
Mining Trends and Patterns of Software

Vulnerabilities

1
Syed Shariyar Murtaza,

2
Wael Khreich,

2
Abdelwahab Hamou-Lhadj,

1
Ayse Bener

1
Data Science Lab, Ryerson University, Canada

2
Software Behaviour Analysis (SBA) Research Lab, Department of Electrical and Computer Engineering,

Concordia University, Montreal, QC, Canada

1
{syed.shariyar, ayse.bener}@ryerson.ca,

2
{wkhreich, abdelw}@ece.concordia.ca

Abstract—Zero-day vulnerabilities continue to be a threat as they are unknown to vendors; when attacks occur, vendors have zero days

to provide remedies. New techniques for the detection of zero-day vulnerabilities on software systems are being developed but they have

their own limitations; e.g., anomaly detection techniques are prone to false alarms. To better protect software systems, it is also

important to understand the relationship between vulnerabilities and their patterns over a period of time. The mining of trends and

patterns of vulnerabilities is useful because it can help software vendors prepare solutions ahead of time for vulnerabilities that may

occur in a software application. In this paper, we investigate the use of historical patterns of vulnerabilities in order to predict future

vulnerabilities in software applications. In addition, we examine whether the trends of vulnerabilities in software applications have any

significant meaning or not. We use the National Vulnerability Database (NVD) as the main resource of vulnerabilities in software

applications. We mine vulnerabilities of the last six years from 2009 to 2014 from NVD. Our results show that sequences of the same

vulnerabilities (e.g., buffer errors) may occur 150 times in a software product. Our results also depict that the number of SQL injection

vulnerabilities have decreased in the last six years while cryptographic vulnerabilities have seen an important increase. However, we

have not found any statistical significance in the trends of the occurrence of vulnerabilities over time. The most interesting finding is that

the sequential patterns of vulnerability events follow a first order Markov property; that is, we can predict the next vulnerability by using

only the previous vulnerability with a recall of approximately 80% and precision of around 90%.

Keyword—Mining Software Vulnerabilities, Software Attacks, National Vulnerability Database, N-grams

1. Introduction

Software systems are perhaps among the most vulnerable engineering systems. Everyday new vulnerabilities are

discovered and their exploitations for malicious goals continue to threaten the use of software systems. The literature has

also shown that zero-day vulnerabilities are increasing dramatically [10][4]— the number of attacks exploiting these

vulnerabilities has increased to 142 million in 2014 from 83 million in 2013 and 34 million in 2012 [4]. These zero-day

vulnerabilities are unknown to software vendors and a rise of more than 300% them from 2012 to 2014 is alarming. Most

of the attacks exploiting these vulnerabilities are not diagnosed by modern anti-malware tools because the tools can only

detect the patterns (signatures) they have seen before (using signatures and pattern matching techniques) [13][14]. These

new attacks continue to rise despite the fact that vulnerabilities in software systems are regularly patched and the systems

are increasingly made secure. According to a recent report [4], approximately every half an hour an unknown malware is

downloaded (causing an attack) in an enterprise and sensitive data are sent outside the organization. This shows that the

analysis of software vulnerabilities—the causes of attacks (exploits)—should be of paramount importance to the research

community.

mailto:abdelw%7d@ece.concordia.ca

To protect modern software systems from attacks, the sole monitoring of software applications with the goal to

develop new security approaches does not seem to be sufficient, e.g., anomaly detection systems are prone to false alarms

[14][13][12]. We need to be proactive when it comes to the protection of software systems rather than reactive. To better

understand vulnerabilities in a software system, we need to understand the relationship among vulnerabilities across

different software applications. In addition, we need to understand how vulnerabilities occur over a period of time. This

information can help in making informed decisions about the occurrence of vulnerabilities. For example, we can use the

relationship between vulnerabilities to predict future vulnerabilities in an application and take appropriate measures to

avoid them. Similarly, we need to spend more resources on a type of vulnerability that is not significantly decreasing or

increasing over a period of time despite all the prior countermeasures.

