
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Susereum: Towards a Reward Structure for
Sustainable Scientific Research Software

Omar Badreddin
University of Texas, El Paso

Texas, U.S.A
obbadreddin@utep.edu

Wahab Hamou-Lhadj
Concordia University, Montreal

Quebec, Canada
wahab.hamou-lhadj@concordia.ca

Swapnil Chauhan
University of Texas, El Paso

Texas, U.S.A
sschauhan@miners.utep.edu

Abstract—Research software has opened up new pathways of
discovery in many and diverse disciplines. This research software
is developed under unique budgetary and schedule constraints. Its
development is driven by knowledge discovery goals often without
documented requirements. As a result, the software code quality
is impacted which often hinders its sustainability beyond the
immediate research goals. More importantly, the prevalent
reward structures favor contributions in terms of research articles
and systematically undervalues research codes contributions. As a
result, researchers and funding agencies do not allocate
appropriate efforts or resources to the development, sustenance,
and dissemination of research codebases. This paper presents
Susereum, a Blockchain based platform that aims at achieving two
goals. First, restructuring prevalent incentives by awarding
permanent immutable credit to research code authors similar to
the credit awarded to the authors of scientific articles. Second,
distributing sovereignty by empowering peers through a
consensus process to define code sustainability and impact
metrics.

Keywords—Susereum, software sustainability, research codes,
Blockchain, consensus algorithm, distributed sovereignty.

I. INTRODUCTION
Research software has, and continues to, open up

fundamentally new pathways of discovery in broad disciplines
of research. In the course of inquiry and discovery, many
researchers, postdocs and graduate students have become
software developers and practitioners. They develop research
software under unique budgetary and schedule constraints. The
workforce is highly transient and often practice software
development without formal training or education. They adopt
discovery-driven development processes to achieve their
research goals and objectives.

This research software is unique, not only because of how its
developed and the nature of its workforce. It is also unique
because the prevalent academic reward structure systematically
undermines its sustainability. Principle investigators document,
preserve, disseminate their research findings in scientific
articles. The impact and scientific value of those articles are
relatively well-understood and are broadly accepted and
recognized by the respective communities. Unfortunately,
research software does not enjoy a comparable status, even in
cases where the software may achieve broader impacts. This
results in reward structures and incentives that systematically
undermines the quality and sustainability of research software.
Consequently, the significant intellectual investments by

domain experts in the development of research software does not
achieve its potential impacts and returns. The specialized
domain knowledge embodied in the software codes and
algorithms become inaccessible due to the growing arbitrary
complexities. As a result, reproduction and extension of research
findings become significantly hampered and the dissemination
of knowledge is greatly restrained.

This is a multi-facet challenge that includes preparation and
trainings in software development, effective collaboration
between researchers and professional engineers, as well as
fundamental challenges in the quantification of research
software impact. Recognizing this challenge, many research
funding agencies has adopted a number of initiatives, including:
1) requiring that software elements be made publicly accessible;
2) mandating explicit dissemination activities, and more
recently, 3) requiring that budgets include support for
professional software engineers to aid in the development tasks.
These initiatives, while potentially effective, they do not address
the fundamental deficiencies in academic ecosystems that have
evolved over hundreds of years. These ecosystems
systematically promote contributions of peer reviewed articles
and overlook the emerging reality that many articles have
become software-dependent. Unfortunately, it is very difficult to
subject software codes to the same peer-review processes of
scientific articles for many reasons.

This paper presents Susereum, a Blockchain based platform
that rewards scientific research code developers with immutable
credit for their research code contributions. The platform adopts
a peer-driven consensus protocol that is similar to how academic
articles are reviewed and evaluated. Susereum is a functioning
open source platform that awards ‘Suse’ as credit for
contributions.

II. BACKGROUND
We discuss background related to the context in which

scientific research software is developed. This is followed by a
review of fundamental software sustainability quantification
approaches.

