

i

Effective Segmentation of Large Execution Traces Using

Probabilistic and Gaussian Mixture Models

Mohammad Reza Rejali

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science at Concordia University

Montreal, Quebec, Canada

April 2015

Mohammad Reza Rejali

Concordia University

School of Graduate Studies

ii

This is to certify that the thesis prepared

By: Mohammad Reza Rejali

Entitled: Effective Segmentation of Large Execution Traces Using Probabilistic and Gaussian

Models

And submitted in partial fulfillment of the requirements for the degree of

Master of Electrical and Computer Engineering

Complies with the regulations of the University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

___ Chair

___ Examiner

___ Examiner

___ Supervisor

Approved by:

__

Chair of Department or Graduate Program Director

iii

Abstract

Software maintenance is known to be a costly and time consuming activity. Software engineers

need to spend a considerable amount of time in understanding the system before maintaining it.

This is due to many reasons including the lack of good documentation and the shift of the

original developers of the system to other projects or companies.

Dynamic analysis techniques, more particularly trace analysis, are used to alleviate the program

comprehension problem by offering software engineers a set of techniques that can help them

understand the behavioural aspects of software systems.

Execution traces however can be extremely large, which makes them cumbersome for effective

analysis. There is a need to develop techniques to help software engineers understand the content

of large traces despite their massive size. In this thesis, we present, SumTrace, a novel trace

analysis technique. SumTrace takes a trace as input and automatically segments it into smaller

and more manageable groups that reflect the execution phases of the traced scenario. The

execution phases are summarized to help software engineers understand quickly different parts

of the trace without having to analyze its entire content. SumTrace relies on a combination of

probabilistic and Gaussian mixture models.

We applied SumTrace to the segmentation of large traces, generated from two software systems.

The results are very promising. SumTrace is also fast since it only requires only one pass through

a trace.

i

Acknowledgment

First and for most, I would like to thank my supervisor, Dr. Abdelwahab Hamou-Lhadj, for the

support and advices he gave me throughout this whole research. He has guided me when I

needed to and complimented my works when they were well done. I appreciate the fact that he

keeps his door always open for helpful feedback and conversation. More than anyone else, his

influence has contributed to my development as a researcher.

The thesis contains many statistics. I would like to thank Dr. Abbas Khalili from the Department

of Mathematics and Statistics of McGill University for his help. I appreciate it his kindly

supervision and for taking his time to contribute to this research. Also I would like to thank, Dr.

Syed Shariyar Murtaza, a postdoc, for his great supervision and also his help to evaluate the

results of the case studies we conducted.

Additionally, I want to thank you my dear friend Omid Askari, a Software Developer at Max

Planck Institute, for his contribution to some of the ideas presented in this thesis.

I would also like to thank the Faculty of Engineering and Computer Science, Concordia

University as well as NSERC (Natural Science and Engineering Research Council Canada) for

their financial support.

Most importantly, I would like to thank my parents, for their awesome support and

encouragements during my whole life. I cannot thank them enough for all the sacrifices they

made throughout this whole process. I could not have done this without them.

Finally, I would like to thank everyone at the Software Behaviour Analysis (SBA) Research Lab

at Concordia University for their friendship and great encouragement.

ii

Table of Contents

Chapter 1 - Introduction .. 1

1.1. Problem and Motivation ... 1

1.2. The Concept of Execution Traces .. 3

1.3. Research Contributions .. 5

1.4. Thesis Outline .. 5

Chapter 2 – Background and Related Work ... 1

2.1. Software Maintenance and Program Comprehension .. 1

2.4. Dynamic Analysis ... 2

2.5. Trace Summarization and Phase Detection Approaches.. 3

2.5.1. Trace Abstraction .. 4

2.5.2. Trace Segmentation ... 5

Chapter 3 – The SumTrace Approach ... 7

3.1. Building a trace corpus ... 8

3.2. Constructing the probabilistic model ... 10

3.3. Applying the probabilistic model for summarizing a trace .. 11

3.4. Detection of phase boundaries ... 15

Chapter 4 - Evaluation ... 20

4.1. JHotDraw .. 20

4.2. Weka... 26

4.3. Discussion and Limitations .. 33

Chapter 5 - Conclusion .. 35

iii

5.1. Research Contributions .. 35

5.2. Opportunities for Further Research .. 36

5.3. Closing Remarks .. 37

Appendix A: Full Results of the Experiments .. 41

i

List of Figures

Figure 1. Example of a function call trace .. 4

Figure 2. An example of generating an execution trace ... 3

Figure 3. The SumTrace process for extracting execution phases from traces 8

Figure 4. An example of three traces mapped into an interval scale .. 9

Figure 5. A summarized trace extracted from the trace of Figure 4c ... 15

Figure 6. The summarized trace containing 180 functions ... 18

Figure 7. The summarized target trace with phases .. 19

Figure 8. Main phases of the target trace in JHotDraw .. 22

Figure 9. Five sub-phases of Phase 2 .. 26

Figure 10. Three phases in the target trace of Weka ... 30

Figure 11. Sub-phases in the third phase of Weka’s target trace ... 33

ii

List of Tables

Table 1 . Probabilistic model table for consecutive functions in traces of Figure 4 11

Table 2. Distances and transformation to log-distances ... 17

Table 3. Sample functions in each phase .. 22

Table 4. The three phases in the target trace of JHotDraw ... 24

Table 5. Sample functions in sub-phases of phase 2 .. 25

Table 6. Selected functions of the Weka phases ... 29

Table 7. Description of the Weka phases .. 31

Table 8. Selected functions of sub-phases of the third phase of Weka ... 32

iii

List of Equations

Equation 1.Conditional Probability .. 10

Equation 2.Distance-position metric to rearrange functions... 13

Equation 3.Guassian mixture model for a transformation of distances .. 16

Equation 4. Best fitted Gaussian Mixture Models .. 18

Equation 5. Probability of belonging to a cluster ... 18

Equation 6. Determining the phase boundaries .. 19

1

Chapter 1 - Introduction

1.1. Problem and Motivation

The first step for maintaining a software system is to understand how it is built and why it is built

in a certain way. This understanding allows maintainers to perform software engineering

activities such as debugging, adding new features to an existing system, and improving system

performance. Many approaches have been proposed to understand the behaviour of software

systems. There are two categories of software analysis techniques. The first one, static analysis,

relies on examining the source code. Analyzing the source code to understand the dynamics of a

system is a difficult task because maintainers may need to go through different parts of the

system even though only parts of the system are affected. The second category, dynamic

analysis, which is the focus of this thesis, operates on analyzing run-time information, such as

execution traces. Unlike static analysis, dynamic analysis allows software maintainers to only

focus on parts of the system that need to be examined. Dynamic analysis is also suitable when

one needs to see how the system behaves given a certain input. This way, one can connect

program output to program input.

Run-time information is represented typically in the form of execution traces. There are several

types of execution traces such as routine (method) calls, statement traces, and inter-process

communication traces. Routine call traces contain sequences of the invoked functions. Statement

traces contain a list of statements in the source code. They tend to be extremely large, which

explains why they are not used often in program comprehension. Traces of inter-process

2

communication depict communication among processes. In this thesis, we focus on traces of

routine calls since routines are the main building blocks of programs.

Despite their usefulness, traces have been historically difficult to analyze, mainly due to their

large size. To address this issue, trace abstraction techniques have been proposed (see [5] for a

survey). The common objective is to reduce the size of traces and simplify their understanding

for the human viewer, by extracting high-level views from raw traces. Although these techniques

have shown to be useful, they are not designed to recover execution phases invoked in a trace.

An execution phase can be defined as a set of cohesive trace events that implement a given

computation. To make this clear, consider for example a trace generated from applying a

classification algorithm in machine learning. This trace is bound to contain the typical

computations of a classification algorithm including preprocessing data, building a training

model (such as a decision tree), evaluating the model, visualizing the results, etc. Such a trace

may contain hundreds of thousands of calls. Knowing where each of these phases occurs in the

trace can help software engineers to focus on only that particular part of the trace that interests

them instead of browsing the whole trace content.

Segmenting a trace into execution phases is usually a challenging task because there is no

support at the programming language level of how to explicitly indicate the beginning and

ending of each phase. There are not too many studies in the literature that address this problem

either (see related work chapter). The few studies that exist either rely heavily on human

intervention for setting various thresholds [18][19][20], or are tied to specific visualization

methods [3][22]. In fact, trace segmentation is an emerging area of trace analysis research and

there is clearly a need for more advanced (and automated) solutions.

3

In this thesis, we propose a novel trace segmentation technique, called SumTrace, which does

not only generate meaningful phases from a trace, but also summarizes each phase. The

summarized trace contains only the distinct functions invoked in the original trace. In other

words, our approach turns a trace of hundreds of thousands of function calls into a few phases of

hundreds of function calls that, as we will show in the case study, provide an accurate (and

representative) high-level view of the implementation of the traced scenario. The long-term

vision is to design a powerful technique that would allow a software engineer to read a trace just

like reading a document where each phase summarizes a given section.

SumTrace is based on a combination of probabilistic [1][14] and Gaussian mixture models [25].

In SumTrace, the occurrence of a function is treated as a random variable, being 1 if it occurs

and 0 otherwise. It is clear that after each function any other function may or may not appear.

So, we consider the probability of appearance of each function after another one as the basis for

our probabilistic model. In this model, if the probability of occurrence of one function after

another function is high then the two functions can be considered related. We use an innovative

mechanism (as we will show in chapter 3) to group related functions into dense clusters which

suggest the presence of execution phases. To automatically determine the phase boundaries

(beginning and ending of each phase), we propose to use Gaussian mixture models.

1.2. The Concept of Execution Traces

An execution trace is a sequence of events (e.g., method calls, classes, system calls, etc.),

resulting from running a software under particular scenario [20].