There exist studies that aim to estimate the risk level of vulnerabilities [11], to estimate the time it takes to discover

zero-day (new) vulnerabilities [10], to determine the time to fix vulnerabilities [26], to predict bugs that will turn into

vulnerabilities [23][21][22], and to automatically discover types of vulnerabilities [16]. In addition, several studies have

been conducted to show that trends of different vulnerabilities in software applications have been decreasing or increasing

[5][20][1]. In this paper, we focus on exploring the relationship between vulnerabilities and the significance of trends of the

software vulnerabilities over a period of time. The intuition is that many vulnerabilities occur in an application but there

can be common patterns of vulnerabilities across applications that can be leveraged to improve the vulnerability prediction.

Also, the trends in frequency of vulnerabilities can provide useful information, such as the measuring the significance of

vulnerability trends can help us in understanding whether the trends are really increasing or decreasing. In particular, we

address the following research questions:

(RQ1) How significantly is the trend of software vulnerabilities increasing or decreasing over a period of time?

The analysis of trends of software vulnerabilities across various software applications can help in determining the

predominant type of vulnerabilities over a period of time. If the same vulnerabilities are exploited over many years in a

similar manner without any significant change, then this may be an indication that attackers are using the same types of

attacks for software applications despite the recent advances in software security. In this question, we investigate whether

the trends in the frequency of vulnerabilities across all software applications are really significantly changing or not.

(RQ2) What is the trend of vulnerabilities over time within a software application?

Computer science is evolving at a rapid pace. Software applications are becoming more mature and developers are

securing software applications from known exploits by using new protection mechanisms. In RQ2, we investigate the

significance of trends in the frequency of vulnerabilities within a particular software application. This could help determine

whether the improvements in protection mechanisms in a software application have really reduced the vulnerabilities

within that application or not. To answer this question, we examine vulnerabilities in approximately 15,000 software

applications that are reported in NVD.

(RQ3) What are the common patterns of software vulnerabilities across different software applications?

New software vulnerabilities are being discovered every day in software applications [10]. Many of these

vulnerabilities are repercussions of vulnerabilities diagnosed earlier. For example, a buffer error vulnerability may be

followed by an illegal privilege access vulnerability in an application. Identification of common sequential patterns of

vulnerabilities could help security experts and developers in understanding the relationship between vulnerabilities and in

securing their systems from commonly occurring vulnerabilities. RQ3, therefore, investigates the frequent patterns of

vulnerabilities that are common across software applications.

(RQ4) How can we predict the type of vulnerability in a software application?

The sequential patterns of vulnerabilities may also be used to estimate the occurrence of future vulnerabilities in a

software application. For example, if two vulnerabilities have occurred frequently together in the past, then a new software

application which experiences the first vulnerability may also experience the second one. Therefore, this question

investigates how can we predict vulnerabilities in software applications by using sequential patterns of vulnerabilities.

To investigate these questions, we use the National Vulnerability Database (NVD) [15]. NVD is maintained by the

support of the U.S. government and it contains comprehensively documented information about all the vulnerabilities in

approximately all known software applications. To answer our research questions, we examine 25,915 vulnerabilities in

15,076 software applications that are reported in NVD from 2009-2014. Due to the size and authenticity of this dataset of

vulnerabilities, we believe that significant conclusions can be drawn for our research questions. Prior researchers focusing

on analysis of vulnerabilities have also used NVD as a comprehensive resource [5][10][11][16][20][1].

To the best of our knowledge, these research questions have not been addressed in the literature before. To answer the

first two research questions, we measure the significance of the trends of vulnerabilities by applying the Cox Stuart trend

test [9]. We solve the third question by extracting the patterns of vulnerabilities using N-grams, and we answer the fourth

research question by using those N-grams to predict future vulnerabilities. Our results show that the frequency of

vulnerabilities is not really significant and future vulnerabilities in an application can be predicted with approximately 80-

90% accuracy by using the last known vulnerabilities in that application. Using the answers of our research questions,

software vendors may improve the security of their systems by using additional measures to prevent expected

vulnerabilities. In addition, if attackers are exploiting an application in a similar manner as in the past, then this would be a

good indication that there is a need to further enhance the software quality (e.g., testing, code review, etc.) process to

uncover the specific type of vulnerabilities.

