

Quality of the Source Code for Design and Architecture

Recovery Techniques: Utilities are the Problem

Heidar Pirzadeh, Luay Alawneh, Abdelwahab Hamou-Lhadj
Department of Electrical and Computer Engineering

Concordia University
1455 de Maisonneuve West
Montréal, Québec, Canada

{s_pirzad, l_alawne, abdelw}@ece.concordia.ca

Abstract
Software maintenance is perhaps one of the most difficult

activities in software engineering, especially for systems
that have undergone several years of ad hoc maintenance.
The problem is that, for such systems, the gap between the
system implementation and its design models tend to be
considerably large. Reverse engineering techniques,
particularly the ones that focus on design and architecture
recovery, aim to reduce this gap by recovering high-level
design views from the source code. The course code
becomes then the data on which these techniques operate. In
this paper, we argue that the quality of a design and
architecture recovery approach depends significantly on the
ability to detect and eliminate the unwanted noise in the
source code. We characterize this noise as being the system
utility components that tend to encumber the system
structure and hinder the ability to effectively recover
adequate design views of the system. We support our
argument by presenting various design and architecture
recovery studies that have been shown to be successful
because of their ability to filter out utility components. We
also present existing automatic utility detection techniques
along with the challenges that remain unaddressed.

Keywords: Design and architecture recovery, quality of the
source code in software maintenance, utility components

1. Introduction
Software maintenance and evolution is an essential part

of the software life cycle. In an ideal situation, one relies on
system documentation to make any change to the system
that preserves the system’s reliability and other quality
attributes. However, it has been shown in practice that
documentation associated with many existing systems is
often incomplete, inconsistent, or even inexistent [1], which
makes software maintenance a tedious and human-intensive
task. This is further complicated by the fact that key
developers, knowledgeable of the system's design,
commonly move to new projects or companies, taking with

them valuable technical and domain knowledge about the
system [2].

These factors contribute to making these software
systems difficult to comprehend and to evolve, forcing
software engineers to spend a considerable amount of time
understanding the way they are implemented prior to
undertaking a maintenance task. Design and architecture
recovery techniques have been introduced to alleviate the
impact of this problem. The objective is to recover high-
level design views of the system such as its architecture or
any other high-level design models from low-level system
artifacts such as the source code. Software engineers can use
these models to gain an overall understanding of the system
that would help them accomplish effectively the
maintenance task assigned to them [2, 3, 4].

Although existing design and architecture recovery
techniques (e.g., [2, 3, 4, 5, 6]) vary significantly in their
designs, the applied process, and evaluation strategies, they
all rely on the source code as the sole reliable source of
information about the system under study that remains valid
in the absence of adequate documentation. As such, the
effectiveness of a design and architecture recovery
technique depends greatly on the quality of the source code
on which the technique is applied - The more dependencies
among the system components1; the harder it is to recover
adequate design views.

However, not all component dependencies have the same
level of importance. This applies particularly to utility
components which tend to be called by many other
components of the system, and as such they encumber the
structure of the system without adding much value to its
understandability. Therefore, an effective design and
architecture technique must consider utility detection and
removal techniques as a core mechanism in their overall
design.

1 We use the term component to refer to any system module such as

methods, classes, packages, or any other module.

Our definition of a utility component is similar to the one
presented in [7], where the authors conducted a
brainstorming session where they asked several software
engineers from industry to discuss the concept of utilities,
particularly what they consider as a utility component. Their
main finding is that utilities are the components of a system
that are called by many other components. They are used to
help implement the core functionality of the system, while
they are at a lower level of abstraction than that the design
elements they help to implement.

In this paper, we show how utility components are the
unwanted noise that needs to be removed for a design and
architecture recovery process to be effective. We support
our argument by showing examples of design and recovery
techniques that have been successful because of the fact that
utilities have been discarded from the recovery process
(Section 2). We also discuss existing automatic utility
detection techniques along with the issues that need to be
addressed, and the need to have more advanced techniques
(Section 3). We conclude the paper in Section 4.

2. Utilities: Unwanted Noise
In this section, we demonstrate the fact that utilities are

noise in the data that need to be filtered out for a design
recovery approach to be effective, We achieve this by
presenting various design and architecture recovery
techniques that have been shown to be successful because
they involve steps in which utility components are removed
and excluded from the recovery process.

In [8], Mancoridis et al. proposed a tool, called Bunch, to
group a system’s modules (e.g., files, classes, routines, or
any other component of the system) into clusters. Their
approach is based on cluster analysis techniques [16]. The
clustering process was performed by partitioning the
component dependency graph into disjoint clusters using a
clustering algorithm. The authors used high cohesion
(dependency between the modules of the same partition)
and low coupling (dependency between the modules of
different partitions) as the main partitioning selection
criterion, which they expressed in the form of an objective
function referred to as the Modularization Quality (MQ)
function. An important contribution of the authors’
approach is the ability to preprocess the entities of the
system prior to performing the clustering process by
allowing the users of their tool to filter out utility modules
from the clustering process. Their rationale behind this is
that utility components tend to encumber the component
dependency graph and may affect the effectiveness of the
clustering process.

