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Abstract 
Software maintenance is perhaps one of the most difficult 

activities in software engineering, especially for systems 
that have undergone several years of ad hoc maintenance. 
The problem is that, for such systems, the gap between the 
system implementation and its design models tend to be 
considerably large. Reverse engineering techniques, 
particularly the ones that focus on design and architecture 
recovery, aim to reduce this gap by recovering high-level 
design views from the source code. The course code 
becomes then the data on which these techniques operate. In 
this paper, we argue that the quality of a design and 
architecture recovery approach depends significantly on the 
ability to detect and eliminate the unwanted noise in the 
source code. We characterize this noise as being the system 
utility components that tend to encumber the system 
structure and hinder the ability to effectively recover 
adequate design views of the system. We support our 
argument by presenting various design and architecture 
recovery studies that have been shown to be successful 
because of their ability to filter out utility components. We 
also present existing automatic utility detection techniques 
along with the challenges that remain unaddressed. 
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1. Introduction  
Software maintenance and evolution is an essential part 

of the software life cycle. In an ideal situation, one relies on 
system documentation to make any change to the system 
that preserves the system’s reliability and other quality 
attributes. However, it has been shown in practice that 
documentation associated with many existing systems is 
often incomplete, inconsistent, or even inexistent [1], which 
makes software maintenance a tedious and human-intensive 
task. This is further complicated by the fact that key 
developers, knowledgeable of the system's design, 
commonly move to new projects or companies, taking with 

them valuable technical and domain knowledge about the 
system [2].  

These factors contribute to making these software 
systems difficult to comprehend and to evolve, forcing 
software engineers to spend a considerable amount of time 
understanding the way they are implemented prior to 
undertaking a maintenance task. Design and architecture 
recovery techniques have been introduced to alleviate the 
impact of this problem. The objective is to recover high-
level design views of the system such as its architecture or 
any other high-level design models from low-level system 
artifacts such as the source code. Software engineers can use 
these models to gain an overall understanding of the system 
that would help them accomplish effectively the 
maintenance task assigned to them [2, 3, 4].  

Although existing design and architecture recovery 
techniques (e.g., [2, 3, 4, 5, 6]) vary significantly in their 
designs, the applied process, and evaluation strategies, they 
all rely on the source code as the sole reliable source of 
information about the system under study that remains valid 
in the absence of adequate documentation. As such, the 
effectiveness of a design and architecture recovery 
technique depends greatly on the quality of the source code 
on which the technique is applied - The more dependencies 
among the system components1; the harder it is to recover 
adequate design views.  

However, not all component dependencies have the same 
level of importance. This applies particularly to utility 
components which tend to be called by many other 
components of the system, and as such they encumber the 
structure of the system without adding much value to its 
understandability. Therefore, an effective design and 
architecture technique must consider utility detection and 
removal techniques as a core mechanism in their overall 
design.  

                                                 
1 We use the term component to refer to any system module such as 

methods, classes, packages, or any other module. 



 

Our definition of a utility component is similar to the one 
presented in [7], where the authors conducted a 
brainstorming session where they asked several software 
engineers from industry to discuss the concept of utilities, 
particularly what they consider as a utility component. Their 
main finding is that utilities are the components of a system 
that are called by many other components. They are used to 
help implement the core functionality of the system, while 
they are at a lower level of abstraction than that the design 
elements they help to implement.  

In this paper, we show how utility components are the 
unwanted noise that needs to be removed for a design and 
architecture recovery process to be effective. We support 
our argument by showing examples of design and recovery 
techniques that have been successful because of the fact that 
utilities have been discarded from the recovery process 
(Section 2). We also discuss existing automatic utility 
detection techniques along with the issues that need to be 
addressed, and the need to have more advanced techniques 
(Section 3). We conclude the paper in Section 4.  