The rest of the paper continues as follows. In Section 2, we present the background and related work. In Section 3, we

present the research methodology. Section 4 discusses the results by answering research questions. Section 5 illustrates the

threats to validity, followed by a conclusion in Section 6.

2. Background and Related Work

National Vulnerability Database (NVD) contains information about all publicly known software vulnerabilities

[15][6]. NVD is a comprehensive repository of information that combines all public sources of vulnerabilities (e.g., weekly

alerts from security focus [18]) and vendor specific vulnerabilities (e.g., Microsoft’s alerts about vulnerabilities)
1
. Each

vulnerability is assigned a unique identifier, referred to as the Common Vulnerabilities and Exposures (CVE) identifier [7].

The information included with each CVE identifier consists of, but not limited to, the affected software product and sub-

products, different versions of the product, the description of the vulnerability, the impact of exploitation of vulnerability,

and a vulnerability score calculated using a standardized vulnerability scoring mechanism called the Common Vulnerability

Scoring System (CVSS).

1
Vulnerabilites of all known software applications exist in it; see CVE FAQs for details [6].

Table I. Example of a Reported Vulnerability in NVD

CVE ID CVE-2010-1146

Date 04/12/2010

Description The Linux kernel 2.6.33.2 and earlier, when a ReiserFS filesystem exists, does not restrict read or write

access to the .reiserfs_priv directory, which allows local users to gain privileges by modifying (1) extended

attributes or (2) ACLs, as demonstrated by deleting a file under .reiserfs_priv/xattrs/.

CVSS 6.9

Access Complexity Medium

Confidentiality Impact Complete

Integrity Impact Complete

CWE 264 (permission and privilege access vulnerability)

A vulnerability has also a type, which is referenced by another identifier, called the Common Weakness Enumeration

(CWE) identifier. CWE is a predefined hierarchical list of vulnerability types developed by security experts [8]. Each CVE

identifier includes a CWE identifier. In most cases, CWE is included with a CVE identifier of a vulnerability. The

standardized evaluation measures in the NVD repository allow evaluating different software applications on the same scale.

Table I shows an excerpt of a vulnerability reported on the NVD. The table shows a vulnerability in the Linux kernel (2.6)

where the system does not restrict read and write access to private directories, making it easier for an attacker to gain

unauthorized access privileges. The example shows the unique CVE ID, the date of release, a description of the

vulnerability, a CVSS score, exploitability, and impact metrics (access complexity, confidentially impact, integrity impact),

and a CWE identifier (i.e., a vulnerability type).

The NVD repository has been used in several studies in the past. Frei et al. [10] used data in NVD and other similar

repositories to quantify the differences between the time of discovery of vulnerabilities, the time of disclosure of attacks,

and the time of availability of patches. They also identified that exploits (attacks) of zero-day vulnerabilities are available

immediately in NVD on the date of disclosure of vulnerabilities but software vendors are slow to provide software patches.

They also found that attacks associated with zero-day vulnerabilities are increasing dramatically.

Houmb and Franqueria [11] estimated the risk level of vulnerabilities by examining the impact and frequency of

vulnerabilities in NVD. They have used CVSS metrics to estimate the misuse frequency and misuse impact of

vulnerabilities—i.e., severity of consequences after attacks by exploiting vulnerabilities. They also employed a Markov

model to estimate the risk level of vulnerabilities at different times.

Zaman et al. [26] performed an exploratory study on the comparison of security bugs and performance bugs in Firefox

web browser. They used the Firefox bug and CVE repositories to uncover security bugs. They found that security bugs are

fixed faster than design bugs and they can be reopened multiple times in a bug repository.

