
Towards the Generation of AMF Configurations
from Use Case Maps based Availability

Requirements

Jameleddine Hassine1 and Abdelwahab Hamou-Lhadj2

1 Department of Information and Computer Science
King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

jhassine@kfupm.edu.sa
2 Electrical and Computer Engineering Department

Concordia University, Montréal, Canada
abdelw@ece.concordia.ca

Abstract. Dependability aspects, such as availability and security, are
critical in the design and implementation of distributed real-time sys-
tems. As a result, it is becoming crucial to model and analyze dependabil-
ity requirements at the early stages of system development life-cycle. The
Service Availability Forum (SA Forum) has developed a set of standard
API specifications to standardize high-availability platforms. Among these
specifications, the Availability Management Framework (AMF) is the
service responsible for managing the availability of the application ser-
vices by handling application redundant components, dynamically shift-
ing a workload of a faulty component to a healthy component. To man-
age service availability, AMF requires a configuration of the application
it manages. This configuration consists of a logical view of the organiza-
tion of the application’s services and components. Recognizing the need
to plan for availability aspects at the early stages of system development
life-cycle, this paper proposes an approach to map high level availability
requirements into AMF configurations. The early availability require-
ments are expressed in terms of the Use Case Maps (UCM) language,
part of the ITU-T User Requirements Notation (URN) standard. Our
approach allows for the early reasoning about availability aspects and
promotes the portability and the reusability of the developed systems
across different platforms.

1 Introduction

Several definitions of availability have been proposed [1, 2, 9, 20, 8, 14]. According
to ANSI [1], the availability of a system may be defined as the degree to which a
system or a component is operational and accessible when required for use. The
ITU-T recommendation E.800 [9] defines availability, as the ability of an item
to be in a state to perform a required function at a given instant of time, or
at any instant of time within a given time interval, assuming that the external
resources, if required, are provided. Wang and Trivedi [20] define the availability

as the probability of service provision upon request, assuming that the time
required for satisfying each service request is short and negligeable.

Availability requirements can be very stringent as in highly available systems
used in telecommunication services (a.k.a. 5 nines (99,999%)). Many proprietary
approaches have been proposed to achieve high-availability. However, such so-
lutions hinders the portability of applications from one platform to another.
To address this issue, the Service Availability Forum (SA Forum) [18], a consor-
tium of telecommunications and computing companies was created to define and
standardize high availability solutions for systems and services. SA Forum [18]
supports the delivery of highly available carrier-grade systems through the defi-
nition of standard interfaces for availability management [16], software manage-
ment [5] and several other utility services availability middleware services [17].
SA Forum [18] has developed an Application Interface Specification (AIS), which
includes the Availability Management Framework (AMF)[16]. AMF constitutes
the core component of the middleware as it is the service responsible for man-
aging the high availability of the services.

An AMF configuration describes an application in terms of logical entities
representing services and service provider resources. The application software,
managed by AMF, is described by the vendor in the Entity Types File (ETF)
[5] in terms of entity prototypes which characterize the deployment options,
constraints and limitations of the software. Many attempts to construct AMF
configurations from user and vendor requirements, have been addressed in the lit-
erature [15, 12, 4, 13, 11]. Salehi et al.[15] have presented a model based approach
for generating AMF configurations using UML profiles. The authors have defined
a set of transformation rules, expressed in the ATLAS Transformation Language
(ATL), to generate AMF configurations from UML model elements represent-
ing software entities and configuration requirements. Kanso et al. in [12] and
[13] have adopted a code-centric approach. The authors have used a Configura-
tion Requirements (CR) artifact to describe AMF middleware requirements for
a given application (i.e., ETF types and configuration parameters such as the
number of service units (SUs), component service instances (CSIs), etc., pro-
vided by a configuration designer), allowing for automatic generation of AMF
configuration. In a closely related work Colombo et al. [4] have proposed an
approach that aims at producing multiple sets of Configuration Requirements
(CR) (resulting in multiple AMF configurations) from User Requirements (UR)
and based on a selection mechanism of ETF types [5].