A trace event can have different attributes (e.g., nesting level, time stamp, code line number, the

thread in which the event occurs, etc.) [20]. In this thesis, we focus on traces of routine calls. By

4

routine, we mean functions, procedures, and methods as well. An example of a trace of routine

calls is given in Figure 1. In this example, the function ‘run’ of the Alma [31] system calls

functions ‘step1’ and ‘step2’. Function ‘step1’ calls ‘readInFile’, etc.

Figure 1. Example of a function call trace

There are different existing methods for generating execution traces. The common approach is

injecting a piece of code (called probes) that will be invoked during system execution. A probe is

a printout statement that can print information of interest. Instrumentation can be done in

different environments. There are three main types of approaches for instrumentation. The first

one is to instrument the source code while the other kinds instrument the bytecode (or a compiled

version of the code) in the system. The execution environment can be instrumented too. For

example probes can be inserted in the point of interest. In particularly, in object oriented systems,

probes can be inserted in the body of method. Instrumentation can be done before execution or

5

during execution (this is known as dynamic probing). In this thesis, we use the Eclipse Test and

Performance Tools Platform [28] to instrument the code during the execution of the application.

1.3. Research Contributions

The main research contributions of this thesis are as follows:

• A novel statistical approach based on a probabilistic model, which automatically segments a

large trace into meaningful clusters that represent the execution phases of the traced

scenario. The method also summarizes the content of each phase.

• The phase detection algorithm based on Gaussian mixture models which minimize the

human interventions in comparison with previous methods.

• A complete validation of the approach on large traces generated from two object-oriented

systems.

1.4. Thesis Outline

The rest of the thesis is structured as follows:

Chapter 2 - Background

This chapter begins by identifying the needed terminology to understand the concepts presented

in this thesis. The chapter continues with a detailed literature review, followed by a general

discussion.

6

Chapter 3 - Approach

This chapter discusses the SumTrace approach. The chapter starts with the definition of the

execution phases and then continues with presenting the trace summarization process which is

based on probabilistic and Gaussian mixture models. We present a sample example to show the

steps of the algorithm. The chapter concludes with a discussion.

Chapter 4 – Evaluation

We show the effectiveness of our approach on two different software applications. The chapter

discusses the results and threats to the validation of the method.

Chapter 5 - Conclusion and Future Work

In the beginning of this chapter, we revisit the main contributions of this thesis to conclude the

thesis. The chapter continues by presenting some opportunities for future research.

1

Chapter 2 – Background and Related Work

In this chapter, we present the background of this thesis by introducing the necessary concepts

needed to understand the content of this thesis, followed by related work.

2.1. Software Maintenance and Program Comprehension

Software maintenance can be defined as the process for changing a system after it is released.

Changes may be due to adding new features, fixing bugs, or improving the quality of the code.

Chapin et al. [2] divide maintenance activities into four categories:

• Adaptive maintenance: This type of maintenance deals with adapting the system to

environmental changes such as porting the system to new hardware or OS (operating

system) platforms, without affecting their functionalities.

• Corrective maintenance: This type of maintenance deals with fixing bugs and other types

of defects.

• Perfective maintenance: It deals with adding new functionality and features to meet new

user functional and non-functional requirements

• Preventive maintenance: This type of maintenance consists of improving the quality of

the system (through refactoring) to prevent future issues.

During software maintenance and evolution, software engineers spend around 60-90% of their

time on understanding the programs [24]. There are different models for comprehending

software systems (see [15]). In the first model, the top-down model, a software engineer has

some idea about the system through previous experiences. He or she comes up with some

2

specific hypotheses about what the system does. The hypothesis will be evaluated as he or she

explores the code. In the second model, known as the bottom-up model, a software engineer

explores the code looking for clues that can be used to build higher level of understanding of the

code. The software engineer starts analyzing the code by grouping code statements together into

chunks, and looking for relations between different statements. This task is called cross-

referencing. This process is repeated several times until the software engineer obtains a high

level of understanding the system. The third and most frequent model is a hybrid model where

the software engineer uses both top-down and bottom-up strategies for understanding the system.

According to previous studies (see [7]), tracing the control-flow or data-flow during maintenance

can help software engineers understand the behavioural aspects of the system. The focus of this

thesis is to understand the flow of execution of software by analyzing execution traces which are

generated during run-time.

2.4. Dynamic Analysis

Dynamic analysis of software systems consists of analyzing run-time information of the system

with the purpose to help software engineers perform maintenance tasks [7]. As discussed in the

introductory chapter, the information generated from a system’s execution takes usually the form

of execution traces. There are other types of execution information such as system profiling (e.g.,

CPU and memory usage, number of executed statements, etc.), which tend to be more useful in

performance analysis than in maintenance.

Traces contain the list of events which occur during program executions [7]. Execution traces

can be generated in various ways. The most common approach is source code instrumentation,

which requires modification of target software. Instrumentation is done automatically and consist

3

of adding probes in places of interests (e.g., beginning and ending of each function). In the

absence of the source code, one can also instrument the execution environment. In this way,

there is no need to modify the source code. Figure 5 shows a typical way of generating a trace

from a software application. First, the maintainer considers a particular execution scenario. Then,

the software is instrumented by inserting probes in places of interest. The system is recompiled

with the new probes in it. The trace is generated as the system runs.

Figure 2. An example of generating an execution trace

2.5. Trace Summarization and Phase Detection Approaches

There exist various studies in the area of analyzing execution traces. In this chapter we group

them into two categories: 1) Trace abstraction, or 2) Trace segmentation.

4

2.5.1. Trace Abstraction

Trace abstraction techniques aim at reducing the size of traces by extracting abstractions from

raw events. This is usually done through filtering of trace events by using various criteria.

Rountev et al. [23] proposed filtering events related to specific threads using the nesting level of

events, and Kuhn et al. [10] used a minimal nesting level threshold to reduce the size of traces.

According to the authors, events that appear after a certain nesting level (i.e., depth of the routine

call tree) can be considered as utilities. They are not needed for understanding the traced

functionality.

Other approaches are based on defining metrics for deciding on what to remove from a trace. For

instance, Hamou-Lhadj et al. [5] presented a metric for removing functions that frequently

appear in every part of the trace; these are called utilities. Other approaches for summarizing

traces are focused on finding patterns in traces. Systa et al. [26] used Boyer-Moore string

matching algorithm to find repeated sequence events, that they call them behavioural patterns.

Hamou-Lhadj et al. [5][8] proposed an approach to remove repeated instances of events. First,

they removed contiguous repetitions then they proposed an algorithm for transforming a rooted

call tree to an ordered directed acyclic graph. This way, similar call subtrees were represented

only once.

Reiss [22] introduced the concept of visualization of software phases. He developed a tool, called

JIVE, for visualizing high level views of what is happening inside the target software. After a

certain period of time, JIVE summarizes the information found in the execution traces. This

information contains objects which are allocated and destroyed during a system’s execution.

5

Cornelissen et al. [4] developed a technique for visualizing run-time data. The authors proposed

a visualization scheme called the circular and massive sequence view. In the circular view, all

structural elements are shown in the nesting level by using a circular representation. In another

view, which is called the messages sequence view, the entities of software are located in an

orderly fashion. The problem of this approach and most visualization approaches is scalability.

The challenge starts when the target trace is considerably large; it becomes difficult to visualize

in an appropriate scale.

2.5.2. Trace Segmentation

Watanabe et al. [29] proposed a technique for detecting phases in execution traces of large

objected oriented codes. The authors used an approach, called the Least Recently Used objects

(LRU) for observing objects that appear in the beginning of the program and disappear at the end

of it. According to the authors, the sequence of consecutive events which collaborate to build a

feature of the system form an execution phase. To visualize the phases, they developed Amida, a

tool that detect phases automatically and show them in the form of sequence diagrams. The main

challenge of this approach is also scalability.

Kuhn et al. [10] examined the relationship between the analysis of trace information and signals.

They proposed a method for segmenting a trace by grouping sequences of events in the trace that

exhibit a strong calling relationship. They pruned the trace in multiple places to obtain a reduced

trace. Their technique removes a considerable amount of information, which may turn to be

important for the users.

Pirzadeh et al. [18] proposed a trace segmentation approach based on Gestalt psychology [11].

They created two measures, similarity and continuation, to bring functions in a trace closer

6

together to form dense groups, which have later been identified as phases. Their work, however,

is limited to repositioning calls to the same function with the hope that calls to different distinct

functions end up together. In this thesis, we use a more formal process based on probabilistic

model. Besides, our technique leverages trace segmentation to construct trace summaries.

Pirzadeh et al. [20] proposed another phase detection technique, in which the detection process

operates on the trace, while it is being generated. This online algorithm keeps track of the

methods encountered and raises a flag when a significant number of methods start disappearing

and new ones start emerging. This approach requires extensive human intervention for setting

thresholds. Our approach on the other hand aims to decrease this kind of interventions.

Medini et al. proposed a concept location technique that relies on trace segments [12] [13]. The

trace segmentation approach presented by the authors is based on static analysis of the code.

They measured method cohesiveness by comparing the body of methods using the cosine

measure. The user needs to define various thresholds to decide on how to measure similarity

between functions. Besides, Medini’s approach does not summarize the phases as in SumTrace.

They applied several algorithms on one trace to detect phases and discover the related phases

while in our approach we instantly detect phases and summarize them. The simplicity and speed

of our algorithm outperforms their approach.

7

Chapter 3 – The SumTrace Approach

SumTrace follows four steps as shown in Figure 3. In the first step, we collect a set of traces

(that we call a trace corpus) from the system. This corpus only needs to be created once. The

trace corpus is used in the next step to estimate a probabilistic model of occurrence of each pair

of consecutive calls in the system. The intuitive idea is that often function calls in traces exhibit

conditional dependencies over a period of time. For example, if function b appears most of the

times after function a, then we can deduce that these two functions are contributing to the

implementation of the same execution phase. In the third step, we take a trace that a maintainer

wants to analyze and reposition (while summarizing) its events (calls) by bringing closer related

functions together using the probabilistic model. What we mean by repositioning trace events is

explained in the rest of this chapter. The last step consists of automatically identifying the

beginning and the ending of each execution phase. To do so, we use a Gaussian mixture model.

