

A Survey of Model-Driven Testing Techniques

Mohamed Mussa, Samir Ouchani, Waseem Al Sammane, Abdelwahab Hamou-Lhadj
Department of Electrical and Computer Engineering

Concordia University
1455 de Maisonneuve Blvd West

Montréal, QC, Canada
{mm_abdal, s_oucha, w_samman, abdelw}@ece.concordia.ca

Abstract
The model-driven approach to software

development has not only changed the way software
systems are built and maintained but also the way they
are tested. For such systems, a model-based testing
approach is much recommended since it is aligned
with the new model-driven development paradigm that
favors models over code with the objective being to
reduce time to market while improving product quality.
There has been a noticeable increase in the number of
model-driven testing techniques in recent years.
Although these techniques have a common objective
they tend to vary significantly in their design. In this
paper, we discuss the model-driven testing techniques
presented in 15 different studies. We compare these
techniques according to specific criteria including the
modeling language used to represent the system design
artifacts, the ability to automatically generate test
cases, the testing target, and tool support.

Keywords: Software testing, model-driven software
engineering, test case generation, software quality
assurance

1. Introduction

The model-driven approach to software
development is increasingly gaining the attention of
both industry and academia. Unlike traditional
development techniques which tend to focus on
implementation, model-driven software development
stresses the use of models at all levels of the software
development process. The result of this shift has
brought with it significant changes in the way software
is designed, maintained, and tested.

Testing, which is the focus of this paper, has long
been considered as a time consuming activity that calls
for enhanced and powerful techniques. As stated by
Baker et al. “Testing often accounts for more than 50%

of the required effort during system development”
[18]. A testing cycle encompasses three main parts:
Test case generation, test execution, and test
evaluation, with test case generation being perhaps the
most complex and challenging part.

Model based development using the Unified
Modeling Language (UML) [23] has led many
researchers to using UML diagrams such as state
machine diagrams, use-case diagrams, sequence
diagrams, etc. to generate test cases. The major
advantage of these model-based testing techniques is
increased productivity and quality by shifting the
testing activities to an earlier stage of the software
development process and generating test cases that are
independent of any particular implementation of the
design [2].

There exist many model-based testing approaches
and tools (e.g., [1, 2, 6, 9]), which vary significantly in
their specific designs, testing target, tool support, and
evaluation strategies. The objective of this paper is to
survey and compare the techniques presented in more
than 15 model-based testing approaches. We believe
that the result of this survey can be used by
practitioners as a reference work to understand the
similarities and differences among these techniques, to
determine the appropriate approach and corresponding
tool that is most suited to their needs, or simply to
reuse these techniques instead of reinventing them.

This paper is organized as follows: In Section 2, we
describe our methodology for the survey. In Section 3,
we present the surveyed testing techniques and discuss
them according to the criteria set in Section 2. We
conclude the paper in Section 5.

2. Methodology
There are several aspects of a model-driven testing

technique that can be studied. In our study, we focus
on the following criteria:

• Modeling Language: We discuss the modeling
language (e.g., UML) targeted by the studied
approaches.

• Automatic Test Generation: We discuss the test
case generation mechanism used by the approach
and whether it is automated or not. We also
inspect the conditions that need to be satisfied for
the test case generation mechanism to be effective.

• Testing Target: Although the surveyed studies
focus on generating test cases from models, the
target testing artifact varies from one approach to
another - Some authors target the design models,
whereas others target only the implementation.

• Tool Support: We provide information about the
tools that support the studied approaches to
generate the test cases. We also report on specific
tool features where possible.

3. Model-Driven Testing Techniques
In this section, we first present the techniques

surveyed in this paper. We then proceed to discussing
these techniques, their similarities and differences,
based on the aforementioned criteria. The section ends
with a discussion on the presented studies as well as
summary that features their main characteristics.

