
The Concept of Trace Summarization*

Abdelwahab Hamou-Lhadj
University of Ottawa

800 King Edward Avenue
Ottawa, Ontario, K1N 6N5 Canada

ahamou@site.uottawa.ca

* This research is supported by Natural Sciences and Engineering Research Council of Canada (NSERC)

Abstract
Recently, trace analysis techniques have gained a lot

of attention due to the important role they play in
understanding the system behavioral aspects. However,
manipulating execution traces is still a tedious task
despite the numerous techniques implemented in existing
trace analysis tools. The problem is that traces are
extraordinary large and abstracting out their main
content calls for more advanced solutions. In this paper, I
introduce the concept of trace summarization as the
process of taking a trace as input and returning a
summary of the main invoked events as output. A
discussion on how text summarization techniques can be
applied to summarizing the content of traces is presented.

Keywords:
Analysis of program execution, Program analysis for
program understanding, Dynamic Analysis, Reverse
Engineering.

1. Introduction
Dynamic analysis is crucial for understanding the

behavior of a software system. Understanding an object-
oriented (OO) system, for example, is not easy if one
relies only on static analysis of the source code [15].
Polymorphism and dynamic binding, in particular, tend to
obscure the relationships among the system artifacts.

Run-time information is typically represented using
execution traces. Although, there are different kinds of
traces, this paper focuses on traces of routine calls. I use
the term routine to refer to a function, a procedure, or a
method in a class.

Many studies such as the ones presented by Systä [14],
Zayour [17], Lange et al. [8], and Jerding et al. [6] have
shown that, if done effectively, trace analysis can help
with various reengineering tasks such redocumenting the

system behavior, maintaining the system, or simply
understanding the implementation of software features.

However, the large size of traces poses serious
limitations to applying dynamic analysis. To address this
issue, most existing solutions provide a set of fine-grained
operations embedded into tools that software engineers
can use to go from a raw sequence of events to a more
understandable trace content [6, 8, 14, 17]. But due to the
size and complexity of typical and most interesting traces,
this bottom-up approach can be difficult to perform.

In addition, software engineers who have some
knowledge of the system and the domain will most likely
want to have the possibility to perform a top-down
analysis of the trace – They want to have the ability to
look at the ‘big picture’ first and then dig into the details.
Many research studies in program comprehension have
shown that an adequate understanding of the system
artifacts require usually both approaches (i.e. bottom-up
and top-down) [12].

In this paper, I discuss the concept of trace
summarization, which is a process of taking an execution
trace as input and return a summary of its main content as
output. This is similar to text summarization where
abstracts can be extracted from large documents. Using
an abstract, the reader can learn about the main facts of
the document without having to read entirely its content.

Trace summaries can be used in various ways:

• Enable top-down analysis of execution traces,
something that is not supported by most existing
trace analysis tools.

• Recover the documentation of the dynamics of a
software system that suffers from poor to non-
existent documentation.

• Uncover inconsistencies that may exist between
the way the system is designed and its
implementation. This can be achieved by

mailto:ahamou@site.uottawa.ca

comparing the extracted models to the models
created during the design phase [6, 11]. The
analysis of these inconsistencies can help
determine areas of the system that need
reengineering.

The rest of this paper is organized as follows: In the
next section, I discuss trace summarization from the
perspective of text summarization techniques and show
the similarity between the two fields. In Section 3, I
discuss how a summary can be validated.

Most of the concepts presented in this paper are still
fresh ideas that constitute an ongoing research. They will
need to be validated in the future.

2. What is Trace Summarization?
In general, a text summary refers to an abstract

representing the main points of a document while
removing the details.

Jones [7] defines a summary of a text as “a derivative
of a source text condensed by selection and/or
generalization on important content”. Similarly, I define a
summary of a trace as an abstract representation of the
trace that results from selecting the main content by both
selection and generalization.

Although, this definition is too specific to be used to
define a summary of a trace, it points towards several
interesting questions that deserve further investigation.
These are: what would be a suitable size for the
summary? And how should the selection and
generalization of important content be done?

2.1 Adequate Size of a Summary
While it is obvious that the size of a summary should

be considerably smaller than the size of the source
document, it seems unreasonable to fix the summary’s
size in advance.

In fact, a suitable size of a summary of a trace will
depend in part upon the knowledge the software engineer
has of the functionality under study, the nature of the
function being traced and the type of problem the trace is
being used to solve (debugging, understanding, etc.). This
suggests that any tool should allow the summary to be
dynamically expanded or contracted until it is right for
the purpose at hand. I suggest that no matter how large
the original trace, there will be situations when a
summary of less than a page will be ideal, and there will
be situations where a summary of several thousand of
lines may be better.

2.2 Content Selection
In text summarization, the selection of important

content from a document is usually performed by ranking
the document phrases according to their importance.
Importance is measured using various techniques. In what
follows, I present the most classical techniques and
discuss their applicability to trace summarization.

