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Abstract—Research software has opened up new pathways of 
discovery in many and diverse disciplines. This research software 
is developed under unique budgetary and schedule constraints. Its 
development is driven by knowledge discovery goals often without 
documented requirements. As a result, the software code quality 
is impacted which often hinders its sustainability beyond the 
immediate research goals. More importantly, the prevalent 
reward structures favor contributions in terms of research articles 
and systematically undervalues research codes contributions. As a 
result, researchers and funding agencies do not allocate 
appropriate efforts or resources to the development, sustenance, 
and dissemination of research codebases. This paper presents 
Susereum, a Blockchain based platform that aims at achieving two 
goals. First, restructuring prevalent incentives by awarding 
permanent immutable credit to research code authors similar to 
the credit awarded to the authors of scientific articles. Second, 
distributing sovereignty by empowering peers through a 
consensus process to define code sustainability and impact 
metrics. 
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I. INTRODUCTION 
Research software has, and continues to, open up 

fundamentally new pathways of discovery in broad disciplines 
of research. In the course of inquiry and discovery, many 
researchers, postdocs and graduate students have become 
software developers and practitioners. They develop research 
software under unique budgetary and schedule constraints. The 
workforce is highly transient and often practice software 
development without formal training or education. They adopt 
discovery-driven development processes to achieve their 
research goals and objectives. 

This research software is unique, not only because of how its 
developed and the nature of its workforce. It is also unique 
because the prevalent academic reward structure systematically 
undermines its sustainability. Principle investigators document, 
preserve, disseminate their research findings in scientific 
articles. The impact and scientific value of those articles are 
relatively well-understood and are broadly accepted and 
recognized by the respective communities. Unfortunately, 
research software does not enjoy a comparable status, even in 
cases where the software may achieve broader impacts. This 
results in reward structures and incentives that systematically 
undermines the quality and sustainability of research software. 
Consequently, the significant intellectual investments by 

domain experts in the development of research software does not 
achieve its potential impacts and returns. The specialized 
domain knowledge embodied in the software codes and 
algorithms become inaccessible due to the growing arbitrary 
complexities. As a result, reproduction and extension of research 
findings become significantly hampered and the dissemination 
of knowledge is greatly restrained. 

This is a multi-facet challenge that includes preparation and 
trainings in software development, effective collaboration 
between researchers and professional engineers, as well as 
fundamental challenges in the quantification of research 
software impact. Recognizing this challenge, many research 
funding agencies has adopted a number of initiatives, including: 
1) requiring that software elements be made publicly accessible; 
2) mandating explicit dissemination activities, and more 
recently, 3) requiring that budgets include support for 
professional software engineers to aid in the development tasks. 
These initiatives, while potentially effective, they do not address 
the fundamental deficiencies in academic ecosystems that have 
evolved over hundreds of years. These ecosystems 
systematically promote contributions of peer reviewed articles 
and overlook the emerging reality that many articles have 
become software-dependent. Unfortunately, it is very difficult to 
subject software codes to the same peer-review processes of 
scientific articles for many reasons. 

This paper presents Susereum, a Blockchain based platform 
that rewards scientific research code developers with immutable 
credit for their research code contributions. The platform adopts 
a peer-driven consensus protocol that is similar to how academic 
articles are reviewed and evaluated. Susereum is a functioning 
open source platform that awards ‘Suse’ as credit for 
contributions. 

II. BACKGROUND 
We discuss background related to the context in which 

scientific research software is developed. This is followed by a 
review of fundamental software sustainability quantification 
approaches. 

A. Research Software 
Research software codes embody knowledge and algorithms 

pertaining to specialized domains, processes, algorithms, and 
data representations. Many of these software codes do not 
adhere to software engineering best practices and continue to 
degrade in quality as they evolve. By the time some of these 



software systems reach the broader communities, their code size 
and complexity limit their reusability; consequently, limiting the 
ability to reproduce and extend research results. Code 
complexities obscure knowledge, design decisions, goals, and 
data representations, further limiting the dissemination of the 
software and the knowledge embodied in its codes. These 
current practices are detrimental to the scientific software 
sustainability and is a major limiting factor for dissemination of 
knowledge. This challenge is echoed in the recent National 
Science Foundation (NSF) report on “Computational Science 
and Engineering Software Sustainability and Productivity 
(CSESSP) Challenges” [1]. 