The result is a trace summary based on the extracted phases. The steps of our approach are

further detailed in the next subsections.

8

Figure 3. The SumTrace process for extracting execution phases from traces

3.1. Building a trace corpus

To estimate the probability that two or more functions appear frequently together, we need to

collect enough data from the system that will be used as a corpus. One possible approach is to

use static analysis, more particularly, by building a static call graph. The advantage of this

approach is that it provides full coverage of the system. However, it has two main limitations.

First, it can only estimate the calling probability, i.e., the probability of a function a calling

another function b. If a followed by b appears frequently in a trace without having a calling b, a

static call graph can hardly be used to measure this probability of occurrence. The second

limitation is that static call graphs may miss calls due to polymorphism and dynamic bindings.

In this thesis, we propose to rely purely on dynamic analysis. We collect as many traces as

possible from the system and use the resulting trace corpus to build the probabilistic model.

Function call traces of a software system can be collected using a tracer (e.g., TPTP, The

Eclipse Test and Performance Tools Platform [28]). To generate a function call trace, we need to

9

insert probes at each entry and exit of a function. An example of three traces is presented in

Figure 4. We will use these fictive traces as a running example. Start and End events are added to

mark the beginning and end of a trace. The interval scale is used in the second step of the

approach.

More formally:

Definition 1: A trace T of size S (i.e., the number function calls invoked in the trace) can be seen

as a sequence of events, where each event is a function call, denoted by fi (i represents the

invocation order of the function call f).

Figure 4. An example of three traces mapped into an interval scale

Unlike static analysis, a pure dynamic analysis approach suffers from the completeness

problem—the resulting model may not cover all the paths of the system. Therefore, we need to

have a way for determining the number of traces needed to build a representative corpus from

which we construct our probabilistic model.

To achieve this, we need to exercise as many different features as possible of the system to obtain

adequate coverage of the system. Another alternative solution is to exercise test cases (if available) and

10

use coverage criteria to have a better set of traces needed to build a representative corpus. It should also

be noted that the corpus needs to be updated as the system changes (due to patches and new releases). We

anticipate that rebuilding the trace corpus from scratch may not needed, and that incremental updates can

be considered. We need to conduct more studies to understand the overhead of maintaining such a corpus

on the overall approach.

3.2. Constructing the probabilistic model

After collecting the traces, we measure the conditional (transition) probabilities for any two

consecutive functions i and i+1 occurring in the set of traces. The conditional probability is

measured using Equation 1. For example, the conditional probability of “c|a”, i.e., the function

c occurs given that the function a occurred right before c in the three traces of Figure 2 is 1/6

(0.17). This is because a occurs 6 times in all three traces and ac occurs only once (in the trace of

Figure 2c). The conditional probability matrix for the functions in traces of Figure 4 is shown in

Table 1.

𝑃(𝑓𝑗|𝑓𝑖) =
𝐹𝑟𝑒𝑞(𝑓𝑖𝑎𝑛𝑑𝑓𝑗)

𝐹𝑟𝑒𝑞(𝑓𝑖)

Equation 1.Conditional Probability

where 𝐹𝑟𝑒𝑞(𝑓𝑖 𝑎𝑛𝑑 𝑓𝑗) measures the frequency of 𝑓𝑗 appearing right after 𝑓𝑖 in the trace corpus,

and 𝐹𝑟𝑒𝑞(𝑓𝑖) measures the number of times 𝑓𝑖 appears in all traces.

Using the model, we can determine which functions appear frequently together. For example, we

can see that d appears in 83% of the cases after c, which suggests that these two functions should

be part of the same execution phase, because they are contributing to the implementation of the

same task.

11

 Table 1 . Probabilistic model table for consecutive functions in traces of Figure 4

fi

fj

Start a B c d End

Start 0.00 1.00 0.00 0.00 0.00 0.00

a 0.00 0.00 0.67 0.17 0.00 0.17

b 0.00 0.14 0.43 0.43 0.00 0.00

c 0.00 0.17 0.00 0.00 0.83 0.00

d 0.0 0.17 0.00 0.50 0.00 0.33

End -- -- -- -- -- --

3.3. Applying the probabilistic model for summarizing a trace

Once we construct the probabilistic model, we apply it to the trace that we want to summarize.

We call this trace, the target trace. By summarizing, we mean two things: First, we divide the

trace into meaningful segments which reflect the execution phases of the traced scenarios.

Second, we identify the best phase for each distinct function invoked in the trace. It should be

noted that the number of distinct functions in a trace is considerably small (usually in the order

of hundreds) as shown by Hamou-Lhadj et al. [6] in their empirical evaluation of the complexity

of traces. Therefore, a technique that can place each distinct function in one phase has the

apparent advantage of reducing significantly the size of traces. Besides, having functions that

12

crosscut many phases will make it hard to distinguish among the phases, which may defeat the

purpose of the summarization process. We are aware that there exist utility functions that appear

almost everywhere in the trace and that it may not make sense to have them assigned to only one

phase. We will discuss this issue in the next chapter, when we present the case studies.

To facilitate the understanding of the rest of this sub-section, we introduce the following

definitions:

Definition 2: We define an initial mapping from the invocation order of the trace events into an

interval scale in such a way that the distance between two consecutive calls is 1. For example,

the result of mapping the trace abbbbcdcd to an interval scale is shown in Figure 4a. The interval

unit is not important as long as the distance between the events is consistent.

Definition 3: We define 𝑃𝑜𝑠(𝑓𝑖) to determine the position of the function call 𝑓𝑖 , using the

mapping of the trace into the interval scale as per Definition 2. Right after the generation of the

trace, the position of any function call of the trace equals its order of invocation (i.e., i). We will

see that after repositioning the trace events that this position will change.

Definition 4: We introduce the function DistinctP𝑜𝑠(𝑓𝑖) to return the order of invocation of the

function 𝑓𝑖 in a given trace by taking into account only the occurrence of distinct functions. To

make this clear, take for example the trace in Figure 2a. The position of the function d,

𝑃𝑜𝑠(𝑑7) = 7, whereas its distinct position is 𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑃𝑜𝑠(𝑑7) = 4, because it appeared after a,

b, and c were invoked. The reason behind DistinctPos is to avoid being dependent to target

traces. This way the repositioning formula is more based on trace corpus and it provides more

general results (see the calculation example.)

13

The process of summarizing the content of the target trace starts by repositioning the trace events

using the interval scale (Definition 2) in such a way that cohesive functions are brought closer

together by reducing the distance between two consecutive calls based on their probability of

occurrence in the model.

The repositioning of the trace events is performed as follows: For each two consecutive calls 𝑓𝑖

and 𝑓𝑗 (i.e., 𝑓𝑗 appearing right after 𝑓𝑖), the new position of 𝑓𝑗 is as follows:

𝑃𝑜𝑠(𝑓𝑗) =

{

 𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑃𝑜𝑠(𝑓𝑗) + 𝑃(𝑓𝑗|𝑓𝑖)

𝑃𝑜𝑠(𝑓𝑖) − 𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑃𝑜𝑠(𝑓𝑗)

2
 𝑖𝑓 𝐶1

𝑃𝑜𝑠(𝑓𝑗) + 𝑃(𝑓𝑗|𝑓𝑖)
𝑃𝑜𝑠(𝑓𝑖) − 𝑃𝑜𝑠(𝑓𝑗)

2
 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Equation 2.Distance-position metric to rearrange functions

where C1 is a condition that is satisfied if 𝑓𝑗 is visited for the first time. Note that if 𝑓𝑗 is the first

function in the target trace then we consider Pos(𝑓𝑖) = Pos(start) = 0. It should also be noted that

there might be situations for which 𝑓𝑗 in the target trace does not appear in the probabilistic

model, i.e., it was not invoked when building the trace corpus. In this case, we simply consider

𝑃(𝑓𝑗|𝑓𝑖) to be zero. Future work should focus on ways to improve the probabilistic model when

new functions are discovered in the target traces or when the system changes due to patches, etc.

The idea behind Equation 2 is to reduce the distance between 𝑓𝑗and 𝑓𝑖 based on the probabilistic

model constructed in the previous step. If the probability of 𝑓𝑗 appearing after 𝑓𝑖 converges to 1,

then the distance between 𝑓𝑗 and 𝑓𝑖is reduced to half. A probability closer to 0 would mean that

14

the position of 𝑓𝑗 remains almost as the previous one. Note that the distance could have been

reduced by more than half. The focus here is on the fact that the same functions are placed close

enough to each other to form a dense group. We do not think that the amount by which we

reduce the gap between cohesive functions matters much as long as it is used consistently.

Also, recall from Definition 3 that the initial positions (i.e., right after the trace is generated) of

all function calls invoked in the trace equals their order of invocation. In addition, we choose to

use the distinct position when the function is processed for the first time to have a distance

measure that is less sensitive to repetitions and other variations in the trace. Consider, for

example, the case of the trace in Figure 2a. The first call to d appears at position 7, despite the

fact that it appears only after 3 distinct functions (a, b, and c) were called. The repetitive calls to

b created what we consider to be bias in the data. Removing contiguous repetitions from the

original trace is not an option because there might be situations where d appears after multiple

calls to the same functions, but in no particular order. For example, in the trace of Figure 2c, d

appears after many calls to a, b, and c. The distinct position is only needed the first time we visit

a new function. The position of the subsequent calls to this function are updated using their

position, measured with Pos().

To illustrate the way the repositioning mechanism works, consider, for example, the trace of

Figure 2c, as the target trace. The new position of each function is calculated as shown below.