3.1. The Selected Approaches
The techniques discussed in this paper have been

selected based on the numerous model-driven testing
concepts they cover. Although the list of techniques
does not represent all the studies that exist in the
literature, we believe that it is representative of the
state of the art in the field. The studies included in this
paper are: Caverra et al. [1], Javed et al. [2], Baker and
Jervis [3], Benjamin et al. [4], Born et al. [5], Bouquet
et al. [6, 7], Farooq et al. [8], Crichton et al. [9], Ganov
et al. [10], Hartmann et al. [11], Mingsong et al. [12],
Schieferdecker [14], Schieferdecker et al. [15], Trong
[16], and Yuan et al. [17].

3.2. Modeling Language
Yuan et al. present an automatic approach in [17] to

generate test cases of a given business process of a web
service. BPEL (Business Process Execution Language)
[19] and UML activity diagrams are used to define the
Process Under Test (PUT). The UML Testing Profile
standard (UTP) [18] and the Testing and Test Control
Notation Version 3 (TTCN-3) [14] concepts are used
to construct the test case model. The UTP standard
defines a framework for building concise test models
that can be used to generate automatically test cases by

applying the Model-Driven Architecture (MDA)
approach [20] and possibly conformed transformation
techniques. The generated test model can be tailored to
target any of the following test types: unit testing,
component testing, integration testing, or system
testing. In addition to functional testing, UTP can
target other types of testing domains like performance
and efficiency testing.

The approach presented by Yuan et al. applies two
automatic transformations to generate an executable
test case set. The first transformation is used to build
the Abstract Test Cases (ATC) from two models, the
UTP model and the test case model. The second
transformation is applied on the ATC to generate
executable test case scripts, which are executed in the
TTworkbench1 environment. The authors’ approach
presents a practical application of the UTP framework.

Baker and Jervis present an approach that is similar
to the previous one (i.e., relies on the UTP standard)
[3]. In addition to generating test cases for validating
the implementation, they provide a mechanism to
validate the design model at early stages of the
software development cycle. Timing and concurrency
have also been handled by their approach. The
approach has been successfully applied to many
projects.

Unlike the aforementioned studies, Cavarra et al. in
[1], and Crichton et al. in [9], present a test case
generation approach that is not based on UTP. Their
approach is based on extending UML using UML
profiling capabilities. More precisely, they created two
profiles. The first one is used to model the system
under test (SUT) by extending class diagrams, object
diagrams, and state diagrams to support testing
properties. The other profile is used to capture the test
directives (TD) which are composed of the object
diagrams and state diagrams. Instances of these UML
profiles can be built using any UML standard CASE
tool capable to export the model as XMI. A
transformation tool has been developed to map the
SUT and TD to an intermediate format, which can be
used to validate the design model by using the
CAESAR/ALDEBARAN development package [24]
to animate, verify, and model-check the intermediate
format script. The script can also be used to produce a
TTCN format which may be further translated to
provide test cases.

Javed et al. present an interesting test development
process [2], which utilizes the MDA initiative to
generate automatically unit test cases. Their approach

1 http://www.testingtech.com/products/ttworkbench.php

benefits from the existence of MDA's transformation
tools to generate test cases. The authors define two
types of transformations: Horizontal and vertical
transformations. The horizontal transformation maps a
Platform Independent Model (PIM) to another PIM
using tools such as Tefkat [26] (a model transformation
engine which is available as an Eclipse plug-in). The
input model for this transformation is captured in a
UML sequence diagram as sequence of method calls.
The vertical transformation maps a PIM to a Platform
Specific Model (PSM) using tools such as MOFScript
(a model-to-text transformation language) [29]. It
refines the produced model into a platform specific
model of test cases. The target platform can be Java,
JUnit, Smalltalk, SUnit. The authors also define a
practical mapping process of their approach to the UTP
standard.

Bouquet et al. present a model-based testing
approach in [7], and a prototype tool in [6]. Their
approach is based on a combination of a subset of
UML (class, object, and state diagrams) and Object
Constraint Language (OCL) [21] expressions to
automatically generate test cases from these models.
These diagrams and constraints are fed to a model-
based test generator, LEIRIOS Test Designer [6],
which generates test cases.