B. Software Sustainability Quantification 
Software sustainability is often assessed by means of 

quantifying adverse symptoms. One broadly recognized notion 
is ‘Code Smells’ [11][12]. Code Smells represent a surface 
observation that often suggest the presence of a deeper problem. 
‘God Class’ is an example of such code smell that refers to the 
presence of a code unit that gains too much control or influence 
over other elements [13]. A similar code smell is ‘Large Class’ 
that refers to a single code unit that has become too big and 
complex to sustainably maintain. Such smells often have 
arbitrary thresholds above which the code is flagged with the 
smell. For example, a ‘Large Class’ smell is identified typically 
when the class lines of code exceed 750 lines [9]. Similarly, 
‘large Parameter List’ smell refers to methods typically with 
more than five parameters. A related notion is the concept of 
‘Design Smell’, which refers to structures in the design that 
indicate a violation of fundamental principles that may 
negatively impact design quality and the sustainability of the 
software system [14]. Some of the common Design Smells 
include ‘Missing Abstraction’ where elements of data or 
computations are not assigned to appropriate abstractions [15]. 
Another related and important notion is Technical Debt (TD) 
[16]. Technical Debt refers to the effort required to refactor the 
code or design to remove or minimize the undesired 
characteristics or smells. 

Sustainability quantification methodologies that are based 
on measures of code and design smells suffer from key 
fundamental limitations. First, such methodologies are reactive 
in nature as they are dependent on the symptoms to manifest and 
become identifiable in the code with little upfront guidance to 
avoid introducing the smells from the first place. Second, such 
measures are based on arbitrary thresholds that largely ignores 
the broad and diverse development technologies, individual and 
team priorities, and the diverse and changing project contexts. A 
software designed for low-power IoT devise will inevitably have 
unique characteristics compared to software running on 
specialized high-performance computing platform. Third, 
current sustainability quantification methods ignore the 
fundamental incentive structures that drives decision making 
processes for individuals, teams, and organizations. 

III. SUSEREUM PLATFORM 
Susereum is a purely distributed Blockchain based platform. 

Susereum’s goal is to restructure prevalent incentives to reward 
authors of scientific research codes. This is achieved by 
rewarding research code authors with immutable credit for their 

research code contributions. In this section, we present 
Susereum’s operational steps. A fundamental element of 
Susereum is the consensus protocol that is at the core of the 
sustainability quantification. We discuss the consensus protocol 
in the following section. 

A. Susereum’s Openrational Steps 
Susereum’s steps initiates whenever there is a change in the 

research codebase (Fig. 1). Susereum measures the resulting 
codebase sustainability using metrics formulated as a result of 
the consensus protocol (discussed next). The result of this 
quantification forms a transaction, which contains information 
pertaining to the source and destination revisions, the author, 
and the associated quantification metrics. Each transaction 
translates to a credit which can be either positive or negative. 
Positive credit indicates an improvement in the codebase 
sustainability. 

A fixed number of transactions are combined together into 
patches. Similarly, a fixed number of patches forms blocks in 
the chain. The chain is distributed to all peers in the network (i.e. 
developers in the open source project) along with the codebase. 
Peers can verify transactions in a fashion similar to how 
transactions are verified in Blockchains. These operational steps 
are depicted in Fig. 1. 