 1. Pos(a)= DistinctPos(a) + P(a|start) * ((Pos(start)-DistinctPos(a)) / 2=1+1*(0-1)/2=0.5

 2. Pos(b) = 2+0.67*(0.5-2)/2=1.49

 3. Pos(c)=3+0.43*(1.49-3)/2=2.67

 4. Pos(a)= 0.5+0.14*(2.67-0.5)/2=0.65

15

 5. Pos(b)= 1.49+0.14*(0.65-1.49)/2=1.43

 6. Pos(a)=0.65+0.67*(1.43-.0.65)/2=0.91

 7. Pos(c)=2.67+0.17*(0.91-2.67)/2=2.52

 8. Pos(d)=4+0.83*(2.52-4)/2=3.388

 9. Pos(a)=0.91+0.17*(3.38-0.91)/2=1.11

Note that the new position of a given function supersedes the previous one. The resulting

summary consists of the trace distinct functions mapped into an interval scale that varies from 0

to the number of distinct functions of the target trace, where each distinct function is best placed

based on the probabilistic model.

The summary resulting from processing the trace in Figure 4c is shown in Figure 5. From Figure

4, we can infer that a and b form a group that may suggest the presence of an execution phase.

Functions c and d form another phase. In practice, this clear demarcation may be hard to obtain,

especially for large traces. Therefore, we should find a way to automatically distinguish between

the formed groups. This is the subject of the next subsection.

Figure 5. A summarized trace extracted from the trace of Figure 4c

3.4. Detection of phase boundaries

To decide on the phase boundaries, we use a probabilistic approach based on Gaussian mixture

models[25]. These models are often used as model-based techniques for clustering problems.

Here, the phase boundary identification is treated as a clustering problem where each phase can

16

be considered as a cluster. Unlike other clustering techniques, the Gaussian mixture model

assigns probability to each data point based on estimated parameters (variance and mean) to

determine the best partitioning of the data. This criterion makes our algorithm less sensitive to

the number of clusters, which is a challenging task in other clustering algorithms such as k-

means [18]. This said, the Gaussian mixture model requires less human intervention for deciding

on the number of clusters. Suppose a summarized target trace, obtained in the previous step,

contains N distinct functions. Let d1, d2,...,dN−1 be the pairwise distances between the positions of

two consecutive functions in the summarized trace. In this approach di is considered as a random

sample of observations between the positions of any two randomly selected consecutive

functions. We assume that a known transformation of d, say, T (d) = d∗, follows a Gaussian

mixture model

T (d) =d* ~∑ 𝜋𝑘 ∗ 𝑁(𝑑
∗; 𝜇𝑘, 𝜎𝑘

2)𝐾
𝑘=1

,

Equation 3.Guassian mixture model for a transformation of distances

where πk is interpreted as the proportion of each cluster out of all clusters, K represents the

number of clusters, and d∗= log (d) is the log transformation of our distances obtained by using

the distance position metric (which will be termed as log-distance in the remaining text). Also, 0

≤ πk< 1, ∑ 𝜋𝑘 = 1 𝐾
𝑘=1 , and N(d*;µk,σk

2) is the probability density function of a Gaussian

distribution with mean µk and variance σk
2, for each k(cluster) = 1,2,...,K.

 Gaussian mixture models are popular model-based techniques for clustering problems in

statistics and machine learning. These models are computationally easy to fit, and in practice

they often provide a very good approximation to the true probability distribution of real data. In

17

our case studies, the data is d* which is treated as a continuous random variable and its

distribution is approximated with a Gaussian mixture reasonably well [25].

To put it simply, consider the trace in Figure 5 that contains four distinct functions. First, we

calculate the distances between two consecutive functions in the repositioned trace and then we

transform distances to log-distances which are shown in Table 2. Afterwards, we create clusters

of the log-distances using the Gaussian mixture models. Note that the example we have used is

only for illustration purpose, i.e., to show the calculations. However, in the real world, we have

millions of function calls in actual traces and hundreds of distinct functions. Gaussian mixture

models actually determine multiple normal distributions in data and form their clusters. Multiple

normal distributions are found in a large number of data points (functions) but not in few

functions as shown so far with the example of four functions. Therefore, in this section, we

modify our example to assume that the number of functions in the summarized trace is

approximately 180 (i.e., the trace contains 180 distinct functions; this example is inspired from

one of the case studies presented in the next section). We assume that the summarized target

trace containing 180 functions is the one shown in Figure 5.

Table 2. Distances and transformation to log-distances

position d=distance Function d*=log-distance

0.977 0.233 A -1.4567168

1.21 1.3 B 0.2623643

2.51 0.87 C -0.1392621

3.38 NA D NA

18

Figure 6. The summarized trace containing 180 functions

Nonetheless, the number of clusters is still unknown after transforming distances to log-

distances. Unknown parameters of the model are K,𝜋𝑘,𝜇𝑘𝜎𝑘
2, which are estimated as follows:

For each value of K = 1,2,...,K∗, and some pre-specified upper bound K∗, the parameter estimates

{(𝜋̂𝑘, 𝜇̂𝑘, 𝜎̂𝑘
2) : k = 1,2,...,K} are obtained using the data d1,d2,...,dN−1 and the well-known

expectation maximization (EM) algorithm[16]. The best model is then selected using the

Bayesian information criterion (BIC)[25] of the final selected model is given by:

f (d*)=∑ 𝐾̂
𝑘=1 𝜋̂𝑘 ∗N(d*;𝜇̂𝑘, 𝜎̂𝑘

2)

Equation 4. Best fitted Gaussian Mixture Models

For each distance 𝑑𝑖
∗between two functions the probability of belonging to cluster k is given by:

𝑃𝑖𝑘=P (𝑑𝑖
∗€ cluster k|d*) =

𝜋̂𝑘N(𝑑𝑖
∗;𝜇̂𝑘,𝜎̂𝑘

2)

𝑓(𝑑𝑖
∗)

,

for all i= 1,2,...,N − 1 and k = 1,2,...,𝐾̂.

Equation 5. Probability of belonging to a cluster

We ran EM algorithm on our data several times to obtain the best maximum likelihood. Once we

obtained optimum likelihood we stop the algorithm and collect the results. Note that we used

19

BIC to estimate the initial number of clusters, while, as we mentioned before, for Gaussian

Mixture Models, increasing the number of clusters keeps a stable partitioning, which is not the

case for K-means [18]. In K-means, adding a new cluster may result in a completely different

partitioning. In our analysis, the main cluster is the one with the largest mean value. We use this

cluster to determine the phase boundary. In Gaussian mixture models, each cluster represents a

different normal distribution. Therefore, the phase boundary can be determined by finding out

the outlier of the normal distribution of the cluster with largest mean. Thus, we determine the

phase boundary by using Equation 6

di* ≥ 𝜇̂𝑘 + 2 ∗ 𝜎̂𝑘

Equation 6. Determining the phase boundaries

In the case of Figure 6, after using Equation 6, the functions have been segmented into three

phases as shown in Figure 5. This actually means that the log-distance between functions “g and

h” and “l and o”, in Figure 7, is higher than the phase-boundary value obtained from Equation 6.

This allows us to automatically find out the phases for our repositioned trace.

Figure 7. The summarized target trace with phases

We implemented our technique in C#. The complexity of the repositioning technique is linear,

based on the number of calls in the trace. We used R [21] and a library called “mix tools” that

implements the Gaussian models.

20

Chapter 4 - Evaluation

We evaluated the effectiveness of SumTrace through a number of intrinsic case studies. We

based our evaluation on the documentation provided by the original developers and maintainers

of the selected subject systems. The choice of intrinsic studies constrained us to select subject

systems that satisfy two conditions: 1) the systems have to be publicly available to allow the

replication of this study, and 2) the systems need to be well-documented to allow us to verify the

results. These conditions led us to choose well-known open source systems: JHotDraw [9] and

Weka [30].

4.1. JHotDraw

We performed the first case study on JHotDraw (version 5.2), which is a framework

implemented in Java for technical and structured graphics [9]. It consists of 11 packages, 171

classes, 1414 methods and 9419 lines of codes.

We imported JHotDraw’s Java source code into Eclipse, used TPTP to instrument the source

code, and collected traces [28]. We ran JHotDraw several times covering a variety of scenarios

(functionalities) such as drawing different shapes, changing colours, and changing fonts, etc. We

collected 34 traces to build the corpus by exercising various features of JHotDraw.

We collected a target trace by executing the following scenario in JHotDraw: Create a new view,

draw a rectangle, line, and circle, run animation, stop the animation, and close the application.

The target trace has around 233,000 function calls, and after applying our approach, the resulting

21

trace contains 189 function calls (by keeping only the distinct functions and repositioning them

as discussed earlier).

The next step is to find phase boundaries (distance threshold). To determine phase boundaries,

we first determine the number of clusters in the summarized target trace using the BIC score.

The BIC score turned out to be two for JHotDraw (i.e., two clusters). We created the two clusters

of log-distances of functions by applying the EM clustering algorithm (other algorithms can also

be used). We then used the cluster with the largest log-distances to determine the phase boundary

using Equation 6. The phase boundary for JHotDraw turned out to be a log-distance of 1.9.

Therefore, we created phases in the summarized target trace whenever the log-distance between

two functions increased beyond 1.9. We found three phases as shown in Figure 8.

To validate the phases, we used JHotDraw documentation. We found that the phases correspond

respectively to initialization, computation, and finalization of the system. Table 3 shows the

details of the three phases including the number of functions, and a selected set of functions for

each phase. The full results are presented in Appendix A. After checking manually the functions

in each phase against both source code comments and JHotDraw documentation, we found that

the first phase contains functions which initialize JHotDraw. Examples of these functions include

createDrawing, newWindow, createDrawingView. The second phase contains the core

computation of the traced scenario which consists of drawing shapes. The functions in this phase

include drawLine, draw, color, etc. The last phase contains functions that terminate the

application such as exit and destroy.