A. Research Software
Research software codes embody knowledge and algorithms

pertaining to specialized domains, processes, algorithms, and
data representations. Many of these software codes do not
adhere to software engineering best practices and continue to
degrade in quality as they evolve. By the time some of these

software systems reach the broader communities, their code size
and complexity limit their reusability; consequently, limiting the
ability to reproduce and extend research results. Code
complexities obscure knowledge, design decisions, goals, and
data representations, further limiting the dissemination of the
software and the knowledge embodied in its codes. These
current practices are detrimental to the scientific software
sustainability and is a major limiting factor for dissemination of
knowledge. This challenge is echoed in the recent National
Science Foundation (NSF) report on “Computational Science
and Engineering Software Sustainability and Productivity
(CSESSP) Challenges” [1].

B. Software Sustainability Quantification
Software sustainability is often assessed by means of

quantifying adverse symptoms. One broadly recognized notion
is ‘Code Smells’ [11][12]. Code Smells represent a surface
observation that often suggest the presence of a deeper problem.
‘God Class’ is an example of such code smell that refers to the
presence of a code unit that gains too much control or influence
over other elements [13]. A similar code smell is ‘Large Class’
that refers to a single code unit that has become too big and
complex to sustainably maintain. Such smells often have
arbitrary thresholds above which the code is flagged with the
smell. For example, a ‘Large Class’ smell is identified typically
when the class lines of code exceed 750 lines [9]. Similarly,
‘large Parameter List’ smell refers to methods typically with
more than five parameters. A related notion is the concept of
‘Design Smell’, which refers to structures in the design that
indicate a violation of fundamental principles that may
negatively impact design quality and the sustainability of the
software system [14]. Some of the common Design Smells
include ‘Missing Abstraction’ where elements of data or
computations are not assigned to appropriate abstractions [15].
Another related and important notion is Technical Debt (TD)
[16]. Technical Debt refers to the effort required to refactor the
code or design to remove or minimize the undesired
characteristics or smells.

Sustainability quantification methodologies that are based
on measures of code and design smells suffer from key
fundamental limitations. First, such methodologies are reactive
in nature as they are dependent on the symptoms to manifest and
become identifiable in the code with little upfront guidance to
avoid introducing the smells from the first place. Second, such
measures are based on arbitrary thresholds that largely ignores
the broad and diverse development technologies, individual and
team priorities, and the diverse and changing project contexts. A
software designed for low-power IoT devise will inevitably have
unique characteristics compared to software running on
specialized high-performance computing platform. Third,
current sustainability quantification methods ignore the
fundamental incentive structures that drives decision making
processes for individuals, teams, and organizations.

III. SUSEREUM PLATFORM
Susereum is a purely distributed Blockchain based platform.

Susereum’s goal is to restructure prevalent incentives to reward
authors of scientific research codes. This is achieved by
rewarding research code authors with immutable credit for their

research code contributions. In this section, we present
Susereum’s operational steps. A fundamental element of
Susereum is the consensus protocol that is at the core of the
sustainability quantification. We discuss the consensus protocol
in the following section.

A. Susereum’s Openrational Steps
Susereum’s steps initiates whenever there is a change in the

research codebase (Fig. 1). Susereum measures the resulting
codebase sustainability using metrics formulated as a result of
the consensus protocol (discussed next). The result of this
quantification forms a transaction, which contains information
pertaining to the source and destination revisions, the author,
and the associated quantification metrics. Each transaction
translates to a credit which can be either positive or negative.
Positive credit indicates an improvement in the codebase
sustainability.

A fixed number of transactions are combined together into
patches. Similarly, a fixed number of patches forms blocks in
the chain. The chain is distributed to all peers in the network (i.e.
developers in the open source project) along with the codebase.
Peers can verify transactions in a fashion similar to how
transactions are verified in Blockchains. These operational steps
are depicted in Fig. 1.