B. Proof of Work and Proof of Stake 
Proof of Work (PoW) and Proof of Stake (PoS) are 

fundamental protocols in Blockchains where they are used to 
formalize which peer in the network is awarded credit for 
creation of new Blocks. To incentivize participation, 
Blockchains often award credit to peers that are selected for the 
creation of new blocks. This is typically achieved through a 
protocol known as Proof of Work (PoW). Unfortunately, PoW 
requires extensive computations and consumes significant 
resources to demonstrate the evidence for having done the 
‘work’ (in Bitcoin, this is the work required to solve a complex 
crypto problem). Proof of Stake (PoS) has emerged to achieve 
the same goal without requiring the significant work to be 
performed, especially that the work is typically unproductive 
and does not serve any meaningful purpose beyond the 
determination of the privileged peer. PoS selects peers 
deterministically based on their stake in the network. 

Susereum uses both PoW and PoS as follows. PoS is used to 
deterministically select a peer based on their stake in the network 
(lines of code committed by the peer). Once the peer is selected, 
the peer must demonstrate PoW by performing the calculations 
required by the sustainability quantification module. This work 
is both productive and needed to calculate the baseline for future 
credit awards. In Susereum, PoW and PoS do not create credit 
(or Suse). Credit is only created when the code base 
sustainability is improved. 

C. Susreum Design and Strcuture 
Susereum runs in the cloud with zero installation footprint. 

Researchers can use Susereum without changing their 
development infrastructures or tools. Susereum currently 
provides seamless integration with GitHub repository with plans 
to extend integration with other public code repositories. 



Metrics Specification Language. Susereum uses a Domain 
Specific Language (DSL) to define sustainability metrics. The 
DSL defines quantification metrics and their scope. The scope 
can be a specific code unit (i.e. a method or a class), a module, 
or a universal scope. The language is defined using Tom's 
Obvious Minimal Language (TOML) [17] 

Consensus Module. This module serves two key purposes. 
First, it empowers peers to continuously redefine appropriate 
sustainability metrics that are most suited to their project unique 
context. Second, it ensures that these metrics are defined through 
a process of consensus. The use of this module is optional for 
those teams who do not wish to modify the default sustainability 
metrics. It is possible for small research teams to use the default 
metrics without ever participating in this consensus process. Fig. 
2 illustrates this consensus protocol.  

The protocol is based on a continuous timeline covering the 
entire project lifecycle. Susereum’s peers can propose new 
metrics or propose a modification to an existing metric. This is 
followed by a period of voting by any other peer (excluding the 
peer that proposed the change). Peers can vote up or down for 
the metric inclusion. If the proposal is voted for inclusion, a 
single peer will perform the work of integration and validation 
of the new measure, as well as performing the necessary 
calculations to assess current sustainability of the entire 
codebase. This task constitutes the Proof of Work (PoW) in the 
blockchain as discussed earlier. The protocol allows for a second 

voting period to so that peers can recast their vote based on the 
new knowledge about the impact of the new sustainability 
metric. 

Code Analysis Integration Module. Susereum integrates 
with SonarQube and SourceMeter code analysis tools to 
perform code analysis. These two code analysis tools run on 
Susereum’s server and the integration is seamless to the end 
user. This module also performs pre and post processing for the 
analysis results. This is because metrics provided by the analysis 
tools are often very different than the metrics defined through 
the consensus protocol. 

Suse Quantification Module. This module takes the 
metrics values and coverts them into crypto units, Suse. The 
calculation is performed following a series of calculations as 
discussed below. 

𝑆𝑢𝑠𝑒∆&'()
= 	𝐹(𝑆𝑢𝑠)/01)2 −	𝐹(𝑆𝑢𝑠)4)0'2) 𝐹(𝑆𝑢𝑠)4)0'2)⁄ 																			(1) 

That is, the amount of Suse awarded is measured by the 
change in the sustainability of the entire codebase as a result of 
the code change. 

𝐹(𝑆𝑢𝑠)7'(89) = 𝑟𝑤 −
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That is, the sustainability of a code module is the square 
difference between a code metric (cm) and the actual value of 
the code module under evaluation (𝐴𝑐7'(89)). Where n is the 
number of code metrics and rw is a reward constant set by 
default to 100. As such, sustainability is reduced as code 
modules deviate further from code metrics. 