22

Figure 8. Main phases of the target trace in JHotDraw

Table 3. Sample functions in each phase

Phase Number of

functions

List of sample functions

Initialization 49 CommandMenu.actionPerformed

javadraw/JavaDrawApp.createDrawing

MDI_DrawApplication.newWindow

DrawApplication.createDrawingView

Computation 133 StandardDrawingView.repairDamage

RedoCommand.isExecutableWithView

DecoratorFigure.containsPoint

PolyLineFigure.drawLine

PolyLineFigure.draw

util/ColorMap.color

DecoratorFigure.draw

DrawApplication.view

23

JavaDrawApp.startAnimation

Animator.start

Finalization 7 JavaDrawApp.endAnimation

Animator.end

Application.exit

JavaDrawApp.destroy

DrawApplication.destroy

In Table 4, we provided a description of each phase based on our examination of the code and

documentation. Automatic labeling of phases, though it is outside the scope of the thesis, is also

possible. We can, for example, use information retrieval (IR) to extract keywords from function

names, source code comments, and other artifacts to construct labels. IR-based techniques such

as the ones used in feature location research (see Error! Reference source not found.) can also

be adapted.

With our approach, a maintainer can further zoom into a phase to identify its sub-phases,

especially if the number of functions in a phase is large. For example, Phase 2 has 133 functions.

We can divide it into sub-phases by reapplying the clustering step to only this fragment of the

summarized trace. According to Equation 6, the phase boundary is 1.4 log-distance. This resulted

into five sub-phases for Phase 2. Figure 9 shows the repositioned functions in sub-phases of

Phase 2 and Table 5 shows the functions that belong to each sub-phase.

24

Table 4. The three phases in the target trace of JHotDraw

Phase Description

Initialization Make a new view, maximize view, and unselect the pointer

button and so on.

Computation Draw the rectangle, fill color, unselect the rectangle, and draw a

line, run animation, and so on.

Finalization Ending the animation, deselect the view, destroy the view and

close the application

Again, we turned to JHotDraw documentation and source code comments to manually label the

phases based on the functions they contain. The first sub-phase contains functions that prepare

the view for the drawing (example of functions includes select, activate, view, etc.). The second

one contains functions for drawing rectangle, circles, and adding figures to the viewing area as

suggested by the name of the functions belonging to this phase. The third one contains functions

for modifying the shapes. The fourth sub-phase contains functions for drawing a line and

changing both its color and size. Finally, the fifth sub-phase contains functions for running the

animation which contains moving the figures in the view.

25

Table 5. Sample functions in sub-phases of phase 2

Phase List of sample functions

Preparation CreationTool.activate

AbstractCommand.isExecutable

AbstractCommand.view

StandardDrawingView.fireSelectionChanged

Figure Drawing FigureChangeEventMulticaster.add

AbstractFigure.addToContainer

DecoratorFigure.displayBox

RectangleFigure.basicDisplayBox

CompositeFigure.add

Figure Rendering RectangleFigure.displayBox

RectangleFigure.drawBackground

RectangleFigure.drawFrame

ColorMap.isTransparent

ColorMap.color

Draw Lines PolyLineFigure.drawLine

PolyLineFigure.draw

Animation JavaDrawApp.startAnimation

Animator.start

StandardDrawingView.selectionHandles

26

The total time of execution of our approach on a computer system containing Intel core i5 3.10

GHz CPU and 12 GB of RAM was less than 2 minutes (this did not include the collection of

traces used to build the probabilistic model). The time to collect traces depends on the scenarios

that are exercised and the context in which the system is used. In our case, it took approximately

15 minutes to collect 38 traces.

Figure 9. Five sub-phases of Phase 2

4.2. Weka

We performed a second case study on Weka (ver. 3.7.11) [30]. Weka is a software application

that contains a collection of machine learning algorithms. The algorithms can either be applied

directly to a dataset or called from your own Java code. Weka contains algorithms for data pre-

processing, classification, regression, clustering, association rules, and visualization. It is also

well-suited for developing new machine learning algorithms [30].

In order to create probabilistic model, we collected 68 traces by executing various scenarios

covering the different classification algorithms in Weka to collect 68 traces. This includes

changing different parameters of the classification algorithms, setting different datasets for

training and testing, and evaluating various output settings for each algorithm including the plots

generated by Weka. We built the probabilistic model from these 68 traces.

27

We generated the target trace by importing a sample dataset which comes with Weka, applying

the decision stump classification algorithm on the dataset, using 10-fold cross validation, and

closing Weka. During this process, Weka also generated plots of different attributes in the data to

facilitate the visualization of relationships among the attributes in the dataset. Weka also

performed computations to plot the results in the form of ROC (Receiver Operating

Characteristic) curves. Since Weka is multi-threaded, we created separate traces for each thread

and focused on the analysis of the core thread (the one that focuses on performing the

classification, evaluation, and plotting of the results) as the target trace.

The size of the target trace was around 123,000 function calls and after the execution of our

approach, the target trace was reduced to 179 function calls. For finding the phase boundary, we

calculated the BIC score for the log-distances between two consecutive functions in the

summarized target trace. In this case, the best BIC score was 3 (i.e., 3 clusters). We applied the

EM algorithm on the log-distances to determine the clusters and selected the cluster with the

large distances to determine the phase boundary by using Equation 6. The phase boundary turned

out to be the log-distance of 2.3. We created phases in the summarized target trace whenever the

log-distance between two consecutive functions increased beyond 2.3. This resulted into three

phases as shown in Table 6 and Figure 10.

28

By reviewing Weka`s documentation and the code, we found that the first phase is dominated by

functions that are used to prepare the classifier such as starting the task (example of a function is

taskStarted in Table 6), checking attribute types, initializing logging facility (log), etc. The

second phase is concerned with executing the classifier. The functions in the second phase

include splitting and sorting the instances (findSplitNumeric, sort), determining entropy

(ContingencyTable.entropy), building a classifier (buildClassfier), and evaluating the classifier

(meanAbsoluteError). The last phase contains functions that output the results of the

classification including determining the recall, precision and other measures

(numFalseNegatives, falsePositiveRate, recall, etc.), displaying the results to the GUI (addPlot),

plotting the ROC curve (areaUnderROC), and finishing the task (taskFinished). We summarized

the description of each phase in Table 7. Again, this is done manually by examining the

functions in each phase and referring to Weka documentation and source code.

29

Table 6. Selected functions of the Weka phases

Phase Number of

functions

Sample Functions

Classifier

Preparation

38 LogPanel.taskStarted

FileLogger.append

Logger.log

Capabilities.enable

Capabilities.enableAllAttributeDependencies

Classifier

Processing

74 DecisionStump.findSplitNumeric

Instances.sort

Instances.deleteWithMissingClass

Attribute.copy

Instances.relationName

ContingencyTable.entropy

DecisionStump.buildClassifier

DenseInstance.toDoubleArray

Classifier Results 67 Evaluation.toSummaryString

Evaluation.meanAbsoluteError

Evaluation.numFalseNegatives

Evaluation.falsePositiveRate

Evaluation.recall

30

Evaluation.areaUnderROC

VisualizePanel.addPlot

ClassPanel.addRepaintNotify

ClassifierErrorsPlotInstances.createPlotData

TaskMonitor.taskFinished

LogPanel.taskFinished

Figure 10. Three phases in the target trace of Weka

31

Table 7. Description of the Weka phases

Phase Description

Classifier Preparation Checking attribute types, parsing classifier options

(parameters) from the user, initializing logging facility,

and enabling the classifier capabilities against the dataset

Classifier Processing Splitting the instances, sorting the instances, determine

entropy, building the classifier, , and measuring accuracy

for instances

Classifier Results Evaluating the instances ,determining the recall, precision

and other measures per attribute of a label, plotting ROC

curves and other curves in GUI, Finishing task

Since the last two phases have the largest number of functions, we decided to further divide them

into sub-phases. For saving space, we shall only discuss Phase 3 that we refer to as ‘classifier

results’. Table 8 shows the sub-phases of the third phase of Weka and Figure 11 shows the

repositioned functions of these sub-phases. These sub-phases were obtained by repeating the

clustering step of our approach on the functions of Phase 3. The value of phase boundary is 0.7

(log-distance) according to Equation 6. The names of the sub-phases and the functions in them

are described in Table 8. It can be seen that the sub-phases clearly separate the functionalities of

Weka. For example, the sub-phase, called attribute evaluation, contains functions that compute

different measures on different attributes of the label (i.e., class values). Similarly, the ROC

32

evaluation sub-phase contains functions related to the ROC curve, the visualization sub-phase

contains functions about the plotting of charts, and the task finalization sub-phase contains

functions about the finalization of processing of the classifier.

Table 8. Selected functions of sub-phases of the third phase of Weka

Sub-phases List of functions

Attribute Evaluation Attribute.name

Evaluation. Recall

Evaluation. Precision

ROC Evaluation Evaluation.areaUnderPRC

Evaluation.weightedAreaUnderROC

Visualization AbstractPlotInstances.canPlot

VisualizeUtils.processColour

ClassPanel.addRepaintNotify

VisualizePanel.addPlot

Task Finalization LogPanel.taskFinished

TaskMonitor.taskFinished

The time to execute our approach took less than 2 minutes, after the collection of traces. The

time to collect traces was approximately 65 minutes, because of the various settings required to

execute classification of algorithms.

33

Figure 11. Sub-phases in the third phase of Weka’s target trace

4.3. Discussion and Limitations

The results of applying SumTrace to traces of two software systems show that the approach is

promising in segmenting and summarizing the traces into distinct execution phases. We believe

that the key success of SumTrace is attributed to the use of a formal process for measuring the

cohesion among functions, which is based on a probabilistic model. Building a probabilistic

model, however, requires a data corpus. In our case, we used a collection of traces. We argued

that these traces should cover various features of the system to provide good coverage.

Determining the exact number of traces needed to build a representative depends on many

factors including the complexity of the system.