Neuhas and Zimmermann [16] used the CVE vulnerability record of up until 2009 to automatically classify

vulnerabilities into different types. They argued that there are far too many CWE vulnerability types (approximately 700)

and these are beyond human comprehension. They also explained that NVD effectively classifies software vulnerabilities by

using very few CWE vulnerability types (approximately 30 types are found in our six years data). The authors proposed an

alternative mechanism to automatically categorize CVE vulnerabilities into vulnerability types by using an unsupervised

machine learning algorithm, called Latent Dirichlet Allocation (LDA) [9]. They applied LDA on description of

vulnerabilities (see Table I).

Christey and Martin [5] published a technical report on vulnerabilities in NVD in 2007. They found that the total

number of web application attacks, such as the PHP remote file inclusion has significantly increased in 2006. They also

found that buffer overflow is still the number one vulnerability in 2007. Similarly, Symantec technical report published in

2014 [20] and the Microsoft’s 10 years security report [1] have employed the NVD repository to mine trends of different

types of vulnerabilities. For example, the reports show the identification of top zero-day vulnerabilities [20], and trends in

hardware and software vulnerabilities [1].

Wijayasekara et al. [23] mined vulnerabilities that appeared long after the bug has been made public, called hidden

impact vulnerabilities. The authors found from CVE and bug databases that Linux kernel and MySQL software applications

had 32% and 62% of hidden impact vulnerabilities from 2006-2011. They also proposed a text mining classifier to identify

the hidden impact vulnerabilities from bug databases. In the text mining classifier, they used text in bug reports and static

code measures as features of the classifier. However, they reported a high false positive rate in prediction of vulnerable bugs

due to an imbalance in normal bugs and bugs causing vulnerabilities. Wijayasekara et al. [21] extended their earlier work

[23] by proposing the combination of information gain and genetic algorithms to reduce the number of features for a

classification algorithm. They evaluated their approach on the same vulnerability and bug database of Linux and MySQL as

in [23], and reported significant improvement in accuracy. Wijayasekara et al. [22] evaluated their approach for the detection

of hidden impact vulnerabilities [23] using three different classifiers: Naïve Bayes, Naives Bayes Multinomial, and C4.5

Decision Tree. They again used Linux vulnerabilities and bugs for their experiments. In this study, they used only textual

information present in the bug reports as features, and found that three classifiers could detect hidden impact vulnerabilities

better than a random guess.

In this paper, we perform an exploratory study on NVD. We use information present in NVD to mine trends of

vulnerabilities and predict future vulnerabilities in an application. Our methodology for prediction does not require the

vulnerability to be identified as bugs first, unlike the earlier studies, which focus on hidden impact vulnerabilities

[23][21][22]. In addition, we focus on all types of vulnerabilities and not just hidden impact vulnerabilities. The four research

questions explained in the previous section are novel. In the case of the first two research questions, we are looking for

significances in the trends of vulnerabilities that have not been discussed before in earlier studies. Prior researchers only

looked at the trends to report the rise and fall of vulnerabilities. To our knowledge, the last two research questions have not

been discussed in the literature at all. In addition, we analyze the latest information up to 2014, whereas, most of the prior

work in the literature covers older data.

3. Research Methodology

Fig. 1 shows an overview of our approach. We first download the NVD repository for the period of 2009-2014 and

measure the likelihood of each vulnerability in each year. We apply a statistical test on this likelihood for different years to

determine whether the trend in vulnerabilities is really significant or not. This allows us to determine the answer to RQ1.