The Use Case Maps (UCM) language, part of the ITU-T User Requirements
Notation (URN) standard [10], is a high-level visual scenario-based modeling
language that has gained momentum in recent years within the software re-
quirements community. Use Case Maps [10] can be used to capture and integrate
functional requirements in terms of causal scenarios representing behavioral as-
pects at a high level of abstraction, and to provide the stakeholders with guid-
ance and reasoning about the system-wide architecture and behavior. System
non-functional aspects such as availability and security are often overlooked and
underestimated during the initial system design. To address this issue, the UCM

language has been extended with availability information in [6] and [7]. These
extensions cover the well-known availability tactics, introduced by Bass et al. [3].

Availability requirements modeling and analysis constitute the major moti-
vation of this research. We, in particular, focus on the need to express system
availability aspects while assuring portability of applications. This paper serves
the following purposes:

– It extends the UCM-based availability annotations introduced in [6] and [7]
to accommodate Availability Management Framework (AMF) [16] concepts
(e.g., Service group, service unit, etc.).

– It provides a mapping of the newly introduced UCM-based availability re-
quirements to AMF (Availability Management Framework) [16] concrete
APIs.

– It complements the approach introduced in [12]. The configuration require-
ments (CR) model can be extended and automatically derived from UCM
specifications annotated with availability aspects.

– It extends our ongoing research towards the construction of a UCM-based
framework for the description and analysis of availability aspects in the very
early stages of system development life cycle.

The remainder of this paper is organized as follows. The next section in-
troduces the Availability Management Framework (AMF). Section 3 presents
our UCM-AMF configuration generation approach. Use Case Maps availability
modeling is provided in Section 4 followed by a discussion in Section 5. An il-
lustrative example is presented in Section 6 to demonstrate the applicability of
our approach. Finally, conclusions and future work are outlined in Section 7.

2 The Availability Management Framework (AMF)

The role of AMF is to manage the availability of applications in a clustered
environment (note that we use here the term AMF to refer to an implementation
of the AMF standard, since AMF is just a specification). To do so, AMF needs
a configuration of the components (service providers) and the services.

An AMF configuration consists of a number of logical entities, introduced
in the AMF standard [16]. An example is shown in Figure 1. In this figure, we
can see that each node has two components grouped in a logical AMF entity
called service units (SUs). The services are represented by service instances, also
known as component service instances (CSIs). Multiple CSIs can be assigned to
the same SU and are grouped in another of AMF entities called service instance
(SI).

There are two additional AMF logical entities used for deployment purpose:
The cluster and the node. The cluster consists of a collection of nodes under the
control of AMF.

AMF supports five different redundancy models, namely, 2N, N+M, N Way,
N Way Active, and No-Redundancy. These redundancy models vary in the level
of protection they provide. For example, in a 2N model (see Figure 1) there is only

Fig. 1. An example of AMF configuration and its services. The left figure shows a
configuration. The right figure shows type of the configuration entity types (taken
from [15])

one SU that is active for an SI and another SU that is used as a standby. In the
N+M model, N SUs share the active assignments and M share the standbys. Like
2N models, N+M models allow at most one active and one standby assignment
for each particular SI.

The set of SUs that follow the same redundancy model are grouped in AMF
logical entities called service groups (SGs). The same configuration can have
many SGs. For example, some components can be protected using a 2N redun-
dancy model, whereas others (in different SUs) can be protected using an N+M
model. Similarly, multiple SGs can be grouped to form an application. A good
reference on AMF redundancy models can be found in [11].

When building a configuration, there are several decisions that need to be
made. For example, it is important to put highly coupled components in the
same SU. In case a failure happens, we can failover the whole SU to recover
the service. In addition, there should be a way for AMF to know which CSIs
to assign to a specific component depending on whether the component can
provide the service or not. Many other similar decisions are needed to produce
valid configurations. AMF types aim to do just that.