In addition, the trace corpus needs to be updated whenever the system changes (new patches,

etc.), which might be time consuming. We need to investigate ways to increment the corpus as

parts of the system change.

Another important aspect of SumTrace is that it assigns each distinct function of the trace to a

specific phase. As a result, we obtain a summary that is as large as the number of distinct

functions in the target trace. At first sight, this may appear a little odd, because some functions

(such as utilities) may be shared among phases. In fact, it all depends on the objective of the

trace segmentation process. If the objective is to identify the detailed implementation of each

phase by providing the list of its functions, then we need to allow the same function to appear in

34

multiple places. This can be achieved by modifying SumTrace to keep the new position of every

single occurrence of a function when repositioning the trace events. Currently, when a new call

to the same function occurs, the new position calculated with Equation 2 supersedes the previous

one. If, on the other hand, the objective is to summarize the trace, which is the case in this study,

the focus should be on placing the functions that are most relevant to the implementation of a

phase in this phase and this phase only. If the phase has extra (and perhaps less relevant)

functions, this should not impact the overall understanding of the phase content, especially

because the size of phases is relatively small (again this is because we only keep distinct

functions). We can also examine the automatic removal of utilities before applying SumTrace

such as the ones proposed by Hamou-Lhadj et al. in [6][8].

Finally, in a normal run of a system, the same execution phase may appear multiple times in the

trace. For example, drawing a rectangle could be performed multiple times at different points of

the traced scenario. So how does SumTrace handle multiple instances of the same phase? This is

easily achievable by taking each phase (result of SumTrace) and search in the original trace for

segments that have similar functions. This leads to an interesting future study which relates to

phase search and localization.

35

Chapter 5 - Conclusion

In this chapter we conclude our thesis by summarizing our research contributions in Section 5.1,

which also includes a discussion about the results achieved by our approach and its effectiveness.

In Section 5.2, we elaborate on opportunities for future research to further improve the

effectiveness and accuracy of the present approach. Finally in section 5.3 we provide our closing

remarks for this thesis.

5.1. Research Contributions

In this dissertation, we proposed a new statistical approach for summarizing function call traces

into distinct execution traces. We have proposed a trace summarization approach, called

SumTrace, which leverages the concept of trace segmentation. We also used probabilistic and

Gaussian mixture models to generate summarized execution phases from large traces with

minimum human intervention. The output of this approach provides maintainers a way to grasp

the content of large traces by segmenting their trace content. It helps the maintainer to look at

each phases and recognize the distinct functions of each phase rapidly.

We experimented with SumTrace on traces of two large systems and show that it holds real

promise in segmenting effectively and efficiently the content of large traces.

36

5.2. Opportunities for Further Research

The immediate future work consists of conducting further experimentation on other feature

traces. In particular, we intend to target larger systems.

Another future work is to investigate how we can build representative corpuses that can be used

to guide the construction of the probabilistic model. One alternative is to use test cases and

coverage criteria to decide on the number of traces that would form the corpus. The problem

with this is that execution test cases may be an expensive task. Besides, not all systems have a

full set of test cases.

Another limitation of our approach is that it does not account for changes in the system such as

new patches, etc. We will need to update the corpus whenever the system changes. We believe

that a complete reconstruction may be avoided if one can detect only the elements of the system

that have been modified. Future work should address this question while having in mind the

trade-off between accuracy and completeness.

In addition, we need to investigate the impact of utility functions on the whole process. Utility

functions are the ones that appear in multiple places (called by many components). They can be

seen as noise in the data. In the current version of SumTrace, we treat utility functions just like

any other function. We may consider removing them and assess the impact of the accuracy of

SumTrace to build representative phases.

Finally, a trace analysis approach such as SumTrace is only adopted if it is well embedded in a

trace analysis tool suite. Future work should focus on providing adequate tool support to

SumTrace. The tool can then be used by software engineers solving maintenance tasks. This will

allow us to conduct user studies and assess the effectiveness of SumTrace in practice.

37

5.3. Closing Remarks

The automatic segmentation of large execution traces can simplify the analysis of dynamic

information of a software system, which in turn can help in software comprehension tasks.

SumTrace aims to provide such a trace segmentation process. SumTrace is simple and efficient.

It only requires one pass through the trace to extract meaningful segments. We believe that, if

supported by adequate tools, SumTrace can be effectively used by software engineers working

on understanding the behavioural aspects of a software system. As such, we believe that

SumTrace greatly contributes to the state of the art in trace analysis research.

38

Bibliography

[1] E. Cinlar. Introduction to Stochastic Processes. Dover publications, Mineola, NY, USA,

1975.

[2] N. Chapin, E. Hale, K. Kham, F. Ramil, W. Tan, “Types of software evolution and

software maintenance,” Wiley Journal of Software Maintenance and Evolution, 13(1),

2001, pp. 3–30.

[3] K. Chen and V. Rajlich “Case Study of Feature Location Using Dependence Graph”, In

Proceeding of the 8th International Workshop on Program Comprehension, 2000, pp.

241-249.

[4] B. Cornelissen, A. Zaidman, A .V. Deursen, L. Moonen and R. Koschke, “A

Systematic Survey of Program Comprehension through Dynamic Analysis,” IEEE

Transactions on Software Engineering (TSE), 35(5), 2009, pp. 684-702.

[5] A. Hamou-Lhadj A. and T. C. Lethbridge, "Techniques for Reducing the Complexity of

Object-Oriented Execution Traces," In Proceedings of the 1th IEEE International

Workshop on Visualizing Software for Understanding and Analysis (VISSOFT), 2003,

pp. 35-40.

[5] A. Hamou-Lhadj, and T. C. Lethbridge, “A Survey of Trace Exploration Tools and

Techniques,” In Proceedings of the Centre for Advanced Studies on Collaborative

research Conference, 2004, pp. 42-54.

[6] A. Hamou-Lhadj and Timothy C. Lethbridge, "Understanding the Complexity

Embedded in Execution Traces with a Focus on Program Comprehension Tasks," IET

Software Journal, 4(2), 2010, pp. 161 - 177.

[7] A. Hamou-Lhadj, “The Concept of Trace Summarization," In Proceedings of the 1st

International Workshop on Program Comprehension through Dynamic Analysis, 2005,

pp. 43-47.

[8] A. Hamou-Lhadj, and T. Lethbridge, "Reasoning about the Concept of Utilities,"

ECOOP International Workshop on Practical Problems of Programming in the Large,

39

Oslo, Norway, Lecture Notes in Computer Science (LNCS), Vol 3344, Springer-Verlag,

pp. 10-22, 2004.

[9] JHotDraw, “Opensource GUI framework for technical and structured graphics”, Online:

www.jhotdraw.org

[10] A. Kuhn and O. Greevy, “Exploiting the analogy between traces and signal processing,”

In Proceedings of the 22nd IEEE International Conference on Software Maintenance,

2006, pp. 320-329.

[11] K. Koffka. Principles of Gestalt psychology. Hartcourt, NewYork, 1935.

[12] S. Medini, G. Antoniol, Y. Gueheneuc, M. Di Penta and P. Tonella, “SCAN: An

Approach to Label and Relate Execution Trace Segments,” In Proceedings of the 29th

Working Conference on Reverse Engineering, 2012, pp. 135-144.

[13] S. Medini, V. Arnaoudova, M. Di Penta, G. Antoniol, Y. G. Guéhéneuc, P. Tonella,

“SCAN: an approach to label and relate execution trace segments,” Journal of Software:

Evolution and Process. 2014.

[14] W. Mendenhall, Beginning Statistics: A to Z, Duxbury Press, Pacific Grove, CA, 1993.

[15] M. A. Storey, K. Wong, and H. A. Muller, “How do Program Understanding Tools

Affect how Programm ers Understand Programs?” In Proceedings of 4th Working

Conference on Reverse Engineering, IEEE Computer Society, 1997, pp. 183-207.

[16] G. J. McLachlan and D. Peel, Finite Mixture Models. New York, Wiley, 2008

[17] D. Poshyvanyk, M. Gethers and A. Marcus, “Concept Location Using Formal Concept

Analysis and Information Retrieval,” In Proceedings of ACM Transactions on Software

Engineering and Methodology, 21(4), 2013, pp. 1-23.

 [18] H. Pirzadeh and A. Hamou-Lhadj, "A Novel Approach Based on Gestalt Psychology for

Abstracting the Content of Large Execution Traces for Program Comprehension," In

Proceedings of the 16th IEEE International Conference on Engineering of Complex

Computer Systems, 2011, pp. 221-230.

[19] H. Pirzadeh, S. Shanian, A. Hamou-Lhadj, L. Alawneh and A. Sharifee, “Stratified

Sampling of Execution Traces: Execution Phases Serving as Strata,” The Elsevier

http://www.jhotdraw.org/

40

Journal on Science of Computer Programming, Special Issue on Software Evolution,

Adaptability and Maintenance, 78(8), 2013, pp. 1099–1118

[20] H. Pirzadeh, A. Agarwal and A. Hamou-Lhadj, “An Approach for Detecting Execution

Phases of a System for the Purpose of Program Comprehension,” In Proceedings of the

8th International Conference on Software Engineering Research, Management, and

Applications, 2010, pp.207-214.

[21] "R: A Language and Environment for Statistical Computing," R Foundation for

Statistical Computing, 2011.

[22] S. P. Reiss, “Dynamic detection and visualization of software phases”, In Proceedings

of the 3rd International Workshop on Dynamic Analysis (WODA), ACM, 2005, pp. 1-6.

[23] A. Rountev and B. H. Connell, “Object Naming Analysis for Reverse-Engineered

Sequence Diagrams.” In Proceedings of the 27th International Conference on Software

Engineering, 2005, pp. 254-263.

[24] I. Sommerville. Software Engineering, A Practitioner’s Approach (9th Edition).

Addison-Wesley, 2010.

[25] G. Schwarz, Estimating the Dimension of a Model, Annals of Statistics, 1978.