2. Utilities: Unwanted Noise   
In this section, we demonstrate the fact that utilities are 

noise in the data that need to be filtered out for a design 
recovery approach to be effective, We achieve this by 
presenting various design and architecture recovery 
techniques that have been shown to be successful because 
they involve steps in which utility components are removed 
and excluded from the recovery process.  

In [8], Mancoridis et al. proposed a tool, called Bunch, to 
group a system’s modules (e.g., files, classes, routines, or 
any other component of the system) into clusters. Their 
approach is based on cluster analysis techniques [16]. The 
clustering process was performed by partitioning the 
component dependency graph into disjoint clusters using a 
clustering algorithm. The authors used high cohesion 
(dependency between the modules of the same partition) 
and low coupling (dependency between the modules of 
different partitions) as the main partitioning selection 
criterion, which they expressed in the form of an objective 
function referred to as the Modularization Quality (MQ) 
function. An important contribution of the authors’ 
approach is the ability to preprocess the entities of the 
system prior to performing the clustering process by 
allowing the users of their tool to filter out utility modules 
from the clustering process. Their rationale behind this is 
that utility components tend to encumber the component 
dependency graph and may affect the effectiveness of the 
clustering process.  

The same observation was made by Müller et al. who 
also argued that utility components, referred to as 
omnipresent components in their study, encumber the 
internal structure of a system without adding much value to 

its understandability [9]. They proposed removing them to 
help understand how parts of the code map to other system 
artifacts such as the system architecture.  

In [2], Tzerpos and Holt presented an algorithm called 
ACDC (Algorithm for Comprehension-Driven Clustering) 
where the authors introduced the concept of incremental 
clustering. Their clustering process consists of two phases. 
During the first phase, they built a skeleton decomposition 
of the system, which contains entities of the system that are 
identified by users as core entities of the system (i.e., the 
ones that implement important concepts). In the second 
phase, they cluster non-core entities by adding them to the 
already formed clusters. An interesting aspect of their work 
is that they did not use the source code to build the skeleton 
decomposition. Instead, they built an algorithm that 
simulates the way software engineers group entities into 
subsystems. One of their main contributions is that they 
observed that software engineers tend to group components 
with large fan-in into one cluster that they call the support 
library cluster, which represents the set of utilities of the 
system.  

In [5], Wen and Tzerpos proposed a metric, called 
MoJoFM, to measure the similarity between two given 
decompositions of the same system. MoJoFM can be used 
for example to validate the effectiveness of an architecture 
recovery technique by comparing the recovered 
decomposition with the one provided by the software 
designers. The authors experimented with MoJoFM on 
many systems using various clustering algorithms. One of 
their findings is that removing utility components before the 
clustering process can significantly improve the process of 
recovering high-level views of a system from source code.  

Chirag et al. proposed an architecture recovery technique 
that relies on a component dependency graph, extracted by 
static analysis of the source code, to measure the degree to 
which a system’s components can be clustered together 
[10]. After applying their approach to several software 
systems, they observed that best results were obtained when 
they were able to identify utility components and exclude 
them from the clustering process.  

Hamou-Lhadj et al. showed how the recovery of 
behavioral design models (such as UML sequence 
diagrams) from execution traces can be achieved if one can 
distinguish between utility components and the ones that are 
close to domain concepts [11]. They proposed a trace 
filtering based on successive filtering of utilities. They 
conducted an experiment with a real-world system where 
they asked the designers of the system to validate the 
extracted high-level design views. Most participants agreed 
that the end result was very similar to the design models 
they initially created for the system.  



 

Rohatgi et al. proposed an approach for solving the 
feature location problem, which consists of locating parts of 
the source code that implement a specific software feature 
[12]. The objective is to allow software maintainers to focus 
only on these parts of the source code, most relevant to the 
feature or source code to be modified. In their work, they 
proposed a ranking approach that ranks the system 
components (they used system classes in their study) 
according to their relevance to the feature under study. One 
of their main findings is that components involved in the 
implementation of many software features are mere utility 
components. They, therefore, assigned a lower weight to 
these components. The results of applying their approach to 
two software systems are very promising.  