The same observation was made by Müller et al. who
also argued that utility components, referred to as
omnipresent components in their study, encumber the
internal structure of a system without adding much value to

its understandability [9]. They proposed removing them to
help understand how parts of the code map to other system
artifacts such as the system architecture.

In [2], Tzerpos and Holt presented an algorithm called
ACDC (Algorithm for Comprehension-Driven Clustering)
where the authors introduced the concept of incremental
clustering. Their clustering process consists of two phases.
During the first phase, they built a skeleton decomposition
of the system, which contains entities of the system that are
identified by users as core entities of the system (i.e., the
ones that implement important concepts). In the second
phase, they cluster non-core entities by adding them to the
already formed clusters. An interesting aspect of their work
is that they did not use the source code to build the skeleton
decomposition. Instead, they built an algorithm that
simulates the way software engineers group entities into
subsystems. One of their main contributions is that they
observed that software engineers tend to group components
with large fan-in into one cluster that they call the support
library cluster, which represents the set of utilities of the
system.

In [5], Wen and Tzerpos proposed a metric, called
MoJoFM, to measure the similarity between two given
decompositions of the same system. MoJoFM can be used
for example to validate the effectiveness of an architecture
recovery technique by comparing the recovered
decomposition with the one provided by the software
designers. The authors experimented with MoJoFM on
many systems using various clustering algorithms. One of
their findings is that removing utility components before the
clustering process can significantly improve the process of
recovering high-level views of a system from source code.

Chirag et al. proposed an architecture recovery technique
that relies on a component dependency graph, extracted by
static analysis of the source code, to measure the degree to
which a system’s components can be clustered together
[10]. After applying their approach to several software
systems, they observed that best results were obtained when
they were able to identify utility components and exclude
them from the clustering process.

Hamou-Lhadj et al. showed how the recovery of
behavioral design models (such as UML sequence
diagrams) from execution traces can be achieved if one can
distinguish between utility components and the ones that are
close to domain concepts [11]. They proposed a trace
filtering based on successive filtering of utilities. They
conducted an experiment with a real-world system where
they asked the designers of the system to validate the
extracted high-level design views. Most participants agreed
that the end result was very similar to the design models
they initially created for the system.

Rohatgi et al. proposed an approach for solving the
feature location problem, which consists of locating parts of
the source code that implement a specific software feature
[12]. The objective is to allow software maintainers to focus
only on these parts of the source code, most relevant to the
feature or source code to be modified. In their work, they
proposed a ranking approach that ranks the system
components (they used system classes in their study)
according to their relevance to the feature under study. One
of their main findings is that components involved in the
implementation of many software features are mere utility
components. They, therefore, assigned a lower weight to
these components. The results of applying their approach to
two software systems are very promising.

3. Automatic Detection of Utilities
Despite the fact that utilities, if detected and removed

effectively, can improve significantly the result of a design
and architecture recovery technique, there has not been a lot
of work in developing algorithms for automatic detection of
such components. These algorithms are needed for systems
that have undergone several ad-hoc maintenance tasks and
in which utilities and non-utilities are intermingled. There is
usually no programming construct that distinguish a utility
from a non-utility. In this section, we present an overview of
the modest number of studies that aim to automatic
detection of utilities along with the challenges and key
research issues that remain unaddressed.

3.1. Utility Detection Using Fan-in Analysis
Fan-in analysis techniques are based on the exploration

of the component dependency graph built from static
analysis of the system. There are several types of static
dependencies that may exist between two given components
including method calls, generalization, realization, etc.
Additionally, the edges might be weighted to represent the
number of dependencies that exist between two given
components.

Fan-in analysis has been used in a variety of studies for
detecting utilities (e.g., [9, 10, 11, 13]) to measure the extent
to which a component can be deemed a utility. The rationale
behind this is as follows: the more calls a component has
from different places (i.e., the more incoming edges in the
static component graph), then the more purposes it likely
has, and hence the more likely it is to be a utility according
to the discussion presented in the previous section.
Conversely, if a component has many outgoing edges in the
component dependency graph, this is evidence that it is less
likely to be considered a utility.