In AMF, every entity has a type except the cluster and the node. These AMF
types are derived from AIS standard, known as the Entity Types File (ETF) [5],
which is a file provided by the software vendor to describe the characteristics
of the software system that runs under the control of AMF. ETF types should
be thought of as power types (or meta types), that describe the possible ways
a software system can be deployed on an AMF cluster. Once a configuration is
built, only instances of some ETF types are used to construct AMF types. Table
1 describes the ETF types. Each row shows an ETF type, a description, and the
AMF entity for which the type derives from that ETF type.

ETF Type Description AMF Entity
Component Type
(CT)

It describes the component version (used more
particularly during upgrades), the component service
types that the component of this type can provide, and
the component capabilities (how many active and
standby CSIs the component of this type can support).

Component

Component Service
Type (CST)

It describes the service attributes (e.g., range of IP
addresses the component that handles this service can
provide).

Component Service
Instance (CSI)

Service Unit Type
(SUT)

It describes the service type that an SU can provide as
well as the set of component types of the components
that an SU of this type can contain.

Service Unit (SU)

Service Type (SVCT) It describes the set of component service types from
which its SIs can be built. The service type may limit the
number of CSIs of a particular CS type that can exist in
a service instance of the service type. It is also used to
describe the type of services supported by an SU type.

Service Instance (SI)

Service Group Type
(SGT)

It describes the service group. Typical attributes of
SGT is the redundancy model (e.g., 2N, N+M, etc.). It
also specifies the supported SUTs. In other words, an
SG can contain and SU only if its SGT supports the
SU’s SUT.

Service Group

Application Type

Similar to SGT, an application type defines the SGTs
types that are supported by the applications of this type.

Application

Table 1. ETF Types

3 Extending The Use Case Maps Language with AMF
Concepts

Figure 2 illustrates our approach for extending Use Case Maps [10] with AMF [16]
concepts. Note that the configuration generation process is outside the scope of
this paper. Many algorithms, including the work of Kanso et al. [12], and Salehi
et al. [15], exist to generate automatically AMF configurations. Our focus is
to model AMF concepts using the Use Case Maps language [10]. By doing so,
an AMF configuration (at the conceptual level) will always be represented as a
UCM map. Note, however, that the AMF standard defines an XML carrier to
exchange configurations among tools. This XML representation of AMF config-
urations can also be generated from UCM (extended with AMF concepts).

The proposed availability extensions are added orthogonally to the UCM
specification (functional model and binding architecture). These extensions are
modeled using Metadata mechanism, which is a mechanism used to support
the profiling of the language to a particular domain. Metadata are described as
name-value pairs that can be used to tag any URN specification or its model
elements, similar to stereotypes in UML. Metadata instances provide modelers
with a way to attach user-defined named values to most elements found in a
URN specification, hence providing an extensible semantics to URN. Metadata
is supported by the jUCMNav tool [19], the most comprehensive URN [10] tool
available to date.

Binding
Architecture

Functional
Model

UCM Specification

AMF Configuration

AMF Entity
Types

AMF
Entities

User
Requirements

Automatic Generation of
AMF Configurations

Configuration Requirements
(CR) Model

(ETF types, number of SUs, SGs,
SIs, CSIs, etc.)

Vendor
Constraints

Fault Detection

Fault Recovery

AMF Concepts

Mapping
Rules

SU
SG

CSI

Extending UCM with AMF Concepts

Fig. 2. AMF Configuration Generation Approach

The resulting UCM availability requirements can then be mapped to a con-
figuration requirements (CR) model that describes the used ETF types and
configuration parameters such as the number of SUs, CSIs, etc. Finally, based in
the AMF requirements model (CR), an AMF configuration model can be gen-
erated by leveraging the AMF configuration generation approach proposed by
Kanso et al. [12].

4 Use Case Maps Availability Modeling

In this section, we introduce the basic Use Case Maps constructs and we present
our proposed UCM-based availability extensions to cover error detection (Section
4.3) and recovery (Section 4.4). For a complete description of the Use Case Maps
language, interested readers are referred to [10].