3. Automatic Detection of Utilities 
Despite the fact that utilities, if detected and removed 

effectively, can improve significantly the result of a design 
and architecture recovery technique, there has not been a lot 
of work in developing algorithms for automatic detection of 
such components. These algorithms are needed for systems 
that have undergone several ad-hoc maintenance tasks and 
in which utilities and non-utilities are intermingled. There is 
usually no programming construct that distinguish a utility 
from a non-utility. In this section, we present an overview of 
the modest number of studies that aim to automatic 
detection of utilities along with the challenges and key 
research issues that remain unaddressed. 

3.1.  Utility Detection Using Fan-in Analysis 
Fan-in analysis techniques are based on the exploration 

of the component dependency graph built from static 
analysis of the system. There are several types of static 
dependencies that may exist between two given components 
including method calls, generalization, realization, etc. 
Additionally, the edges might be weighted to represent the 
number of dependencies that exist between two given 
components.  

Fan-in analysis has been used in a variety of studies for 
detecting utilities (e.g., [9, 10, 11, 13]) to measure the extent 
to which a component can be deemed a utility. The rationale 
behind this is as follows: the more calls a component has 
from different places (i.e., the more incoming edges in the 
static component graph), then the more purposes it likely 
has, and hence the more likely it is to be a utility according 
to the discussion presented in the previous section. 
Conversely, if a component has many outgoing edges in the 
component dependency graph, this is evidence that it is less 
likely to be considered a utility.  

Müller et al. computed fan-in of the system components 
and proposed a utility threshold above which a component 
is deemed to be a utility [9]. Hamou-Lhadj and Lethbridge 
used a combination of fan-in and fan-out to create a 

“utilityhood” metric that measures the extent to which a 
system’s component can be considered a utility [11]. They 
experimented with the metric and a large system and 
showed promising results. However, their metrics was only 
able to detect system-scope utilities. One of their main 
findings is that utilities can also appear at narrower scopes 
than the entire system such as in local subsystems. They 
concluded that detecting local utilities (i.e., package-level 
utilities) may need further adjustments to the utilityhood 
metric they proposed.  

A natural extension to fan-in analysis is to consider the 
impact of a component modification of the system rather 
that its mere fan-in. Impact analysis is the process of 
identifying parts of a program that are potentially affected 
by a program change. It has been shown to be useful for 
planning changes, making changes, and tracing through the 
effects of changes [14].  

Rohatgi et al. used impact analysis to detect the 
components that implement a specific set of components 
(more precisely system classes) that implement a particular 
software feature [12]. In their approach, they consider not 
only the direct impact associated with a component change 
but also the ones that are indirectly affected by this 
component change. This allows measuring the fact that the 
impact of a component can be very high without necessarily 
having a high fan-in. In Figure 1, we show an example of a 
dependency graph where the component C2 has a very low 
fan-in (one incoming edge) but a high afferent impact value 
(five components are affected by a change to C2).  

 
Figure 1. An example of a component with low fan-in 

and high impact 
 
For the measurement of component impact on the 

remaining parts of a system, they used a static component 
dependency graph. They defined the impact set of 
modifying a component C as the set of components that 
depend directly or indirectly on C. They developed a metric 
that allows detecting the most important components of the 
system by measuring the afferent and efferent impact of 
components. The afferent impact of a component C consists 
of the number of components that are affected (directly or 
indirectly) when C is modified. The component efferent 
impact of C is the number of component that will affect 
(directly or indirectly) C if they change. These are the 
classes in the directed graph that can be reached through C.  



 

Their approach was used successfully to detect the 
components that are most relevant to the implementation of 
specific features. As a complementary result, they were able 
to identify utility components as being the ones that were 
involved in the implementation of almost all software 
features of a particular system.  