The authors discuss the need to alter the semantics
of OCL to allow OCL expressions to have a side effect
on the system state. They group the OCL expressions,
especially the ones applied to post-conditions and
guards, into active and passive expressions. They note
that “it is necessary to introduce this active/passive
operational interpretation of OCL into UML-MBT
because of the lack of frame information in OCL” [7].
In their assumption, for example, the OCL expression
self.attr1 = self.attr2 will be treated as an active
expression and the value of self.attr2 will be assigned
to self.attr1. One of the shortcomings of their approach
is that it violates OCL semantics, which may hinder the
acceptance of the approach by the UML community.
One possible solution is to use an action language to
express expressions that change the state of the system.

Farooq et al. provide a model-based regression
testing approach [8]. Their approach assumes that the
original design model of the system and the modified
one (that is created after a change to the original model
is made) are captured within a subset of UML
diagrams, namely, class and state diagrams. The two
model versions are compared semantically. Depending
on the detected changes, the original test suite will be
redefined and classified into three categories:
Retestable, obsolete, and reusable. Retestable test cases
have to be executed for regression testing as they relate

to the system changes. Obsolete test cases are invalid
for the updated version of the system, and they usually
relate to elements of the system that have been deleted.
Reusable test cases relate to unchanged parts of the
system. They are valid but they are not required to be
re-executed for regression testing.

Trong’s approach, described in [16], offers a
systematic procedure for testing UML designs. It uses
class diagrams (with OCL expressions) and interaction
diagrams. The initial test configuration is captured with
object diagrams. The approach proceeds by executing
the interaction diagrams and monitor the behavior of
object diagrams to report any failure that may occur in
comparison to the class diagrams and the OCL
constraints.

Hartmann et al. present a technique that uses UML
state diagrams and sequence diagrams to derive test
cases for unit and integration level testing [11]. It also
uses UML use cases and activity diagrams to derive
test cases for the system level testing.

Mingsong et al. present an approach that uses UML
activity diagrams to generate test cases for Java
programs [12]. First, the approach generates random
test cases, which are used to exercise the SUT. After
that, the approach compares the running traces with the
activity diagram to reduce the test case set. The
author’s approach, however, is limited to UML activity
diagrams that do not contain concurrency or loops.

Born et al. introduce an interesting development
method, named KobrA, based on MDA, UTP, and
TTCN-3 [5]. The method provides a mechanism to
develop the testing model in parallel to the functional
model development. The authors extend the UML
metamodel in order to accomplish their goal. The test
model is generated in UTP, which can be executed by
mapping it to existing test execution environments
such as TTCN-3.

3.3. Automatic Test Generation
Automated software test generation greatly reduces

the costs of software testing. Automatic test generation
requires a specification language which has formal
semantics such as Finite State Machines (FSM). In this
section, we discuss the selected model-driven testing
approaches with respect to their abilities to generate
test cases automatically.

Javed et al. present a method based on sequence
diagrams to generate unit test cases from a platform-
independent model of the system [2]. First, they model
the behavior of the system using sequence diagrams,
which are then automatically transformed into a

general unit test case model using model-to-model
transformation rules. The resulting test case model is
further transformed into concrete and executable test
cases using additional transformation rules.

Bouquet et al. describe the LEIRIOS Smart Testing
approach to the functional validation of a subpart of the
StarUML case study [6]. Firstly, their approach models
the SUT using UML/OCL, and then automates the
process of design, generation, management and
execution of a functional test suite. After, it publishes
the generated test case. Finally, the executable scripts
to automate the test execution on the SUT are
generated.

Crichton et al. describe an architecture for model-
based verification and testing using a UML profile in
which projected (optimal) models are generated
automatically for each specified purpose [9]. Class,
object, and state diagrams are used to define essential
and complete models from which test cases are
generated. These projected models are translated
automatically into a language of state machines,
animated, verified, and used as a basis for automatic
test generation.

Ganov et al. present a novel test generation
approach based on symbolic execution to obtain data
inputs and enumerate event sequences that can most
likely lead to maximize code coverage of a GUI
application [10]. There key contribution consists of the
introduction of symbolic execution for GUI testing.
They developed the Barad tool that can be used to
perform automatic Java byte code instrumentation in
order to generate the data for the data widgets of the
GUIs.