Müller et al. computed fan-in of the system components
and proposed a utility threshold above which a component
is deemed to be a utility [9]. Hamou-Lhadj and Lethbridge
used a combination of fan-in and fan-out to create a

“utilityhood” metric that measures the extent to which a
system’s component can be considered a utility [11]. They
experimented with the metric and a large system and
showed promising results. However, their metrics was only
able to detect system-scope utilities. One of their main
findings is that utilities can also appear at narrower scopes
than the entire system such as in local subsystems. They
concluded that detecting local utilities (i.e., package-level
utilities) may need further adjustments to the utilityhood
metric they proposed.

A natural extension to fan-in analysis is to consider the
impact of a component modification of the system rather
that its mere fan-in. Impact analysis is the process of
identifying parts of a program that are potentially affected
by a program change. It has been shown to be useful for
planning changes, making changes, and tracing through the
effects of changes [14].

Rohatgi et al. used impact analysis to detect the
components that implement a specific set of components
(more precisely system classes) that implement a particular
software feature [12]. In their approach, they consider not
only the direct impact associated with a component change
but also the ones that are indirectly affected by this
component change. This allows measuring the fact that the
impact of a component can be very high without necessarily
having a high fan-in. In Figure 1, we show an example of a
dependency graph where the component C2 has a very low
fan-in (one incoming edge) but a high afferent impact value
(five components are affected by a change to C2).

Figure 1. An example of a component with low fan-in

and high impact

For the measurement of component impact on the

remaining parts of a system, they used a static component
dependency graph. They defined the impact set of
modifying a component C as the set of components that
depend directly or indirectly on C. They developed a metric
that allows detecting the most important components of the
system by measuring the afferent and efferent impact of
components. The afferent impact of a component C consists
of the number of components that are affected (directly or
indirectly) when C is modified. The component efferent
impact of C is the number of component that will affect
(directly or indirectly) C if they change. These are the
classes in the directed graph that can be reached through C.

Their approach was used successfully to detect the
components that are most relevant to the implementation of
specific features. As a complementary result, they were able
to identify utility components as being the ones that were
involved in the implementation of almost all software
features of a particular system.

One of the limitations of the aforementioned techniques
is that they focus only on system-scope utilities. However,
we believe that utilities can have different scopes. For
example, there might be utilities that belong to a particular
subsystem, used to help implement the core functionality of
only the elements of this subsystem. However, it is hard to
determine the system boundaries for many systems that
suffer from poor architecture. The main challenge is then to
assess, for any candidate utility, whether it is being called
from a variety of different places within the system, or else
from some very specific parts of the system.

Another challenge is with respect to determining a
threshold above which a component can be considered a
utility. The problem is that what is considered a utility for
one software engineer might be something important for
another person. Therefore, any tool that supports utility
detection techniques must allow enough flexibility to
software engineers to dynamically vary the thresholds.

In addition, it is important to note that not all utilities are
grouped into some sort of utility containers. For example,
being able to detect all utility classes of a particular system
may not be sufficient since there might be many utility
methods that belong to non-utility classes. For example,
accessing methods in most classes can be considered as
utilities.

3.2. Naming Conventions
Another technique used to identify utilities consists of

using design conventions including naming conventions,
comments, etc. For example, Chirag et al. [10] found that
many system-scope utility packages are given names that
are variation of the term “Utils”.

However, naming conventions tend to be informal and
rely on existing design conventions, which make them
impractical if design conventions are not followed by
software engineers. In addition, extracting knowledge from
informal sources of information is known to be a difficult
task due to the existence of noise in the data. One possible
solution for this is to assess the extent to which naming
conventions have been used consistently throughout the life
cycle of the system. One naming convention evaluation
framework was proposed by Anquetil and Lethbridge [14].
Their framework was used to evaluate the names of
structured types (e.g., C structure). The idea is that if two
structured types have similar names then they should
represent similar concepts. They conducted an experiment
on a large telecommunication system and the results are

promising. In our case, the challenge is to apply this
framework to evaluate the names of different components.

3.3. Utility Categorization
In [7], Hamou-Lhadj and Lethbridge propose that utility

components be categorized depending on the purpose they
serve. Knowing that a component belongs to one of these
categories will ease the utility detection process. Examples
of categories they proposed include:

• Utilities derived from the usage of a particular
programming language. For example, in Java, the
method toString() has the same meaning in all classes
that override it, which consists of returning information
about objects. This function is clearly a utility.
Knowing that a system is Java-based suggests that all
system components that override or implement Java
elements are candidate utilities.

• Utilities derived from the usage of a particular
programming paradigm. An example of this would be
accessing methods used in object-oriented systems, and
are used only to enforce information hiding. They are
therefore not needed in higher level views of a system.

• Utilities that implement data structures. Data structures
and the methods that operate on them are typical
implementation details, which can also be ignored in a
recovery process.

• Similar to data structure, input/output operations can
also be considered as utilities since they only deal with
low level data storage and retrieval.