Second, we measure the likelihood of vulnerabilities within individual software applications from 2009 to 2014. Again using

a statistical measure, we estimate from the likelihood whether the trend in vulnerabilities in an application is significantly

changing or not (RQ2). Third, we extract N-gram patterns of vulnerabilities that occur in a software application. Each

vulnerability has a timestamp associated with it and we use this to temporally order vulnerabilities. In N-gram pattern

extraction, patterns of a given length are extracted from a sequence of vulnerabilities by sliding a window over

vulnerabilities one by one. For example, if D, F, R, D are four vulnerabilities in a sequence, then three patterns of length 2

can be extracted from this sequence, namely DF, FR, and RD. We measure the most frequent N-grams of vulnerabilities

across all applications to determine the common patterns of vulnerabilities. This allows us to find the answer of RQ3.

Fourth, we match historical N-grams of vulnerabilities in applications with the most recent vulnerabilities in an application to

investigate if the next vulnerability in an application can be predicted or not. This is to determine the answer to RQ4. We

describe these steps in detail in the following subsections.

Fig. 1 An Overview of our research

3.1. Measuring the significance of the trends of vulnerabilities across software applications (RQ1)

 To determine the significance in the trends of vulnerabilities, we first measure the likelihood of each vulnerability in a

year according to Equation (1). Equation (1) measures the likelihood of a vulnerability, vi, in a given year, y, by counting the

occurrence of that vulnerability in a year and dividing it by the total number of all vulnerabilities in that year. In Equation

(1), V is a set of all vulnerability types in a given year and vi V. Second, we measure this likelihood of vulnerabilities for

each of the years from 2009 to 2014 and apply the Cox Stuart trend test [9] to determine if there is any significant difference

or not in the likelihood across years. The Cox Stuart trend test is used to determine if a trend of a variable over a period of

time is really increasing or decreasing with a significant difference. It has also been used in other studies in software

engineering [2].

Likelihood(vi, y) =
count(vi, y)

∑ count (v, y)vϵ V
 (1)

3.2. Measuring the significance of the trends of vulnerabilities within a software application (RQ2)

To determine the likelihood of vulnerabilities within a software application over a period of time, we measure the

likelihood of vulnerabilities in an application for a given year according to Equation (2). In Equation (2), ai represents an

application for which we measure the vulnerability likelihood in a given year y, V is a set of all vulnerabilities in an

application in a given year y, and A is a set of all applications in a given year y.

Likelihood(a𝑖, V, y) =
count(ai, V, y)

∑ count (a, V, y)aϵ A
 (2)

Equation (2) is actually used to measure the likelihood of vulnerability of an application by counting the number of

occurrences of all vulnerabilities in an application during a year and dividing it by the total number of occurrences of all

vulnerabilities in all the applications in that year. We measure this likelihood for the vulnerabilities in every individual

application from 2009 to 2014. We then apply Cox Stuart trend test [9] to determine if there is any significant difference or

not in the likelihood of vulnerability of applications across years.

3.3. Measuring frequent N-grams to determine common patterns of software vulnerabilities (RQ3)

In order to extract patterns of vulnerabilities, we use an N-gram pattern extraction algorithm. The N-gram algorithm is

used to extract sequential pattern of events (vulnerabilities) from a sequence of events by sliding a window of a given length,

as explained earlier in the lead text of Section 3.

We extracted N-gram patterns of vulnerabilities for each software application and for each year. Suppose, {A1, A2, …..,

Ak} is a sequence of k vulnerabilities that occur successively within an application in a year. We can then extract length 5

N-gram (i.e., 5-grams) patterns of vulnerabilities for that application in that year as: {(A1, A2, …..A5), (A2, A3, …..A6), (A3,

A4, …..A7)…..(Ak-4, Ak-3, …..Ak)}. The length of N-grams can vary and is determined by the user. For example, consider

{Numeric Error, Buffer Error, Command Injection, Buffer Error, Command Injection} are the vulnerabilities that occur in a

sequence on an application. (The sequence can be easily determined by ordering the vulnerabilities according to the date of

their occurrences in NVD). The 2-gram patterns from this sequence can be extracted as: {(Numeric Error, Buffer Error),

(Buffer Error, Command Injection), (Command Injection, Buffer Error) and (Buffer Error, Command Injection)}. The last

pattern, “Buffer Error, Command Injection”, has occurred twice and we only need to extract this pattern only once. To

determine how many times a unique pattern has occurred in an application, we also count its frequencies. Therefore, the final

2-grams along with their frequencies for this example are shown in the Table II in the descending order of their occurrences.