Mingsong et al. use UML activity diagrams as
design specifications and present an automatic test case
generation approach [12]. The approach randomly
generates abundant test cases from a Java program
under testing. Then, by running the program with the
generated test cases, they obtain the corresponding
program execution traces. Finally, by comparing these
traces with the given activity diagram according to the
specific coverage criteria, they obtain a reduced test
case set which meets the test adequacy criteria. The
approach can be used to check the consistency between
the program execution traces and the behavior of UML
activity diagrams.

Trong defines a business process model which can
be tested thoroughly and repeatedly whenever it is
changed [16]. The proposed approach targets the
generation of executable test cases from the given
business process. The approach is composed of three
stages: defining a process under test based on the

business process model, generating abstract test cases
from the process under test, and from abstract test
cases to executable test cases. The test cases are
transformed into test scripts in TTCN-3.

3.4. Testing Target
The testing target depicts the system artifact to

which generated test cases are applied. Our study
shows that model-based testing approaches can target
early abstract UML design models, functional UML
models, implementation units, or the complete system.
More precisely, if the test cases are generated from
early UML design models at the functional system
design level then the test target is the functional UML
design, for this case there are several ways to execute
these tests. TTCN-3 is one of them. The test cases that
are generated from the component specification level
target the implementation of the component. JUnit is
one of way to execute such test cases.

The authors of [2, 12] target the implementation.
Mingsong et al. provide a way to generate test cases
from activity diagrams and execute them on a java
implementation [12]. Javed et al. generate test cases
from sequence diagrams and propose a way to test the
implementation using xUnit [2].

Several authors (e.g., [1, 3, 7, 9, 16]) target the
UML model of the system in order to detect design
faults. Some of these approaches even simulate the
execution through the usage of an automatic generated
intermediate format [1, 5, 9]. Some of the authors
provide approaches to benefit from the TTCN-3
standards for the execution of test cases on the systems
[6, 17]. Finally, the authors in [11, 14] provide
approaches to test everything ranging from the single
unit to the complete system’s implementation.

3.5. Tool Support
From the state of the art, we have explored the

different tools used and/or developed by the authors.
Cavarra et al. compile the models written in the
profiles into the Intermediate Format (IF) using the
Intermediate Format language [1]. This new
representation can be animated, verified, or model
checked using the tools of the CAESAR/
ALDEBARAN Development Package (CADP) [24].
Also, it can be provided as input to the Test Generation
with Verification (TGV) tool [25]. In the sequel of
their work in [1], they adapt and combine TGV [25]
and GOTCHA-TCBeans (Generator of Test Cases for
Hardware Architectures) [28] in their AGEDIS test
generation tool.

Javed et al. use an Eclipse Modeling Framework
(EMF) based transformation engine to generate test
cases from UML sequence diagrams [2]. They also
model a sequence diagram as a sequence of method
calls which is then automatically transformed into an
xUnit model by applying model-to-model
transformations using Tefkat [26]. In the second step,
JUnit test cases are generated from the xUnit model by
applying model-to-text transformations using
MOFScript [29].

Bouquet et al. propose an original model-based
testing approach, which is embedded in the LEIRIOS
Test Designer tool [27] and is deployed in domains
such as electronic transaction applications [7]. Using
the LEIRIOS Smart Testing solution [27], they are able
to provide HP Quick Test Professional adapter to
manage and/or execute the generated test cases [6, 7].

Mingsong et al. implemented their approach into a
tool prototype called AGTCG [12]. Its graphical
interface allows the users to interactively construct,
edit, and analyze activity diagram [12]. The tool can
instrument Java programs according to the given
activity diagrams, and use randomly generated test
cases to run the instrumented Java program, and gather
the corresponding program execution traces. By
comparing the program execution traces with the
activity diagram, the tool gives the test case sets which
satisfy the special test adequacy criteria.