Perhaps, the most popular technique for building text
summaries is the word distribution method [4, 9]. This
method is based on the assumption that the most frequent
words of a document represent also its most important
concepts. Once the word frequencies are computed, the
document phrases are ranked according to the number of
the most frequent words they contain. Similarly, one
possible way of selecting the most important events from
a trace is to examine their frequency distribution.

In fact, frequency analysis has also been used in
various contexts of dynamic analysis. Profiles, for
example, use the number of times specific events are
executed to enable software maintainers prevent
performance bottlenecks. In [1], Ball introduces the
concept of Frequency Spectrum Analysis which is a
technique that aims to cluster the trace components
according to whether they have similar frequencies or not.
This can help recover the system architecture.

However, the application of frequency analysis to
select important events from execution traces raises
several issues. First, the fact that traces contain several
repetitions due to the presence of loops and recursion in
the source code might render the results of frequency
analysis inaccurate. For example, there is no evidence that
something that is called ten times due to a loop would be
more or less important than a routine that is called once or
twice just because it did not happen to be in a repetitive
code. Second, something that is repeated several times in
one trace might not have the same behavior in another
trace. Finally, our experience with using traces has shown
that even if we remove the most frequent event from
traces, traces will still be very large for humans to
understand, which might make this technique useful but
far from sufficient.

Another text summarization technique is the cue
phrases method, which is based on the idea that most
texts contain phrases that can lead to the identification of
important content (e.g., “in conclusion”, “the paper
describes”, etc) [4]. Similarly, the routine names can be
used to extract important routines assuming that the
system follows strict naming conventions. For example,
during the exploration of a trace generated from a system
that implements the C4.5 classification algorithm [16],
my colleagues and I found that many routines are actually
named according to the various steps of the algorithm

such as buildClassifier, buildTree, etc. The ‘cue routines
(or events)’ technique is certainly a powerful approach
for building summaries from traces. However, in order to
be successful, it requires having a system that follows
some sort of naming conventions. In addition to this,
there is a need to deal with the various naming matching
issues that might occur. For example, some routine names
might use acronyms or short names which might
complicate the matching process.

The third text summarization technique discussed in
this paper is the location of phrases in the document [2].
The idea is that the position of sentences in a document
can be an indicator of how important they are. In text
summarization, the first and last phrases of a paragraph
are usually the ones that convey the most relevant
content.

When applied to traces, we need to investigate whether
the location of routines in the call tree (i.e. trace) can play
a relevant role in determining their importance. There are
certainly situations where this can be valid. For example,
if the system is designed according to a layered
architecture then the bottom layers are perhaps the ones
that are the least important since they implement the
system low-level details. These usually appear in the call
tree as leaf nodes.

Some thoughts: a trace can be viewed according to two
dimensions: vertical and horizontal dimensions as shown
in Figure 1. The vertical dimension reflects the sequential
nature of the execution of the system. One possible
scenario for applying the location technique is based on
the ability to partition the trace into smaller sequences
that depict different behavioral aspects of the system, and
then select the first calls of each sequence and add them
to the summary. This is like having a text composed of
many sequential paragraphs and that the summarizer
needs to visit each of them. It is obvious that in practice
this might not be easy to perform. Indeed, the partitioning
of a trace might be challenging. And even if it is done
successfully, we might end up having a considerably
large number of partitions where some of them do not
necessarily convey the most important content.

The horizontal dimension focuses on the fact that a
trace is viewed as a tree structure containing many levels
of calls. The idea is to develop a level analysis technique
in order to detect the levels that introduce trace
components used as mere implementation details. For
example, the routines that appear always in the first levels
of the tree might represent the system high-level concepts
whereas the ones that appear at all levels might be utilities
(because they are called by many other routines).

Figure 1. The vertical and horizontal views

of a call tree

2.3 Content Generalization
Content generalization consists of generalization of

specific content with more general abstract information
[7]. When applied to execution traces, generalization can
be performed in two ways:

The first approach to generalization involves assigning
a high-level description to selected sequences of events.
For example, many trace analysis tools provide the users
with the ability to select a sequence of calls and replace it
with a description expressed in a natural language.
However, this approach relies on user input and would be
very hard to automate.

A second approach to generalization relies on treating
similar sequences of execution patterns as if they were the
same. This approach can be automated by varying the
similarity function. For example, in the simplest case all
sequences with the same elements, ignoring order, could
be treated the same. Or, all subtrees that differ by only a
certain edit distance could be treated the same. All trace
summarization approaches will need to use this technique
to some extent.

For example, the call tree of Figure 1 can be
summarized into the tree shown in Figure 2 by ignoring
the number of contiguous repetitions of the node labeled
‘C’ and by comparing subtrees up to level 2 (this will
ignoring the node ‘E’). A discussion on how matching
criteria can be used to reduce the size of a trace is
presented by De Pauw et al. [3].

.

Figure 2. A summary extracted from the tree of
Figure 1 by applying generalization

However, it might be hard to determine how the
matching criteria should be combined in order to extract
the most meaningful content. Different combinations will
most likely result in different summaries. Tools that
support the generation of summaries will need to allow
enough flexibility to apply the matching criteria in several
ways.

