containing the activity component of the app and compared
the similarity of the graph, extracted from the original and the
repackaged apps. Shao et al. [15] followed the same idea but
instead of using the activity component, they studied the similarity
of resources in the two apps. Zhou et al. [24] considered that

repackaged apps are published in third-party app stores and
studied the instruction sequences in apps and measured the
similarity of apps based on similar instructions. They found that
the similarity between apps in the official Android marketplace
and in third-party market places. Besides the computational
overhead of these approaches, the main constraint is that they
need to compare apps two by two to find the similar ones. They
also cannot detect if the repackaged version contains malware or
just minor changes such as ads, or contain no changes and are just
resigned and published in third party app stores.

5. CONCLUSION AND FUTURE WORK
In this paper, we examined the service life cycle of apps to
understand how malicious apps due to repacking and normal apps
vary in terms of the services they offer. We found that malicious
apps tend to start a service to perform malicious operations and
have no connection to the other components of the app. However,
services in normal applications are bound to other components
and send message and notifications to users.

We intend in the future to continue examining the variations that
exist between malicious apps and normal apps by studying their
services. The results should lead to effective techniques for
detecting malicious apps that would not require comparing apps in
a large store of apps. We are always investigating other features
besides service features.

6. ACKNOWLEDGMENT
This research is partly supported by a grant from Natural Sciences
and Engineering Research Council of Canada (NSERC), Defence
Research and Development Canada (DRDC) Valcartier (QC), and
Ericsson Canada.

7. REFERENCES
[1] 2011 mobile threats reports, Juniper Networks, 2012.

[2] Alam, M. S., & Vuong, S. T. 2013. Random Forest
Classification for Detecting Android Malware. In Green

Computing and Communications (GreenCom), 2013 IEEE

and Internet of Things (iThings/CPSCom), IEEE

International Conference on and IEEE Cyber, Physical and

Social Computing (August 2013), 663-669.

[3] Alazab, M., Venkataraman, S., and Watters, P. 2010.
Towards understanding malware behaviour by the extraction
of API calls. In Cybercrime and Trustworthy Computing
Workshop (CTC), 2010 Second, (July 2010), IEEE, 52-59

[4] Android Developer Guide, 2015,
http://developer.android.com/guide/components/fundamental
s.html

[5] Android Malware Genome Project, 2015,
www.malgenomeproject.org.

[6] Arxan Technologies Inc. State of security in the app
economy. http://www.arxan.com/resources/state-of-security-
in-the-app-economy/

[7] Barrera, D., Kayacik, H. G., van Oorschot, P. C., and
Somayaji, A. 2010. A methodology for empirical analysis of
permission-based security models and its application to
android. In Proceedings of the 17th ACM conference on

Computer and communications security. ACM, 73-84.

[8] Burguera, I., Zurutuza, U., and Nadjm-Tehrani, S. 2011.
Crowdroid: behavior-based malware detection system for
android. In Proceedings of the 1st ACM workshop on
Security and privacy in smartphones and mobile devices
(October 2011), ACM, 15-26.

[9] Felt, A. P., Finifter, M., Chin, E., Hanna, S., and Wagner, D.
2011. A survey of mobile malware in the wild. In
Proceedings of the 1st ACM workshop on Security and

privacy in smartphones and mobile devices, ACM, 3-14.

[10] Islam, R. and Altas, I. 2012. A comparative study of malware
family classification. In Information and Communications
Security, 488-496. Springer Berlin Heidelberg.

[11] Gascon, H., Yamaguchi, F., Arp, D., and Rieck, K. 2013.
Structural detection of android malware using embedded call
graphs. In Proceedings of the 2013 ACM workshop on
Artificial intelligence and security, (November 2013), 45-54.
ACM.

[12] Luoshi, Z., Yan, N., Xiao, W., Zhaoguo, W., and Yibo, X.
2013. A3: Automatic Analysis of Android Malware. In 1st
International Workshop on Cloud Computing and
Information Security. Atlantis Press. (November 2013).

[13] McAfee Labs Reports, February 2015,
http://www.mcafee.com/ca/resources/reports/rp-quarterly-
threat-q4-2014.pdf

[14] Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., and
Bringas, P. G. 2012. On the automatic categorization of
android applications. In Consumer Communications and
Networking Conference (CCNC), (January 2012). IEEE,
149-153.

[15] Shao, Y., Luo, X., Qian, C., Zhu, P., and Zhang, L. 2014.
Towards a scalable resource-driven approach for detecting

repackaged Android applications. In Proceedings of the 30th

Annual Computer Security Applications Conference
(December 2014), ACM, 56-65.

[16] Statistics and Market Data on Mobile Internet & Apps, May
2015,http://www.statista.com/statistics/276623/number-of-
apps-available-in-leading-app-stores/

[17] Suarez-Tangil, G., Tapiador, J. E., Peris-Lopez, P., and
Blasco, J. 2014. Dendroid: A text mining approach to
analyzing and classifying code structures in Android
malware families. Expert Systems with Applications, 41(4),
(2014), 1104-1117.

[18] Tam, K., Khan, S. J., Fattori, A., and Cavallaro, L. 2015.
CopperDroid: Automatic Reconstruction of Android
Malware Behaviors. In Proc. of the Symposium on Network

and Distributed System Security (NDSS).

[19] Wu, D. J., Mao, C. H., Wei, T. E., Lee, H. M., and Wu, K. P.
2012. Droidmat: Android malware detection through
manifest and API calls tracing. In Information Security (Asia

JCIS), 2012 Seventh Asia Joint Conference on, (2012,
August), 62-69.

[20] Yang, C., Xu, Z., Gu, G., Yegneswaran, V., and Porras, P.
2014. Droidminer: Automated mining and characterization of
fine-grained malicious behaviors in android applications. In
Computer Security-ESORICS 2014, 163-182.

[21] Zhang, F., Huang, H., Zhu, S., Wu, D., and Liu, P. 2014.
ViewDroid: towards obfuscation-resilient mobile application
repackaging detection. In Proceedings of the 2014 ACM

conference on Security and privacy in wireless & mobile

networks (July 2014), ACM, 25-36.

[22] Zhou, Y. and Jiang, X. 2012. Dissecting android malware:
Characterization and evolution. In Security and Privacy (SP),

2012 IEEE Symposium on (May. 2012), 95-109.

[23] Zhou, Y., Wang, Z., Zhou, W., and Jiang, X. 2012. Hey,
You, Get Off of My Market: Detecting Malicious Apps in
Official and Alternative Android Markets. In NDSS, Internet
Society, (February 2012).

[24] Zhou, W., Zhou, Y., Jiang, X., & Ning, P. 2012. Detecting
repackaged smartphone applications in third-party android
marketplaces. In Proceedings of the second ACM conference
on Data and Application Security and Privacy (February
2012), 317-326. ACM.