4.1 Use Case Maps Functional and Architectural Features

Use Case Maps (UCM) models are expressed by a simple visual notation allowing
for an abstract description of scenarios in terms of causal relationships between
responsibilities () (e.g., operation, action, task, function, etc.) along paths al-
located to a set of components (). These relationships are said to be causal
because they involve concurrency, partial ordering of activities, and they link
causes (e.g., preconditions and triggering events) to effects (e.g., postconditions
and resulting events). UCMs help in structuring and integrating scenarios (in a
map-like diagram) sequentially, as alternatives (with OR-forks/joins; /),
or concurrently (with AND-forks/joins; /).

When maps become too complex to be represented as one single UCM, a
mechanism for defining and structuring sub-maps becomes necessary. Path de-
tails can be hidden in sub-diagrams called plug-in maps, contained in stubs ()
on a path. A plug-in map is bound (i.e., connected) to its parent map by binding
the in-paths of the stub with start points () of the plug-in map and by binding
the out-paths of the stub to end points () of the plug-in map.

Figure 3(a) illustrates a UCM scenario for configuring a feature on a router
setup. The feature configuration takes place when the router is in configuration
mode (i.e., start point EnterConfigMode). The configuration steps are embedded
within ConfigFeature stub, which has two outgoing paths (OUT1 for successfully
configuring the feature and OUT2 for the rejection of the configuration). Figure
3(b) illustrates the plugin map of the ConfigFeature stub. AFter entering the con-
figuration commands of the new feature (i.e., responsibility ConfigureFeature)
and commit the new changes (i.e., responsibility Commit), the new configura-
tion is applied (i.e., responsibility ApplyConfig) in case it is a valid config (i.e.,
condition validConfig part of the OR-Fork is true), otherwise the new changes
are discraded (i.e., responsibility RollbackConfig).

(a) Feature Configuration Scenario

(b) FeatureConfig Stub Plugin

Fig. 3. UCM Scenario: Configure a Feature on a Router

One of the strengths of UCMs resides in their ability to bind responsibilities
to architectural components. The default UCM component notation is generic
and abstract allowing for representing software entities (e.g., objects, processes,
databases, or servers) as well as non-software entities (e.g., actors or hardware).

In the ITU-T standard [10], a UCM component (Figure 4) is characterized by
its kind (Team, object, agent, process, actor) and its optional type (user-defined
type) and may have several including components (i.e., more than one parent),
therefore allowing the capture of several architectural alternatives in one UCM
model. A modeler may investigate various allocations of subcomponents to com-
ponents and reason about trade-offs involving these alternatives.

Fig. 4. UCM Components

In this research, we extend the Use Case Maps language with availability an-
notations. The proposed annotations are inspired from AMF concepts allowing
for a smooth mapping of the resulting UCM specifications to AMF configura-
tions. UCM generic components are used extensively to model AMF redundancy
aspects, while functional constructs are used mainly to model component service
instances (CSIs), modeled as UCM scenario paths.

4.2 Use Case Maps Redundancy Modeling

Error recovery focuses mainly on redundancy modeling in order to keep the
system available in case of the occurrence of a failure. To accommodate the
mapping to AMF configurations, we introduce five types (user-defined types) of
UCM components: node, application, serviceGroup, serviceUnit, and component.
The type is coded as a metadata attribute Type.

A UCM component of type node is annotated with the following metadata
attributes:

– NodeID: Used to identify the node.

– ClusterID: Specifies the cluster to which the node belongs.

A UCM component of type application is annotated with the following meta-
data attributes:

– ApplicationID: Used to identify the hosted application.

– ClusterID: Specifies the cluster on which the application is hosted.

A UCM component of type serviceGroup is annotated with the following
metadata attributes:

– ServiceGroupID: Used to identify the group to which a component belongs
in a specific redundancy model. That is all components that belong to the
same service group can collaborate to protected the offered services.

– ApplicationID: Used to specify the application the service group is imple-
menting.

– RedundancyModel: Specifies the redundancy type that the service group
implements. This attributes takes the following five values: 2N, N+M, N-
Way, N-Way-Active, and No-Redundancy.