[26] T. Systa, “Understanding the behavior of Java programs,” In Proceedings of Seventh

Working Conference on Reverse Engineering, 2000, pp. 214-223

[27] S. K. Thompson, Sampling, 3th edition, John Wiley, New York, NY, USA 1992.

[28] TPTP, “The Eclipse Test and Performance Tools Platform (TPTP) Project,” Available

online: www.eclipse.org/tptp/

[29] Y. Watanabe. T. Ishio, K. Inoue “Feature-level phase detection for execution trace using

object cache” In Proceedings of the International Workshop on Dynamic Analysis, co-

located with the ACM SIGSOFT International Symposium on Software Testing and

Analysis, ACM Press, New York, New York, USA, 2008, pp. 8–14.:

[30] I. H. Witten, E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques, Morgan Kaufmann, San Francisco, CA, USA, 2005.

[31] http://www.desnoix.com/guillaume/alma/

http://www.eclipse.org/tptp/

41

Appendix A: Full Results of the Experiments

Table A1. Functions in each phase JhotDraw

Phase Number of functions Function names

Initialization 49 MDI_DrawApplication.promptNew

MDI_DrawApplication.hasInternalFrames

CommandMenu.actionPerformed

javadraw/JavaDrawApp.createDrawing

QuadTree._makeNorthwest

MDI_DrawApplication.newWindow

DrawApplication.createDrawingView

StandardDrawingView.checkMinimumSize

DrawApplication.fireViewCreatedEvent

AbstractCommand.viewCreated

StandardDrawing.addDrawingChangeListener

AbstractTool.viewCreated

DragNDropTool.viewCreated

StandardDrawingView.clearSelection

StandardDrawing.removeDrawingChangeListener

MDI_DrawApplication.createContents

MDI_DrawApplication.createInternalFrame

DrawApplication.createContents

StandardDrawingView.selectionZOrdered

StandardDrawingView.selectionElements

MDI_DrawApplication.internalFrameOpened

MDI_DrawApplication.internalFrameActivated

MDI_DrawApplication.activateFrame

StandardDrawingView.isFocusTraversable

StandardDrawingView.unfreezeView

StandardDrawing.unlock

DrawApplication.fireViewSelectionChangedEvent

AbstractTool.checkUsable

NullDrawingView.isInteractive

UndoableCommand.commandExecutable

CommandMenu.commandExecutable

AbstractCommand.viewSelectionChanged

NullDrawingView.removeFigureSelectionListener

StandardDrawingView.addFigureSelectionListener

UndoableTool.toolUsable

AbstractTool.viewSelectionChanged

ToolButton.toolUsable

ToolButton.paintSelected

PaletteIcon.selected

42

DrawApplication.showStatus

DrawApplication.toolDone

ToolButton.name

ToolButton.toolDeactivated

StandardDrawingView.selectionCount

DrawApplication.paletteUserOver

ToolButton.tool

AbstractTool.isEnabled

AbstractTool.isUsable

Computation 133 DrawApplication.paletteUserSelected

AbstractTool.activate

PaletteButton.select

UndoableTool.activate

CreationTool.activate

AbstractCommand.isViewRequired

AbstractCommand.isExecutable

UndoableCommand.isExecutable

 AbstractCommand.view

StandardDrawingView.isInteractive

ChangeAttributeCommand.isExecutableWithView

DrawApplication.figureSelectionChanged

StandardDrawingView.fireSelectionChanged

AlignCommand.isExecutableWithView

SelectAllCommand.isExecutableWithView

CommandMenu.checkEnabled

CutCommand.isExecutableWithView

CopyCommand.isExecutableWithView

PasteCommand.isExecutableWithView

DuplicateCommand.isExecutableWithView

DeleteCommand.isExecutableWithView

GroupCommand.isExecutableWithView

UngroupCommand.isExecutableWithView

PolyLineFigure.points

PolyLineFigure.displayBox

StandardDrawingView.checkDamage

PolyLineFigure.containsPoint

SendToBackCommand.isExecutableWithView

BringToFrontCommand.isExecutableWithView

UndoCommand.isExecutableWithView

StandardDrawing.drawingChangeListeners

StandardDrawingView.repairDamage

ToolButton.toolActivated

AbstractFigure.containsPoint

RedoCommand.isExecutableWithView

DecoratorFigure.containsPoint

ReverseVectorEnumerator.nextElement

AbstractCommand.isExecutableWithView

43

ReverseFigureEnumerator.hasMoreElements

ReverseFigureEnumerator.nextFigure

ReverseVectorEnumerator.hasMoreElements

QuadTree.add

Bounds.asRectangle2D

EllipseFigure.basicDisplayBox

CompositeFigure.figuresReverse

AbstractCommand.figureSelectionChanged

CompositeFigure.findFigure

UndoableTool.toolActivated

RectangleFigure.basicDisplayBox

CreationTool.createFigure

AbstractFigure.clone

LineFigure.basicDisplayBox

AttributeFigure.writeObject

AbstractTool.isActive

DecoratorFigure.basicDisplayBox

QuadTree.remove

AnimationDecorator.basicDisplayBox

CompositeFigure._removeFromQuadTree

CompositeFigure.figureChanged

StandardDrawingView.drawing

StandardDrawingView.add

AbstractFigure.willChange

AbstractFigure.invalidate

AbstractFigure.changed

StandardDrawingView.tool

StandardDrawingView.isFigureSelected

BouncingDrawing.add

DecoratorFigure.decorate

ToolButton.paint

StandardDrawingView.editor

DecoratorFigure.figureChanged

StandardDrawingView.findHandle

StandardDrawingView.drawingInvalidated

DrawApplication.tool

StandardDrawing.figureInvalidated

DecoratorFigure.figureInvalidated

AbstractFigure.listener

AbstractFigure.displayBox

FigureChangeEventMulticaster.addInternal

FigureChangeEventMulticaster.add

AbstractFigure.addFigureChangeListener

AbstractFigure.addToContainer

AbstractTool.deactivate

AbstractTool.view

DecoratorFigure.displayBox

44

AnimationDecorator.displayBox

CompositeFigure.add

AbstractTool.editor

CompositeFigure._addToQuadTree

RectangleFigure.displayBox

RectangleFigure.drawBackground

RectangleFigure.drawFrame

EllipseFigure.displayBox

EllipseFigure.drawFrame

EllipseFigure.drawBackground

CompositeFigure.figures

CompositeFigure.draw

StandardDrawingView.drawDrawing

StandardDrawingView.drawBackground

Geom.range

StandardDrawingView.constrainPoint

StandardDrawingView.drawAll

PolyLineFigure.drawLine

PolyLineFigure.draw

SimpleUpdateStrategy.draw

StandardDrawingView.paintComponent

ColorMap.isTransparent

ColorMap.color

AttributeFigure.draw

DecoratorFigure.draw

FigureEnumerator.nextFigure

DrawApplication.view

StandardDrawingView.selectionHandles

StandardDrawingView.drawHandles

Geom.lineContainsPoint

AbstractFigure.isEmpty

FigureEnumerator.hasMoreElements

CreationTool.createUndoActivity

UndoableAdapter.rememberFigures

SingleFigureEnumerator.hasMoreElements

SingleFigureEnumerator.nextElement

UndoableTool.isActive

UndoableTool.deactivate

UndoableAdapter.isUndoable

UndoManager.pushUndo

PolyLineFigure.decorate

UndoManager.clearRedos

UndoManager.clearStack

UndoableTool.editor

util/UndoableTool.view

AbstractFigure.size

JavaDrawApp.startAnimation

45

Animator.start

Finalization 6 PolyLineFigure.isEmpty

JavaDrawApp.endAnimation

Animator.end

DrawApplication.exit

JavaDrawApp.destroy

DrawApplication.destroy

Table A2. Sample functions in each sub-phases of Phase 2 of JHotDraw

Phase List of sample functions

Preparation DrawApplication.paletteUserSelected

AbstractTool.activate

PaletteButton.select

CreationTool.activate

AbstractCommand.isViewRequired

AbstractCommand.isExecutable

UndoableCommand.isExecutable

AbstractCommand.view

StandardDrawingView.isInteractive

ChangeAttributeCommand.isExecutableWithView

DrawApplication.figureSelectionChanged

StandardDrawingView.fireSelectionChanged

AlignCommand.isExecutableWithView

SelectAllCommand.isExecutableWithView

CommandMenu.checkEnabled

CutCommand.isExecutableWithView

CopyCommand.isExecutableWithView

PasteCommand.isExecutableWithView

DuplicateCommand.isExecutableWithView

DeleteCommand.isExecutableWithView

Draw Figures FigureChangeEventMulticaster.add

AbstractFigure.addToContainer

DecoratorFigure.displayBox

RectangleFigure.basicDisplayBox

CompositeFigure.add

Bounds.asRectangle2D

CreationTool.createFigure

RectangleFigure.drawFrame

Modify

Figures

ReverseVectorEnumerator.hasMoreElements

QuadTree.add

CompositeFigure.figuresReverse

AbstractCommand.figureSelectionChanged

 CompositeFigure.findFigure

46

AbstractFigure.clone

LineFigure.basicDisplayBox

AttributeFigure.writeObject

AbstractTool.isActive

DecoratorFigure.basicDisplayBox

QuadTree.remove

AnimationDecorator.basicDisplayBox

CompositeFigure._removeFromQuadTree

CompositeFigure.figureChanged

StandardDrawingView.drawing

StandardDrawingView.add

AbstractFigure.willChange

AbstractFigure.invalidate

AbstractFigure.changed

StandardDrawingView.tool

StandardDrawingView.isFigureSelected

ToolButton.paint

StandardDrawingView.editor

DecoratorFigure.figureChanged

StandardDrawingView.findHandle