B. Proof of Work and Proof of Stake
Proof of Work (PoW) and Proof of Stake (PoS) are

fundamental protocols in Blockchains where they are used to
formalize which peer in the network is awarded credit for
creation of new Blocks. To incentivize participation,
Blockchains often award credit to peers that are selected for the
creation of new blocks. This is typically achieved through a
protocol known as Proof of Work (PoW). Unfortunately, PoW
requires extensive computations and consumes significant
resources to demonstrate the evidence for having done the
‘work’ (in Bitcoin, this is the work required to solve a complex
crypto problem). Proof of Stake (PoS) has emerged to achieve
the same goal without requiring the significant work to be
performed, especially that the work is typically unproductive
and does not serve any meaningful purpose beyond the
determination of the privileged peer. PoS selects peers
deterministically based on their stake in the network.

Susereum uses both PoW and PoS as follows. PoS is used to
deterministically select a peer based on their stake in the network
(lines of code committed by the peer). Once the peer is selected,
the peer must demonstrate PoW by performing the calculations
required by the sustainability quantification module. This work
is both productive and needed to calculate the baseline for future
credit awards. In Susereum, PoW and PoS do not create credit
(or Suse). Credit is only created when the code base
sustainability is improved.

C. Susreum Design and Strcuture
Susereum runs in the cloud with zero installation footprint.

Researchers can use Susereum without changing their
development infrastructures or tools. Susereum currently
provides seamless integration with GitHub repository with plans
to extend integration with other public code repositories.

Metrics Specification Language. Susereum uses a Domain
Specific Language (DSL) to define sustainability metrics. The
DSL defines quantification metrics and their scope. The scope
can be a specific code unit (i.e. a method or a class), a module,
or a universal scope. The language is defined using Tom's
Obvious Minimal Language (TOML) [17]

Consensus Module. This module serves two key purposes.
First, it empowers peers to continuously redefine appropriate
sustainability metrics that are most suited to their project unique
context. Second, it ensures that these metrics are defined through
a process of consensus. The use of this module is optional for
those teams who do not wish to modify the default sustainability
metrics. It is possible for small research teams to use the default
metrics without ever participating in this consensus process. Fig.
2 illustrates this consensus protocol.

The protocol is based on a continuous timeline covering the
entire project lifecycle. Susereum’s peers can propose new
metrics or propose a modification to an existing metric. This is
followed by a period of voting by any other peer (excluding the
peer that proposed the change). Peers can vote up or down for
the metric inclusion. If the proposal is voted for inclusion, a
single peer will perform the work of integration and validation
of the new measure, as well as performing the necessary
calculations to assess current sustainability of the entire
codebase. This task constitutes the Proof of Work (PoW) in the
blockchain as discussed earlier. The protocol allows for a second

voting period to so that peers can recast their vote based on the
new knowledge about the impact of the new sustainability
metric.

Code Analysis Integration Module. Susereum integrates
with SonarQube and SourceMeter code analysis tools to
perform code analysis. These two code analysis tools run on
Susereum’s server and the integration is seamless to the end
user. This module also performs pre and post processing for the
analysis results. This is because metrics provided by the analysis
tools are often very different than the metrics defined through
the consensus protocol.

Suse Quantification Module. This module takes the
metrics values and coverts them into crypto units, Suse. The
calculation is performed following a series of calculations as
discussed below.

𝑆𝑢𝑠𝑒∆&'()
= 	𝐹(𝑆𝑢𝑠)/01)2 −	𝐹(𝑆𝑢𝑠)4)0'2) 𝐹(𝑆𝑢𝑠)4)0'2)⁄ 																			(1)

That is, the amount of Suse awarded is measured by the
change in the sustainability of the entire codebase as a result of
the code change.

𝐹(𝑆𝑢𝑠)7'(89) = 𝑟𝑤 −
∑ (𝑐𝑚 − 𝐴𝑐7'(89))@A
BCD

𝐴𝑐@ ∗ 𝑟𝑤											(2)

That is, the sustainability of a code module is the square
difference between a code metric (cm) and the actual value of
the code module under evaluation (𝐴𝑐7'(89)). Where n is the
number of code metrics and rw is a reward constant set by
default to 100. As such, sustainability is reduced as code
modules deviate further from code metrics.