𝐹(𝑆𝑢𝑠)&'()4/G) = 	∑ [𝐹(𝑆𝑢𝑠)7'(89)]
J
BCD                          (3) 

That is, the sustainability of the entire codebase is measured 
by the summation of the sustainability of each code module. 

D. Uniform Research Software Citation 
Uniform citations is fundamental for appropriate attribution 

of credit and for the assessment of contributions impact. Unlike 
code, academic papers enjoy broadly adopted and uniform 
citations. Impact of papers is therefore quantifiable and is 
relatively well understood. 

Uniform citation for research software maybe 
straightforward only for single investigators and small teams. 
Uniform citations become more challenging for large long-
living projects particularly as the development teams change 
overtime. More importantly, individual code contributors to a 
research codebase is often untraceable and its quality and its 
future potential impact is largely unknown. 

Susereum aims to address this challenge by providing a 
uniform immutable citation for the research codebase at any 
moment in time. Susereum orders all code authors by their level 
of stake (or Suse) in the codebase. For codebases with large and 
changing contributors, citations becomes more dynamic as it 
changes over time. While citations for academic papers is fixed 
over time, Susereum generates a unique time-stamped citation 
at any moment of time. 

Fig. 1: Susereum Operational Steps [10] 

Fig. 2: Consensus Protocol [10] 



IV. RELATED INITIATIVES 
The Networking and Information Technology Research and 

Development (NITRD) workshop report on Computational 
Science and Engineering Software Sustainability and 
Productivity Challenges has identified a number of key gaps 
related to the development of sustainable scientific software [2]. 
The report concludes that research software is developed in 
unique context and under unique constraints that standard 
software engineering best practices are not applicable without 
significant modifications. This has motivated the establishment 
of some key initiatives to address research software 
sustainability. One notable example is the “US Research 
Software Sustainability Institute” (URSSI) which is established 
with the goal of serving as a community hub and providing 
services to scientists that will help them create improved, more 
sustainable research software [3]. Similar initiatives have been 
established outside of the U.S. For example, Software 
Sustainability Institute has been recently established in the U.K 
aiming at gathering intelligence from researchers and offering 
multiple programs and fellowships for researchers [4]. 

There are ongoing efforts that explores applications of 
blockchain technologies to reform sustainability of the scientific 
research [5]. Scienceroot aims at addressing deficiencies in the 
status quo and the extended time durations required to attain 
funding, collaborate, and publishing research findings [6]. A 
related effort is Pluto Network [7] that aims at decentralizing 
communications between researchers and scientists. 
ImpactStory [8] is a nonprofit effort dedicated to making 
scholarly research more open, accessible, and reusable. 

V. CONCLUSION 
Modern research is driven by advanced and specialized 

software developed with the primary goal of inquiry and 
discovery. This software is developed in research labs under 
unique budgetary and schedule constraints frequently with 
insufficient consideration of its sustainability beyond the 
immediate research goals. As a result, the software 
dissemination and impact are hindered and the investments in its 
development do not reach its full potential and returns. 
Developing research and experimental software is a challenge. 
This software is developed following a discovery driven process 
and its developers often lack formal software engineering 
training. Moreover, the nature of the funding cycles of research 
for three to five years means that there is very little incentive to 
sustain the codebase beyond the immediate lifecycle of the 
research project. The potential impact of improving 
sustainability in the research domain is momentous. Research 
software codes embody knowledge and algorithms pertaining to 
specialized domains, processes, algorithms, and data 
representations.  

This paper presents an approach and a supporting platform 
that addresses the fundamental deficiencies in the prevalent 
academic incentive structures. The approach aims at 
restructuring incentives by appropriately crediting research code 
authors based on the sustainability and impact of their 
contributions. Susereum, the blockchain platform, aims at 1) 
creating immutable credit to authors, and 2) empowering peers 

to define their own appropriate sustainability metrics. In effect, 
Susereum aims are establishing an ecosystem where research 
codes are peer-reviewed, their impact are quantified, and their 
authors are appropriately awarded the credit. 
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