StandardDrawingView.drawingInvalidated

DrawApplication.tool

StandardDrawing.figureInvalidated

DecoratorFigure.figureInvalidated

AbstractFigure.listener

AbstractFigure.displayBox

FigureChangeEventMulticaster.addInternal

FigureChangeEventMulticaster.add

AbstractFigure.addFigureChangeListener

AbstractFigure.addToContainer

AbstractTool.deactivate

AbstractTool.view

DecoratorFigure.displayBox

AnimationDecorator.displayBox

CompositeFigure.add

AbstractTool.editor

CompositeFigure._addToQuadTree

RectangleFigure.displayBox

RectangleFigure.drawBackground

Draw Lines LineFigure.basicDisplayBox

PolyLineFigure.drawLine

PolyLineFigure.decorate

PolyLineFigure.draw

PolyLineFigure.decorate

Animation JavaDrawApp.startAnimation

Animator.start

AnimationDecorator.basicDisplayBox

47

Table A3.Selected functions of the Weka phases

UndoableTool.isActive

UndoableTool.deactivate

UndoableAdapter.isUndoable

UndoManager.pushUndo

UndoManager.clearRedos

UndoManager.clearStack

UndoableTool.editor

UndoableTool.view

AbstractFigure.size

StandardDrawingView.selectionHandles

Phase Num of

functions

Sample Functions

Classifier

Preparation
38 addToHistory

GenericObjectEditor.makeCopy

GenericObjectEditorHistory.add

GenericObjectEditorHistory.copy

Instances.copyInstances

Environment.substitute

Instances.checkForStringAttributes

Instances.checkForAttributeType

AbstractClassifier.makeCopy

Utils.splitOptions

Utils.forName

Utils.checkForRemainingOptions

Utils.joinOptions

FileLogger.append

LogPanel.taskStarted

OutputLogger.doLog

TaskMonitor.taskStarted

ResultHistoryPanel.addResult

Logger.log

DecisionStump.buildClassifier

LogPanel.statusMessage

Capabilities.enableAll

Capabilities.enableAllAttributes

Capabilities.enableAllAttributeDependencies

Capabilities.enable

Capabilities.enableDependency

Capabilities.enableAllClasses

Capabilities.enableAllClassDependencies

LogPanel.logMessage

Capabilities.disableAll

Capabilities.disableAllAttributes

48

Capabilities.disableAllAttributeDependencies

Capabilities.disable

Capabilities.handles

Capabilities.disableDependency

Capabilities.disableAllClasses

Capabilities.disableAllClassDependencies

Capabilities.testWithFail

Capabilities.test

Classifier

Processing

74 Instances.deleteWithMissingClass

Instances.deleteWithMissing

AbstractInstance.classIsMissing

DecisionStump.findSplitNumeric

DecisionStump.findSplitNumericNominal

Instances.sort

Utils.sortWithNoMissingValues

Instances.numClasses

Utils.partition

Utils.swap

Utils.quickSort

Utils.conditionalSwap

Utils.sortLeftRightAndCenter

Utils.eq

ContingencyTables.entropyConditionedOnRows

ContingencyTables.lnFunc

Utils.normalize

DecisionStump.toString

DecisionStump.printClass

Attribute.value

DecisionStump.printDist

Utils.log2

ClassifierErrorsPlotInstances.check

AbstractPlotInstances.check

ClassifierErrorsPlotInstances.determineFormat

Attribute.copy

ResultHistoryPanel.updateResult

ClassifierErrorsPlotInstances.process

DenseInstance.toDoubleArray

DenseInstance.freshAttributeVector

Instances.classIndex

AbstractInstance.classIndex

DecisionStump.distributionForInstance

AbstractInstance.classValue

Utils.sum

AbstractInstance.attribute

AbstractInstance.classAttribute

Instances.relationName

TaskMonitor.updateMonitor

49

Attribute.numValues

Utils.missingValue

Utils.gr

Classifier

Results

67 TaskMonitor.updateMonitor

NominalPrediction.updatePredicted

Evaluation.toSummaryString

Evaluation.toSummaryString

Evaluation.correct

Evaluation.pctCorrect

Evaluation.incorrect

Evaluation.pctIncorrect

Evaluation.kappa

Evaluation.meanAbsoluteError

Evaluation.relativeAbsoluteError

Evaluation.rootMeanSquaredError

Evaluation.meanPriorAbsoluteError

Utils.missingValue

Evaluation.rootRelativeSquaredError

Evaluation.rootMeanPriorSquaredError

Evaluation.coverageOfTestCasesByPredictedRegions

Evaluation.sizeOfPredictedRegions

Evaluation.unclassified

Utils.gr

Attribute.numValues

Evaluation.toClassDetailsString

Evaluation.toClassDetailsString

Attribute.isNominal

Attribute.name

Evaluation.numFalseNegatives

Evaluation.truePositiveRate

Evaluation.numFalsePositives

Evaluation.falsePositiveRate

Evaluation.recall

Evaluation.fMeasure

NominalPrediction.actual

NominalPrediction.weight

Evaluation.numTrueNegatives

Evaluation.precision

Instances.classAttribute

Instances.add

DenseInstance.copy

Evaluation.numTruePositives

AbstractInstance.weight

ThresholdCurve.makeHeader

50

Evaluation.matthewsCorrelationCoefficient

ThresholdCurve.makeInstance

Utils.sort

Utils.replaceMissingWithMAX_VALUE

Instances.attribute

Attribute.index

Evaluation.areaUnderROC

Utils.doubleToString

Instances.attributeToDoubleArray

Evaluation.weightedFalsePositiveRate

Evaluation.weightedPrecision

Evaluation.weightedTruePositiveRate

NominalPrediction.distribution

Evaluation.weightedRecall

Evaluation.areaUnderPRC

Evaluation.weightedFMeasure

Evaluation.weightedMatthewsCorrelation

Evaluation.weightedAreaUnderROC

Attribute.type

Evaluation.weightedAreaUnderPRC

AbstractPlotInstances.canPlot

Evaluation.toMatrixString

Attribute.typeToStringShort

Evaluation.toMatrixString

Evaluation.num2ShortID

ClassifierErrorsPlotInstances.finishUp

AbstractPlotInstances.finishUp

VisualizeUtils.processColour

ClassPanel.addRepaintNotify

LegendPanel.addRepaintNotify

AttributePanel.addAttributePanelListener

ClassifierErrorsPlotInstances.createPlotData

PlotData2D.determineBounds

VisualizePanel.addPlot

Plot2D.addPlot

Plot2D.determineBounds

Plot2D.fillLookup

Instances.numAttributes

Plot2D.convertToPanelX

Instances.instance

DenseInstance.value

Utils.isMissingValue

AbstractInstance.isMissing

Plot2D.convertToPanelY

Instances.numInstances

ClassifierErrorsPlotInstances.cleanUp

AbstractPlotInstances.cleanUp

51

Table A4. Selected function of sub-phases of the third phase of Weka

Sub-phases List of functions

Attribute Evaluation Evaluation.toSummaryString

Evaluation.toSummaryString

Evaluation.correct

Evaluation.pctCorrect

Evaluation.incorrect

Evaluation.pctIncorrect

Evaluation.kappa

Evaluation.meanAbsoluteError

Evaluation.relativeAbsoluteError

Evaluation.rootMeanSquaredError

Evaluation.meanPriorAbsoluteError

Evaluation.rootRelativeSquaredError

Evaluation.rootMeanPriorSquaredError

Evaluation.coverageOfTestCasesByPredictedRegions

Evaluation.sizeOfPredictedRegions

Evaluation.unclassified

Evaluation.numFalseNegatives

Evaluation.truePositiveRate

Evaluation.numFalsePositives

Evaluation.falsePositiveRate

Evaluation.recall

Evaluation.fMeasure

NominalPrediction.actual

NominalPrediction.weight

Evaluation.numTrueNegatives

Evaluation.precision

Instances.classAttribute

Instances.add

DenseInstance.copy

Evaluation.numTruePositives

AbstractInstance.weight

ThresholdCurve.makeHeader

Evaluation.matthewsCorrelationCoefficient

Evaluation.predictions

Evaluation.predictions

ResultHistoryPanel.addObject

LogPanel.taskFinished

TaskMonitor.taskFinished

52

ThresholdCurve.makeInstance

Utils.sort

Utils.replaceMissingWithMAX_VALUE

Instances.attribute

Attribute.index

Evaluation.areaUnderROC

Utils.doubleToString

Instances.attributeToDoubleArray

ROC Evaluation Evaluation.weightedFalsePositiveRate

Evaluation.weightedPrecision

Evaluation.weightedTruePositiveRate

NominalPrediction.distribution

Evaluation.weightedRecall

Evaluation.areaUnderPRC

Evaluation.weightedFMeasure

Evaluation.weightedMatthewsCorrelation

Evaluation.weightedAreaUnderROC

Attribute.type

Evaluation.weightedAreaUnderPRC

AbstractPlotInstances.canPlot

Evaluation.toMatrixString

Attribute.typeToStringShort

Evaluation.toMatrixString

Evaluation.num2ShortID

Visualization ClassifierErrorsPlotInstances.finishUp

AbstractPlotInstances.finishUp

VisualizeUtils.processColour

ClassPanel.addRepaintNotify

LegendPanel.addRepaintNotify

AttributePanel.addAttributePanelListener

ClassifierErrorsPlotInstances.createPlotData

PlotData2D.determineBounds

VisualizePanel.addPlot

Plot2D.addPlot

Plot2D.determineBounds

Plot2D.fillLookup

Instances.numAttributes

Plot2D.convertToPanelX

Instances.instance

DenseInstance.value

Utils.isMissingValue

AbstractInstance.isMissing

Plot2D.convertToPanelY

Instances.numInstances

Task Finalization ClassifierErrorsPlotInstances.cleanUp

AbstractPlotInstances.cleanUp

Evaluation.predictions

53

Evaluation.predictions

ResultHistoryPanel.addObject

LogPanel.taskFinished

TaskMonitor.taskFinished