𝐹(𝑆𝑢𝑠)&'()4/G) = 	∑ [𝐹(𝑆𝑢𝑠)7'(89)]
J
BCD (3)

That is, the sustainability of the entire codebase is measured
by the summation of the sustainability of each code module.

D. Uniform Research Software Citation
Uniform citations is fundamental for appropriate attribution

of credit and for the assessment of contributions impact. Unlike
code, academic papers enjoy broadly adopted and uniform
citations. Impact of papers is therefore quantifiable and is
relatively well understood.

Uniform citation for research software maybe
straightforward only for single investigators and small teams.
Uniform citations become more challenging for large long-
living projects particularly as the development teams change
overtime. More importantly, individual code contributors to a
research codebase is often untraceable and its quality and its
future potential impact is largely unknown.

Susereum aims to address this challenge by providing a
uniform immutable citation for the research codebase at any
moment in time. Susereum orders all code authors by their level
of stake (or Suse) in the codebase. For codebases with large and
changing contributors, citations becomes more dynamic as it
changes over time. While citations for academic papers is fixed
over time, Susereum generates a unique time-stamped citation
at any moment of time.

Fig. 1: Susereum Operational Steps [10]

Fig. 2: Consensus Protocol [10]

IV. RELATED INITIATIVES
The Networking and Information Technology Research and

Development (NITRD) workshop report on Computational
Science and Engineering Software Sustainability and
Productivity Challenges has identified a number of key gaps
related to the development of sustainable scientific software [2].
The report concludes that research software is developed in
unique context and under unique constraints that standard
software engineering best practices are not applicable without
significant modifications. This has motivated the establishment
of some key initiatives to address research software
sustainability. One notable example is the “US Research
Software Sustainability Institute” (URSSI) which is established
with the goal of serving as a community hub and providing
services to scientists that will help them create improved, more
sustainable research software [3]. Similar initiatives have been
established outside of the U.S. For example, Software
Sustainability Institute has been recently established in the U.K
aiming at gathering intelligence from researchers and offering
multiple programs and fellowships for researchers [4].

There are ongoing efforts that explores applications of
blockchain technologies to reform sustainability of the scientific
research [5]. Scienceroot aims at addressing deficiencies in the
status quo and the extended time durations required to attain
funding, collaborate, and publishing research findings [6]. A
related effort is Pluto Network [7] that aims at decentralizing
communications between researchers and scientists.
ImpactStory [8] is a nonprofit effort dedicated to making
scholarly research more open, accessible, and reusable.

V. CONCLUSION
Modern research is driven by advanced and specialized

software developed with the primary goal of inquiry and
discovery. This software is developed in research labs under
unique budgetary and schedule constraints frequently with
insufficient consideration of its sustainability beyond the
immediate research goals. As a result, the software
dissemination and impact are hindered and the investments in its
development do not reach its full potential and returns.
Developing research and experimental software is a challenge.
This software is developed following a discovery driven process
and its developers often lack formal software engineering
training. Moreover, the nature of the funding cycles of research
for three to five years means that there is very little incentive to
sustain the codebase beyond the immediate lifecycle of the
research project. The potential impact of improving
sustainability in the research domain is momentous. Research
software codes embody knowledge and algorithms pertaining to
specialized domains, processes, algorithms, and data
representations.