Baker et al. present a novel GUI testing framework
called “Barad” based on symbolic execution [10].
Barad generates values for data widgets and enables a
systematic approach that uniformly addresses the data-
flow as well as event-flow for white-box testing of a
GUI application. Barad complements the traditional
approaches for GUI testing by providing a technique
for testing a class of GUI applications that
conventional approaches could not effectively verify.

In [4], Benjamen et al. use GOTCHA-TCBeans [28]
as a prototype coverage-driven test generator to test a
hardware model based on the MurØ verification
system [22].

3.6. Summary
The majority of the surveyed approaches use the

UML diagrams to build the test models. UTP (a UML
profile for testing) has also been used by many
researchers, and has been shown to be useful in model-
based testing. We believe that UTP in combination
with the MDA initiative not only can permit early
testing of model-driven systems and ease the sharing of
models between the system developers and the system
testers.

Due to ambiguity of some parts of UML diagrams,
most approaches use only a subset of UML. Perhaps,
the OMG’s initiative for providing executable UML
(xUML) with formal semantics can strengthen the
model-based testing since it will facilitate the testing of
the whole system model without any restrictions.

While most of the presented approaches
automatically generate and execute test cases, only one
approach (Farooq et al. [8]) handles the evolution of
the system design and requirement changes by
focusing on regression testing by presenting a model-
driven regression testing approach.

We have also noticed that out of the 15 techniques
surveyed in this paper, only four of them use models as
a testing target. All other techniques focus on testing
the implementation although the test cases are
generated from higher level models.

Some approaches such as Javed et al. [2] have fully
benefited from the MDA paradigm for the automatic
generation the test cases by using model
transformation. In other words, concrete and
executable test cases can be generated directed from
the models by using model transformation rules that
transform the design model into a model for expressing
test cases. This eliminates the need for separate tool for
the creation of test cases.

4. Conclusion

In this paper, we reviewed 15 testing approaches
that focus on generated test cases from software
models. We used various criteria for classifying these
approaches such as the used modeling language, the
automated aspect of the approach, the testing target,
tool support, etc. We have built a comparison matrix to
provide a clear view of the studied papers. The results
of this paper can be used by software engineers to
select a testing approach that best fit their needs. It can
also be used by researchers in the field as a reference
work that can help them build upon existing
approaches.

5. References

[1] A. Caverra, J. Daves, J. Thierry, L. Mounier, A.
Hartman, and S. Olvovsky, “Using UML for
Automatic Test Generation”, In Proc. of the
International Symposium on Software Testing and
Analysis (ISSTA), 2002.
[2] A. Z. Javed, P. A. Strooper and G. N. Watson,
"Automated generation of test cases using model-
driven architecture", In Proc. of the ICSE 2nd

International Workshop on Automation of Software
Test (AST), 2007.
[3] P. Baker and C. Jervis, "Early UML model testing
using TTCN-3 and the UML testing profile", In
Testing: Academic and Industrial Conference Practice
and Research Techniques, TAIC PART-Mutation 2007,
pp. 47-54, 2007.
[4] M. Benjamin, D. Geist, A. Hartman, Y. Wolfsthal,
G. Mas and R. Smeets, "A study in coverage-driven
test generation", In Proc. of the 36th Conference on
Design Automation Conference, pp. 970-975, 1999.
[5] M. Born, I. Schieferdecker, H.-G. Gross, and P.
Santos. “Model-Driven Development and Testing – A
Case Study”. In Proc. of the 1st European Workshop
on Model Driven Architecture with Emphasis on
Industrial Application, pp. 97-104, 2004
[6] F. Bouquet, C. Grandpierre, B. Legeard, and F.
Peureux, ”A Test Generation Solution to Automate
Software Testing”, In Proc. of the 3rd international
workshop on Automation of software test, pp. 45-48,
2008.
[7] F. Bouquet, C. Grandpierre, B. Legeard, F.
Peureux, N. Vacelet, and M. Utting, “A subset of
precise UML for Model-based Testing”, In Proc. of the
3rd International Workshop Advances in Model Based
Testing (AMOST), pp. 95-104, 2007.
[8] Q. Farooq, M. Z. Z. Iqbal, Z. I. Malik and A.
Nadeem, "An approach for selective state machine
based regression testing", In Proc. of 3rd International
Workshop Advances in Model Based Testing
(AMOST), pp. 44-52, 2007.
[9] C. Crichton, A. Cavarra, and J. Davies, “Using
UML for Automatic Test Generation”, In Proc. of the
Automation of Software Testing, 2007.
[10] S. R. Ganov, C. Killmar, S. Khurshid, and D. E.
Perry. “Test Generation for Graphical User Interfaces
Based on Symbolic Execution”. In Proc. Proc. of the
3rd International Workshop on Automation of Software
Test, pp. 33-40, 2008.
[11] J. Hartmann, M. Vieira, and H. F. und Axel
Ruder, “UML-based Test Generation and Execution”,
White paper, Siemens Corporate Research, 2004.
[12] C. Mingsong, Q. Xiaokang, and L. Xuandong,
“Automatic Test Case Generation for UML Activity
Diagrams”, In Proc. of the International Workshop on
Automation of software test, pp. 2-8, 2006.
[13] A. Pretschner. “Model-Based Testing”, In Proc. of
the 27th international conference on Software
engineering, pp. 722 - 723, 2005.
[14] I. Schieferdecker, “A TTCN-3 based Test
Automation Framework for HL7-based Applications
and Components”, In Proc. of the 11th International
Conference on Quality Engineering in Software
Technology, 2008.