A UCM component of type serviceUnit is annotated with the following meta-
data attributes:

– ServiceUnitID: Used to identify the service unit.
– ServiceGroupID: Used to identify the service group to which the service

unit belongs.
– SuActiveRole: Lists all service instances for which the service unit is in

active role.
– SuStandbyRole: Lists all service instances for which the service unit is in

standby role.
– SuSpareRole: Lists all service instances for which the service unit is in

spare role.

It is worth noting that SuActiveRole, SuStandbyRole, and SuSpareRole rep-
resent the “preferred” roles rather than static roles. At runtime, upon failure,
roles may change.

A UCM component of type component is annotated with the following meta-
data attributes:

– ComponentID: Used to identify the component.
– ETFComponentType: Specifies the ETF component type.
– ServiceUnitID: Used to identify the service unit to which the component

belongs.
– ComponentServiceTypes: Defines the list of service types a component

can handle.

Service Instances (SIs) have no UCM graphical representation. A service in-
stance is implicitly specified using the set of component service instances (CSIs)
assigned to it. A component service instance (CSI), expressed using UCM sce-
narios (to model the workload), is characterized by a scenario start point with
the following attributes:

– CsiID: Identifies the component service instance (CSI) that the UCM sce-
nario implements.

– SiID: Identifies the service instance (SI) to which the CSI belongs.
– ComponentActive: Specifies the component for which the CSI is active.
– ComponentStandby: Specifies the component for which the CSI is standby.
– ETFCSType: Specifies the ETF component service type.
– ComponentID: Specifies the potential container of type component.

CSI1-SP Metadata Component1 Metadata

Fig. 5. Example of a Component Service Instance Representation and its corresponding
Metadata

Figure 5 illustrates a UCM architecture describing two service units Ser-
viceUnit1 and ServiceUnit2, which are composed of components Component1
and Component2 respectively. The system implements one workload (CSI1),
expressed as a UCM scenario path that is enclosed with the active component
Component1 (Component2 of ServiceUnit2 being in standby mode). The service
group and its redundancy model (i.e., 2N in this case) are not shown. The char-
acteristics of the component service instance CSI1 are expressed as part of the
start point CSI1-SP metadata. The UCM plugin bound to the stub “workload-
CSI1” contains the functional behavior of the component workload and it is not
shown here.

AMF [16] uses a rank-based mechanism to determine whether a service unit
is active, standby, or spare. For a detailed description of the ranking system and
how the service instances (SIs) are assigned to in-service service units, interested
readers are referred to [16].

4.3 UCM Error Detection Modeling

The specification of error detection mechanisms is a key factor in implementing
any availability strategy. Error detection modeling involves the specification of
liveness requirements (e.g., process heartbeat) and the description of potential
errors. In [6] and [7], we have used the UCM comment constructor to describe
error detection tactics such as ping and heartbeat. In this paper, we use meta-
data attributes and we introduce the concept of component healthcheck; a con-
cept borrowed from the AMF framework. We introduce two types of component
healthchecks: framework-invoked and component-invoked.

AMF supports the notion of healthcheck type, identified by a healthcheck
key, that can be associated to a component type. A healthcheck can be invoked

by the framework or by the component itself. A healthcheck configuration is
composed of two attributes:

– period : specifies the period at which the corresponding healthcheck should
be initiated. In case the healthcheck is started by the AMF framework
and if a process does not respond to a given healthcheck callback (i.e.,
saAmfHealthcheckCallback()) before the start of the next healthcheck pe-
riod, AMF would not trigger another callback.

– maximum-duration: specifies the time-limit after which the AMF frame-
work will report an error on the component. This attribute applies only
to framework-invoked healthcheck variant.

The mapping between the UCM-based metadata attributes and AMF con-
figurations is as follows:

– period is mapped to either saAmfHealthcheckPeriod (if the healthcheck is
configured specifically for the component) or SaAmfHctDefPeriod (if the
healthcheck is configured for the component type).

– maximum-duration is mapped to either saAmfHealthcheckMaxDuration (if
the healthcheck is configured specifically for the component) or saAmfHct-
DefMaxDuration (if the healthcheck is configured for the component type).