Although classifying utilities into categories can facilitate
their detection, some categories may still be hard to detect
unless some sort of design convention techniques are
followed. For example, in some of the systems that we
studied, we found that accessing methods do not always
start with the conventional get and set suffices. In addition,
the above categories need to be validated. New categories
may be added by studying utilities that appear in systems of
a particular domain.

4. Conclusion
In this paper, we discussed the concept of utility

components, which we described as any element of a
program designed for the convenience of the designer and
implementer and intended to be accessed from multiple
places within a certain scope of the program. We also
discussed how utility components, if detected effectively,
can help develop effective design and architecture recovery
techniques, which are reverse engineering techniques that
aim to reduce the gap between implementation and design.

In addition, we surveyed exiting techniques for detecting
automatically utility components.

We intend in the future to continue the work presented in
this paper by further investigating ways of automatically
detecting utility components. We also intend to investigate
how the detection of utilities can be best integrated with
tools that support design and architecture recovery
techniques.

Acknowledgements: This work has been partially
supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

5. References

[1] T. C. Lethbridge, J. Singer, and A. Forward “How
software engineers use documentation: the state of
the practice”, IEEE Software special issue: The State
of the Practice of Software Engineering, pp 35-39,
2003.

[2] V. Tzerpos and R. C. Holt, “ACDC: An algorithm for
comprehension-driven clustering”, In Proc. of the 7th
Working Conference on Reverse Engineering, pp.
258–267, 2000.

[3] T. A. Wiggerts, “Using Clustering Algorithms in
Legacy Systems Remodularization”, In Proc. of the
6th Working Conference on Reverse Engineering, pp.
33-43, 1997.

[4] N. Anquetil, C. Fourrier, T. C. Lethbridge,
“Experiments with Clustering as a Software
Remodularization Method”, In Proc. of the 6th
Working Conference and Reverse Engineering, pp.
235-255, 1999.

[5] Z. Wen, V. Tzerpos, “Software Clustering based on
Omnipresent Object Detection”, In Proc. of the 13th
International Workshop on Program Comprehension,
pp. 269-278, 2005.

[6] V. Tzerpos, R. C. Holt, “ACDC: An algorithm for
comprehension-driven clustering”, In Proc. of the 7th
Working Conference on Reverse Engineering, pp.
258 – 267, 2000.

[7] A. Hamou-Lhadj, and T. Lethbridge, “Reasoning
about the Concept of Utilities”, In Proc. of the
ECOOP International Workshop on Practical
Problems of Programming in the Large, LNCS, Vol
3344, Springer-Verlag, pp. 10-22, 2004.

[8] S. Mancoridis, B. Mitchell, Y. Chen, and E. Gansner,
“Bunch: A Clustering Tool for the Recovery and
Maintenance of Software System Structures,” In
Proc. of the International Conference on Software
Maintenance, pp. 50-62, 1999.

[9] H. A. Müller and J. S. Uhl, “Composing Subsystem
Structures using (k, 2)-Partite Graphs”, In Proc. of
the International Conference on Software
Maintenance, pp. 12-19, 1990.

[10] Chirag Patel, Abdelwahab Hamou-Lhadj, Juergen
Rilling, "Software Clustering Using Dynamic
Analysis and Static Dependencies", In Proc. of the
13th European Conference on Software Maintenance
and Reengineering (CSMR'09), Architecture-Centric
Maintenance of Large-Scale Software Systems, 2009.

[11] A. Hamou-Lhadj, and T. Lethbridge, "Summarizing
the Content of Large Traces to Facilitate the
Understanding of the Behaviour of a Software
System", In Proc. of the IEEE International
Conference on Program Comprehension, pp. 181-
190, 2006.

[12] A. Rohatgi, A. Hamou-Lhadj, J. Rilling, "An
Approach for Mapping Features to Code Based on
Static and Dynamic Analysis", In Proc. of the 16th
IEEE International Conference on Program
Comprehension (ICPC), 2008.

[13] A. Hamou-Lhadj, E. Braun, D. Amyot, and T.
Lethbridge, “Recovering Behavioral Design Models
from Execution Traces”, In Proc. of the IEEE
European Conference on Software Maintenance and
Reengineering (CSMR), pp. 112-121, 2005.

[14] J. Law , G. Rothermel, “Whole program Path-Based
dynamic impact analysis”, In Proc. of the 25th Int.
Conf. on Software Engineering, pp. 308-318, 2003.

[15] N. Anquetil, T. C. Lethbridge, “Assessing the
Relevance of Identifier Names in a Legacy Software
System”, CASCON, pp. 213-222, 1998.

[16] T. A. Wiggerts, “Using Clustering Algorithms in
Legacy Systems Remodularization”, In Proc. of the
4th Working Conference on Reverse Engineering, pp.
33-43, 1997.