[15] I. Schieferdecker, Z. R. Dai, J. Grabowski, and A.
Rennoch, “The UML 2.0 testing profile and its relation
to ttcn-3”, In Proc. of the 15th IFIP International
Conference on Testing of Communicating Systems
(TestCom), pp. 79–94, 2003.
[16] T. T. D. Trong, “A Systematic Procedure for
Testing UML Designs”, In Proc. of the International
Symposium on Software Reliability Engineering in
Denver, 2003.
[17] Q. Yuan, J. Wu, C. Liu, and L. Zhang, “A model
driven approach toward business process test case
generation”, In Proc. of the 10th International
Symposium on Web Site Evolution (WSE), pp. 41–44,
2008.
[18] P. Baker, Z. R. Dai, J. Grabowski, P. Haugen, I.
Schieferdecker, C. Williams. Model-Driven Testing:
Using the UML Testing Profile, Springer, 2007.
[19] M. Juric, P. Sarang, B. Mathew. Business Process
Execution Language for Web Services. Packt
Publishing, 2004.
[20] S. J. Mellor, K. Scott, A. Uhl, D. Weise. MDA
Distilled. Addison-Wesley, 2004.
[21] J. Warmer, A. Kleppe. The Object Constraint
Language: Getting Your Models Ready for MDA.
Addison-Wesley, 2003.
[22] D.L. Dill, “The Murphy Verification System” In
Proc. of the Computer-Aided Verification Conference,
1996.
[23] M. Fowler, K. Scott. UML Distilled: A Brief
Guide to the Standard Object Modeling Language.
Addison-Wesley. 1999.
[24] H. Garavel, F. Lang, R. Mateescu, and W. Serwe,
"CADP 2006: A Toolbox for the Construction and
Analysis of Distributed Processes", In Proc. of the 19th
International Conference on Computer Aided
Verification, pp. 158-163, 2007.
[25] J. R. Calamé, “Specification-based Test
Generation with TGV”, Technical Report SEN-R0508,
Centrum voor Wiskunde en Informatica, 2005.
[26] M.J. Lawley and J. Steel, “Practical Declarative
Model Transformation With Tefkat” In Satellite Events
at the MoDELS 2005 Conference, LNCS Vol. 3844,
2005.
[27] E. Jaffuel, B. Legeard, "LEIRIOS Test Generator:
Automated Test Generation from B Models", Lecture
Notes in Computer Science, Springer, pp. 277-280,
2007.
[28] GOTCHA-TCBeans. IBM User Guide. URL:
www.haifa.ibm.com/projects/verification/gtcb/docume
ntation.html
[29] MOFScript User Guide: URL:
http://www.eclipse.org/gmt/mofscript/doc/