Figure 6 illustrates two healthcheck descriptions, expressed using URN meta-
data feature. Both framework-invoked (Figure 6(a)) and component-invoked (Fig-
ure 6(b)) healthchecks use the “HealthchekKey” attribute. The component-invoked
healthcheck (Figure 6(b)) specifies the type of component (e.g., using the at-
tribute ETFComponentType) that can invoke the check. For the sake of clarity,
only healthcheck related attributed are shown in Figure 6(b).

(a) Healthcheck metadata associated with the
UCM Specification

(b) Healthcheck metadata associated with a
specific UCM component

Fig. 6. UCM-based Healthcheck

Errors are reported to AMF by invoking the saAmfComponentErrorReport 4()
API function that specifies, amongst others, the erronous component, the ab-
solute time of error reporting (i.e., errorDetectionTime), and the recommended
recovery action (i.e., recommendedRecovery). Section 4.4 discusses how recovery
is implemented in Use Case Maps.

4.4 UCM Error Recovery Modeling

Upon failure detection, AMF would perform an automatic recovery by (1) tak-
ing a restart recovery action (restarts the erroneous component or restart all
components of the service unit), (2) performing a fail-over (e.g., Standby takes
over), (3) restarting the application, or (4) resetting the cluster.

The recovery action can be encoded in component/node/application/cluster
definitions using a metadata attribute RecoveryAction that may take the follow-
ing values:

– component-restart and component-failover for UCM components of type
Component. These two values are mapped to SA AMF COMPONENT RESTART

and SA AMF COMPONENT FAILOVER respectively in the AMF enumer-
ation SaAmfRecommendedRecoveryT. Furthermore, a component fail-over
may trigger a fail-over of the entire service unit. Such an option can be
defined used the boolean attribute SUFailOver (mapped to AMF saAmfS-
UFailover with SA TRUE and SA FALSE as possible values).

– node-failover, node-switchover, and failfast for nodes. These three values are
mapped to AMF SA AMF NODE SWITCHOVER, SA AMF NODE FAILOVER,
and SA AMF NODE FAILFAST respectively. A detailed description of these
three recovery mechanisms under different redundancy models can be found
in [16].

– cluster-reset for clusters, which is mapped to AMF SA AMF CLUSTER RESET

enumeration value.
– app-restart for application components. The application should be com-

pletely terminated first by terminating all its service units. This value is
mapped to AMF SA AMF APPLICATION RESTART enumeration value.

– No-recommendation: The error report does not make any recommendation
for recovery. It is mapped to the AMF SA AMF NO RECOMMENDATION.

5 Discussion

Our proposed approach relies on extending the Use Case Maps language with
AMF related concepts, allowing for the generation of AMF configurations at
the early stages of system development process. Most the proposed extensions
(e.g., application, node, service group, service unit attributes) are applied at the
system architectural level and they are coded as metadata attributes (i.e., they
are not represented visually in the UCM specification). Other representation
options include the use of:

(a) UCM comments

(b) Name overloading

Fig. 7. Other visual UCM-based availability representations

– UCM comment option: This option has been used in previous work [6] to
add information about availability architectural tactics to a UCM model (see
Figure 7(a)). This option is sufficient for visualizing availability attributes in
a model but does not lend itself to further analysis, because the availability
information is captured in a non-formalized way. Another disadvantage of
this approach is that comments cannot be attached to individual UCM model
elements but only to UCM maps.

– Construct name overloading option: This option attaches availability
attributes visually to individual UCM model elements (see Figure 7(b)).
However, similarly to the use of UCM comments, this option is informal and
cannot be used in automated model analysis.

Contrary to the two options listed above, Our metadata approach formalizes
availability attributes, making it easier to use this information in automated
model analysis.

6 Illustrative Example

Figure 8 illustrates an example of a UCM system composed of one cluster of two
nodes (Node1 and Node2), implementing an application App that is composed
of one service group SG. The relationship between the two nodes and the cluster
is described using the metadata attribute ClusterID(Figure 9(a)). The service
group identifier SG and its supported redundancy model 2N are described using
two metadata attributes ServiceGroupID and RedundancyModel (Figure 9(c)).