One of the limitations of the aforementioned techniques 
is that they focus only on system-scope utilities. However, 
we believe that utilities can have different scopes. For 
example, there might be utilities that belong to a particular 
subsystem, used to help implement the core functionality of 
only the elements of this subsystem. However, it is hard to 
determine the system boundaries for many systems that 
suffer from poor architecture. The main challenge is then to 
assess, for any candidate utility, whether it is being called 
from a variety of different places within the system, or else 
from some very specific parts of the system.  

Another challenge is with respect to determining a 
threshold above which a component can be considered a 
utility. The problem is that what is considered a utility for 
one software engineer might be something important for 
another person. Therefore, any tool that supports utility 
detection techniques must allow enough flexibility to 
software engineers to dynamically vary the thresholds.   

In addition, it is important to note that not all utilities are 
grouped into some sort of utility containers. For example, 
being able to detect all utility classes of a particular system 
may not be sufficient since there might be many utility 
methods that belong to non-utility classes. For example, 
accessing methods in most classes can be considered as 
utilities.  

3.2. Naming Conventions 
Another technique used to identify utilities consists of 

using design conventions including naming conventions, 
comments, etc. For example, Chirag et al. [10] found that 
many system-scope utility packages are given names that 
are variation of the term “Utils”.  

However, naming conventions tend to be informal and 
rely on existing design conventions, which make them 
impractical if design conventions are not followed by 
software engineers. In addition, extracting knowledge from 
informal sources of information is known to be a difficult 
task due to the existence of noise in the data. One possible 
solution for this is to assess the extent to which naming 
conventions have been used consistently throughout the life 
cycle of the system. One naming convention evaluation 
framework was proposed by Anquetil and Lethbridge [14]. 
Their framework was used to evaluate the names of 
structured types (e.g., C structure). The idea is that if two 
structured types have similar names then they should 
represent similar concepts. They conducted an experiment 
on a large telecommunication system and the results are 

promising. In our case, the challenge is to apply this 
framework to evaluate the names of different components. 

3.3. Utility Categorization 
In [7], Hamou-Lhadj and Lethbridge propose that utility 

components be categorized depending on the purpose they 
serve. Knowing that a component belongs to one of these 
categories will ease the utility detection process. Examples 
of categories they proposed include: 

• Utilities derived from the usage of a particular 
programming language. For example, in Java, the 
method toString() has the same meaning in all classes 
that override it, which consists of returning information 
about objects. This function is clearly a utility. 
Knowing that a system is Java-based suggests that all 
system components that override or implement Java 
elements are candidate utilities.  

• Utilities derived from the usage of a particular 
programming paradigm. An example of this would be 
accessing methods used in object-oriented systems, and 
are used only to enforce information hiding. They are 
therefore not needed in higher level views of a system. 

• Utilities that implement data structures. Data structures 
and the methods that operate on them are typical 
implementation details, which can also be ignored in a 
recovery process. 

• Similar to data structure, input/output operations can 
also be considered as utilities since they only deal with 
low level data storage and retrieval.  

Although classifying utilities into categories can facilitate 
their detection, some categories may still be hard to detect 
unless some sort of design convention techniques are 
followed. For example, in some of the systems that we 
studied, we found that accessing methods do not always 
start with the conventional get and set suffices. In addition, 
the above categories need to be validated. New categories 
may be added by studying utilities that appear in systems of 
a particular domain.  

4. Conclusion 
In this paper, we discussed the concept of utility 

components, which we described as any element of a 
program designed for the convenience of the designer and 
implementer and intended to be accessed from multiple 
places within a certain scope of the program. We also 
discussed how utility components, if detected effectively, 
can help develop effective design and architecture recovery 
techniques, which are reverse engineering techniques that 
aim to reduce the gap between implementation and design. 



 

In addition, we surveyed exiting techniques for detecting 
automatically utility components.  

We intend in the future to continue the work presented in 
this paper by further investigating ways of automatically 
detecting utility components. We also intend to investigate 
how the detection of utilities can be best integrated with 
tools that support design and architecture recovery 
techniques.  
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