This paper presents an approach and a supporting platform
that addresses the fundamental deficiencies in the prevalent
academic incentive structures. The approach aims at
restructuring incentives by appropriately crediting research code
authors based on the sustainability and impact of their
contributions. Susereum, the blockchain platform, aims at 1)
creating immutable credit to authors, and 2) empowering peers

to define their own appropriate sustainability metrics. In effect,
Susereum aims are establishing an ecosystem where research
codes are peer-reviewed, their impact are quantified, and their
authors are appropriately awarded the credit.
[1] Heroux, A. M., Allen, G. (2016, September). Computational Science and

Engineering Software Sustainability and Productivity (CSESSP)
Challenges Workshop Report. Arlington, VA: Networking and
Information Technology Research and Development (NITRD) Program.
Retrieved from NITRD Website:
https://www.nitrd.gov/PUBS/CSESSPWorkshopReport.pdf

[2] Heroux, A. M., Allen, G. (2016, September). Computational Science and
Engineering Software Sustainability and Productivity (CSESSP)
Challenges Workshop Report. Arlington, VA: Networking and
Information Technology Research and Development (NITRD) Program.
Retrieved from NITRD Website:
https://www.nitrd.gov/PUBS/CSESSPWorkshopReport.pdf

[3] US Research Software Sustainability Institute" (URSSI). Available:
http://urssi.us/ Accessed: September 2018.

[4] Software Sustainability Institute. Available:
https://www.software.ac.uk/programmes-and-events/fellowship-
programme. Accessed: September 2018.

[5] Andy Extance , "Could Bitcoin technology help science?" Available:
https://www.nature.com/articles/d41586-017-08589-4. Nature magazine
article. Accessed: September 2018.

[6] ScienceRoot. Available: https://www.scienceroot.com/ Accessed:
September 2018.

[7] Pluto Network. Available: https://pluto.network/ Accessed: September
2018.

[8] ImpactStory. Available www.impactstory.org Accessed September 2018.
[9] García-Munoz, Javier, Marisol García-Valls, and Julio Escribano-

Barreno. "Improved metrics handling in SonarQube for software quality
monitoring." In Distributed Computing and Artificial Intelligence, 13th
International Conference, pp. 463-470. Springer, Cham, 2016.

[10] Badreddin, Omar. "Powering software sustainability with blockchain." In
Proceedings of the 28th Annual International Conference on Computer
Science and Software Engineering, pp. 315-322. IBM Corp., 2018.

[11] Palomba, Fabio, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
and Andrea De Lucia. "Do they really smell bad? a study on developers'
perception of bad code smells." In Software maintenance and evolution
(ICSME), 2014 IEEE international conference on, pp. 101-110. IEEE,
2014.

[12] Nakagawa, Elisa Yumi, Rafael Capilla, Eoin Woods, and Philippe
Kruchten. "Sustainability and Longevity of Systems and Architectures."
Journal of Systems and Software, (2018).

[13] Santos, Jose Amancio M., and Manoel G. de Mendon√ßa. "Exploring
decision drivers on god class detection in three controlled experiments."
In Proceedings of the 30th Annual ACM Symposium on Applied
Computing, pp. 1472-1479. ACM, 2015.

[14] Suryanarayana, Girish, Ganesh Samarthyam, and Tushar Sharma.
Refactoring for software design smells: managing technical debt. Morgan
Kaufmann, 2014.

[15] Chaudron, Michel RV, Brian Katumba, and Xuxin Ran. "Automated
Prioritization of Metrics-Based Design Flaws in UML Class Diagrams."
In Software Engineering and Advanced Applications (SEAA), 2014 40th
EUROMICRO Conference on, pp. 369-376. IEEE, 2014.

[16] Li, Zengyang, Paris Avgeriou, and Peng Liang. "A systematic mapping
study on technical debt and its management." Journal of Systems and
Software 101 (2015): 193-220.

[17] Preston-Werner, T. "TOML-Tom’s Obvious, Minimal Language.".
Available: https://github.com/toml-lang/toml; Accessed January 2019.

[18] Baddreddin, Omar, and Khandoker Rahad. "The impact of design and
UML modeling on codebase quality and sustainability." In Proceedings
of the 28th Annual International Conference on Computer Science and
Software Engineering, pp. 236-244. IBM Corp., 2018.