The service group SG is composed of two service units SU1 and SU2. SU1 is
composed of components Comp1 and Comp2, while SU2 is composed of compo-
nents Comp3 and Comp4. The UCM specification defines 4 scenario paths spec-
ifying four workloads (referred to as component service instances (CSIs)). These
CSIs are grouped into two service instances SI1 and SI2 (not shown graphically)
but described using the metadata attribute SiID (Figure 10(c)). For example,
CSI1 and CSI2 are part of service instance SI1, while CSI3 and CSI4 are part
of service instance SI2

The UCM shows the preferred active assignment of each component service
instance. Since SU1 has an active assignment with respect to service instances

Fig. 8. A UCM Architecture with one SG having two SUs running in 2N redundancy
model

SI1 and SI2, the four CSIs are described within the SU1 components Comp1 and
Comp2. SU2 has a standby assignment with respect to service instances SI1 and
SI2. Hence, Comp3 and Comp4 do not contain any CSI. Figure 10(c) shows the
active (using the ComponentActive metadata attribute) and standby (using the
ComponentStandby metadata attribute) assignments of the participating CSIs.
For example, CSI1 and CSI3 are handled by component Comp1, while CSI2
and CSI4 are handled by component Comp2.

The specification of the healthcheck is exactly the same as in Figure 6(a)
(i.e., framework-invoked healthcheck), and is hence not repeated here. Recovery
actions are expressed in terms of the metadata attribute RecoveryAction. In case
of a failure, the application should be completely terminated and then started
again by first terminating all of its service units and then starting them again.
This is depicted in the RecoveryAction attribute, being equal to app-restart.
When an error is identified as being at the node level, all service instances
assigned to service units contained in the node are failed over to other nodes
(i.e., RecoveryAction = node-failover). Hence, active components should also
fail over to standby components (i.e., RecoveryAction = component-failover).

The metadata attributes (describing ETF types, SUs, CSIs, recovery actions,
etc.) described in Figures 9 and 10 correspond to the AMF requirements intro-
duced in Figure 1.

(a) Node1 and Node2 Metadata Attributes

(b) Application Metadata Attributes

 (c) SG Metadata Attributes

(d) SU1 and SU2 Metadata Attributes

Fig. 9. Metadata Descriptions of the application, the participating nodes and service
units

(a) Comp1 and Comp3 Metadata Attributes

(b) Comp2 and Comp4 Metadata Attributes

(c) CSI1, CSI2, CSI3, and CSI4 Metadata Attributes

Fig. 10. Metadata Descriptions of the particapting components and their correspond-
ing component service instances

7 Conclusions and Future Work

In this work, we have extended the Use Case Maps language with Availability
Management Framework (AMF) related concepts. The use of UCMs (supported
by a feature-rich tool, jUCMNav) to describe system requirements, extended
with AMF concepts, would empower analysis and validation of availability re-
quirements at the very early stages of system development. Furthermore, we
have provided a mapping between the introduced UCM-based availability re-
quirements and AMF concepts. The resulting extensions would allow for the
generation of AMF configurations from UCM specifications.

As a future work, we plan to investigate the possible integration of the UCM-
based extensions (expressed with a metamodel) with a formal representation of
AMF concepts, such as a UML profile for AMF.

Acknowledgment

Jameleddine Hassine would like to acknowledge the support provided by the
Deanship of Scientific Research at King Fahd University of Petroleum & Minerals
(KFUPM) for funding this work through project No. IN111017.