Table II. Example N-grams of length 2 (2-grams)

Example 2-grams Frequency

Buffer Error, Command Injection 2

Numeric Error, Buffer Error 1

Command Injection, Buffer Error 1

To answer the research question RQ3, we mine length 2, 3, 4 and 5 N-grams (i.e., 2-grams, 3-grams, 4-grams and 5-

grams) vulnerability patterns for each individual software application and for each year. Afterwards, we determine the most

frequent N-grams patterns of vulnerabilities across different software applications and across all years.

For example, suppose a 5-gram “Numeric Error, Buffer Error, Command Injection, Buffer Error, Command

Injection” occurred 10 times in one application and 5 times in another application across all the years. The total frequency of

occurrence of this 5-gram will be 15. The most frequent 5-gram pattern of vulnerabilities will be the one that occurred more

than the others. The measurement of the most frequent 5-grams of vulnerabilities across all applications allows us to

determine the common patterns of vulnerabilities across all applications and in turn finding the answer of RQ3. Similarly,

we also determine the 2-grams, 3-grams, and 4-grams patterns of vulnerabilities. We limit ourselves up to 5-grams because

higher values of N require exponentially larger datasets to identify sequences of vulnerabilities as the number of

permutations increases exponentially with N.

3.4. Using Historical N-grams to determine the expected vulnerability in a software application (RQ4)

N-gram patterns of historical vulnerabilities in different software applications from NVD can also be used to predict the

next new vulnerability in a software application. We use a simple technique by matching the first few vulnerabilities in an

application with the historical N-grams to predict the next vulnerability. We extract 2-grams, 3-grams, 4-grams and 5-grams

of vulnerabilities in software application in NVD. We use N-1 vulnerabilities in an application to determine the Nth

vulnerability from the historical collection of N-grams. For example, to determine the second vulnerability in an application,

we use its first vulnerability to search the first vulnerability in 2-grams. If a match is found, we predict the next vulnerability

from the N-gram as the expected vulnerability in that application. Similarly, to determine the third vulnerability in an

application, we search the first two vulnerabilities in 3-grams to predict the third vulnerability.

In order to evaluate our approach, we use hold out validation technique. This is a commonly applied technique in

machine learning and data mining communities to evaluate the accuracy of a technique. It consists of splitting the available

data into training and testing set [24]. The training set is used to compute the N-gram models of vulnerabilities while the test

set is only used to evaluate the precision and recall values of each model. We divide the data in a ratio of approximately

60/40 (train/test), that is the vulnerabilities of first few years (e.g., 2009-2012) in NVD are used as a training set to extract

historical N-grams and the remaining years (e.g., 2013-2014) are used as the test set. This is further discussed in Section 4.4.

The evaluation measures that we use are precision and recall. Precision is the fraction of patterns that are retrieved from the

training set of N-grams and are relevant to the patterns in the test set. Precision is measured using Equation (3). Recall is the

fraction of relevant patterns in the test set that are actually retrieved from the training set. It is measured using Equation (4).

Precision =

{

Number of patterns retrieved

from the training set
that also exist in the test set

Total patterns retrieved from the
training set

}

 (3)

Recall =

{

Number of pattterns retrieved

from the training set
that also exist in the test set
Total relevant patterns

in the test set
}

 (4)

4. Results

This section answers the research questions that we identified earlier. In our experiments, we used vulnerability

identifier (CVE), vulnerability type, vulnerability release date, and vulnerable software applications from NVD repository.

Our dataset consists of 31,993 vulnerabilities of 15,076 software applications. There were 6078 vulnerabilities whose

vulnerability types did not exist. We did not consider those vulnerabilities in our analysis, bringing the total number of

vulnerabilities to 25,915.