3. Validating a Trace Summary
Perhaps, one of the most difficult questions when

evaluating a summary is to agree about what constitutes a
good summary. In other words, what distinguishes good
summaries from bad summaries (assuming that there are
bad summaries)?

In text summarization, there are two techniques for
evaluating summaries: extrinsic and intrinsic evaluation.
The extrinsic evaluation is based on evaluating the quality
of the summary based on how it affects the completion of
some other tasks [5]. The intrinsic evaluation consists of
assessing the quality of the summary by analyzing its
content [10]. Using this approach, a summary is judged
according to whether it conveys the main ideas of the text
or not, how close it is to an ideal summary that would
have been written by the author of the document, etc.

Extrinsic evaluation of a trace summary will typically
involve using summaries to help with various software
maintenance tasks such as adding new features, fixing
defects, etc.

The intrinsic evaluation technique can be used to
assess whether the extracted summary reflect a high-level
representation of the traced scenario that would be similar
to the one that a software engineer would design. In
practice, I suspect that both types of evaluations are
needed.

4. Conclusions and Future Directions
The objective of this paper is to present a technique for

analyzing traces based on summarizing their main
content. This technique is referred to as Trace
Summarization, which the process of taking a trace as
input and generating an abstract of its main content as
output. I argued that summaries can be very useful to

software engineers who want to perform top-down
analysis of a trace, understand the system behavior, or
uncover inconsistencies between the system design and
its actual implementation.

In the paper, a discussion on how text summarization
techniques can be applied to extracting summaries from
trace is presented.

Future directions should focus on examining the
techniques presented in this paper in more detail
including experimenting with several traces. The
experiments should take into account systems of different
domains, the expertise software engineers have of the
system, and the type of software maintenance performed.

References
[1] T. Ball, “The Concept of Dynamic Analysis”, ACM

Conference on Foundations of Software Engineering
(FSE), September 1999

[2] P. Baxendale, “Machine-made index for technical
literature – an experiment”, IBM. Journal of
Research and Development 2:354-361, 1958

[3] W. De Pauw, D. Lorenz, J. Vlissides, M. Wegman,
“Execution Patterns in Object-Oriented
Visualization”, In Proc. of the 4th USENIX
Conference on Object-Oriented Technologies and
Systems (COOTS), Santa Fe, NM, 1998, pp. 219-
234

[4] H. Edmundson, “New methods in automatic
extracting”, Journal of the ACM 16(2): 264-285,
1969

[5] H. R. Jing, K. McKeown, and M. Elhadad,
“Summarization evaluation methods: Experiments
and analysis”, In Working Notes of the AAAI Spring
Symposium on Intelligent Text Summarization,
1998, pp. 60-68

[6] D. Jerding, S. Rugaber. “Using Visualization for
Architecture Localization and Extraction”, In Proc.
of the 4th Working Conference on Reverse
Engineering, Amsterdam, Netherlands, October
1997

[7] S. K. Jones, “Automatic summarising: factors and
directions”, In Advances in Automatic Text
Summarization, MIT Press, 1998, pp. 1-14

[8] D. B. Lange, Y. Nakamura, “Object-Oriented
Program Tracing and Visualization”, IEEE
Computer, 30(5), 1997, pp. 63-70

[9] H. Lunh, “The Automatic Creation of Literature
Abstracts”, IBM Journal of Research and
Development 2(2): 159-165, 1958

[10] C. Paice, and P. Jones, “The identification of
Important Concepts in Highly Structured Technical
Papers”, In Proc. of the 16th Annual International
ACM SIGR Conference on research and
Development in Information retrieval, 1993, pp. 69-
78

[11] Reiss S. P., Renieris M., “Encoding program
executions”, In Proc. of the 23rd international
conference on Software Engineering, Toronto,
Canada, 2001, pp. 221-230

[12] M.A. Storey, K. Wong, H.A. Müller, “How do
Program Understanding Tools Affect how
Programmers Understand Programs?”, In Proc. of
the 4th Working Conference on Reverse
Engineering, 1997, pp. 183 - 207

[13] T. Strzalkowski, G. Stein, J. Wang, B. Wise,
“Robust Practical Text Summarization”, In
Advances in Automatic Text Summarization, MIT
Press, 1999

[14] T. Systä, “Understanding the Behaviour of Java
Programs”, In Proc. of the 7th Working Conference
on Reverse Engineering (WCRE), Brisbane, QL,
2000, pp. 214-223

[15] N. Wilde, R. Huitt, “Maintenance Support for
Object-Oriented Programs”, Transactions on
Software Engineering, 18(12):1038–1044, Dec.
1992

[16] Witten I. H., Frank E. Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations, Morgan Kaufmann, 1999

[17] I. Zayour, “Reverse Engineering: A Cognitive
Approach, a Case Study and a Tool”, Ph.D.
dissertation, University of Ottawa, 2002

	Introduction
	What is Trace Summarization?
	Adequate Size of a Summary
	Content Selection
	Content Generalization

	Validating a Trace Summary
	References