References

1. ANSI/IEEE: Standard Glossary of Software Engineering Terminology, STD-729-
1991 (1991)

2. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic Concepts and Tax-
onomy of Dependable and Secure Computing. IEEE Transactions on Dependable
and Secure Computing 1(1), 11–33 (2004)

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA (2003)

4. Colombo, P., Salehi, P., Khendek, F., Toeroe, M.: Bridging the gap between user re-
quirements and configuration requirements. In: Engineering of Complex Computer
Systems (ICECCS), 2012 17th International Conference on, pp. 13 –22 (2012).
DOI 10.1109/ICECCS.2012.11

5. Forum, S.A.: Application Interface Spec. Software Management Framework SAI-
AIS-SMF-A.01.02

6. Hassine, J.: Early Availability Requirements Modeling using Use Case Maps.
In: 8th International Conference on Information Technology : New Generations
(ITNG2011), Modeling and Analysis of Dependable Embedded and Real-time Soft-
ware Systems Track. 11-13 April 2011, Las Vegas, Nevada, USA, pp. 754–759. IEEE
Computer Society (2011)

7. Hassine, J., Gherbi, A.: Exploring Early Availability Requirements Using Use Case
Maps. In: I. Ober, I. Ober (eds.) SDL 2011: Integrating System and Software
Modeling, Lecture Notes in Computer Science, vol. 7083, pp. 54–68. Springer Berlin
/ Heidelberg (2012)

8. Hatebur, D., Heisel, M.: A Foundation for Requirements Analysis of Dependable
Software. In: B. Buth, G. Rabe, T. Seyfarth (eds.) Computer Safety, Reliability,
and Security, Lecture Notes in Computer Science, vol. 5775, pp. 311–325. Springer
Berlin / Heidelberg (2009)

9. ITU-T: E.800: Terms and Definitions related to Quality of Service and Net-
work Performance including Dependability (2008). URL http://www.itu.int/

md/T05-SG02-080506-TD-WP2-0121/en

10. ITU-T: Recommendation Z.151, User Requirements Notation (URN) (2010). URL
http://www.itu.int/rec/T-REC-Z.151/en

11. Kanso, A., Khendek, F., Toeroe, M., Hamou-Lhadj, A.: Automatic configuration
generation for service high availability with load balancing. Concurrency and Com-
putation: Practice and Experience 25(2), 265–287 (2013). DOI 10.1002/cpe.2805

12. Kanso, A., Toeroe, M., Hamou-Lhadj, A., Khendek, F.: Generating AMF configu-
rations from software vendor constraints and user requirements. In: International
Conference on Availability, Reliability and Security (ARES ’09), pp. 454 –461
(2009). DOI 10.1109/ARES.2009.27

13. Kanso, A., Toeroe, M., Khendek, F., Hamou-Lhadj, A.: Automatic generation
of AMF compliant configurations. In: T. Nanya, F. Maruyama, A. Pataricza,
M. Malek (eds.) Service Availability, 5th International Service Availability Sympo-
sium (ISAS), Lecture Notes in Computer Science, vol. 5017, pp. 155–170. Springer
Berlin Heidelberg (2008). DOI 10.1007/978-3-540-68129-8 13

14. Laprie, J., Avizienis, A., Kopetz, H.: Dependability: Basic Concepts and Termi-
nology. Springer-Verlag, Secaucus, NJ, USA (1992)

15. Salehi, P., Colombo, P., Hamou-Lhadj, A., Khendek, F.: A model driven approach
for AMF configuration generation. In: Proceedings of the 6th international con-
ference on System analysis and modeling: about models, SAM’10, pp. 124–143.
Springer-Verlag, Berlin, Heidelberg (2011)

16. Service Availability Forum: Application Interface Spec. Availability Management
Framework SAI-AIS-AMF-B.04.01

17. Service Availability Forum: Application Interface Spec. Overview SAI-Overview-
B.05.03

18. Services Availalbility Forum TM: SAForum (2010). URL http://www.saforum.org

19. jUCMNav v5.2.0: jUCMNav Project (tool, documentation, and meta-model).
http://jucmnav.softwareengineering.ca/jucmnav (2013)

20. Wang, D., Trivedi, K.S.: Modeling user-perceived service availability. In: Proceed-
ings of the Second international conference on Service Availability, ISAS’05, pp.
107–122. Springer-Verlag, Berlin, Heidelberg (2005). DOI 10.1007/11560333 10