4.1. RQ1: How significantly is the trend of software vulnerabilities increasing or decreasing over a period of time?

Table III. Vulnerability Type (Common Weakness Enumeration: CWE) and its Description

CWE id Vulnerability Description CWE id Vulnerability Description

94 Code Injection 189 Numeric Errors

89 SQL Injection 16 Configuration

79 Cross Site Scripting 134 String Format Vulnerability

78 Command Injection 119 Buffer Errors

59 Link Following +77 Command Injection

399 Resource Management Error 17 Code, Specification and Design Errors

362 Race Conditions 74 Injection

352 Cross Site Request Forgery 345 Insufficient Verification of Data Authenticity

310 Cryptographic Issues 284 Improper Access Control

287 Authentication Issues 254 Security Features

264 Privilege and Access Control 21 Path Equivalence

255 Credential Managements 199 Information Management Errors

22 Path Traversal 19 Data Handling Errors

200 Information Leak 18 Source Code Errors

20 Input Validation

We expect that different types of vulnerabilities in software applications will show increasing or decreasing trends with

the emergence of new technologies and software applications. In this section, we are going to determine whether the

software vulnerabilities really exhibit such a trend or not.

NVD classifies software vulnerabilities into twenty nine different types depending on the nature of exploits. In NVD,

each vulnerability type is given a unique identifier called Common Weakness Enumeration (CWE) identifier. The CWE

identifier and the description of each of the twenty nine vulnerabilities are shown in in Table III. It is worth noting that ten

of these vulnerability types have appeared in only in 2013-2014 because of the inclusion of the mobile applications in NVD

repository.

Key Result: There is not enough evidence that the trend of software vulnerabilities has changed significantly with the

passage of time despite their rise and fall in each year.

Table IV. Likelihood of vulnerabilities (in percentage) from 2009 to 2014 (CWE is the

vulnerability identifier described in Table III)

CWE 2009 2010 2011 2012 2013 2014

94 6.4508 6.4408 2.8539 3.1963 3.6207 2.5607

89 16.26 15.0802 4.4208 5.2765 3.7791 4.3347

79 17.7579 15.0802 12.8707 18.6707 15.4334 14.4435

78 0.2416 0.3104 0.3917 0.7357 0.6563 0.6192

59 0.7248 0.7243 0.9233 0.4059 0.6336 0.6527

399 5.726 7.0357 11.052 6.5703 6.8341 3.9665

362 0.7973 1.8107 0.6995 0.6849 1.3578 0.6527

352 2.0295 1.8365 1.9586 3.6783 3.7791 3.3808

310 2.0778 1.6813 1.9866 2.7651 3.3492 25.6402

287 3.6241 1.4485 1.9306 2.5622 2.874 1.7238

264 7.9971 8.8722 9.9888 14.7641 14.0756 9.6569

255 1.3771 1.4227 1.1192 1.4967 2.014 1.523

22 5.9435 6.8288 3.0218 2.8412 2.8061 2.6611

200 3.4791 4.3197 8.8696 5.5302 5.6121 5.272

20 6.0643 7.9928 12.2832 9.2593 11.7221 7.431

189 3.9865 4.061 4.113 3.45 3.3265 1.6736

16 1.1839 0.5432 1.1192 0.6849 0.5205 0.1674

134 0.5799 0.3104 0.2518 0.279 0.2489 0.0669

119 13.699 14.2007 20.1455 17.1487 17.2663 11.8159

77 NA NA NA NA 0.0453 0.2176

17 NA NA NA NA 0.0453 0.4351

74 NA NA NA NA NA 0.0335

345 NA NA NA NA NA 0.0502

284 NA NA NA NA NA 0.4017

254 NA NA NA NA NA 0.1339

21 NA NA NA NA NA 0.0167

199 NA NA NA NA NA 0.0335

19 NA NA NA NA NA 0.4184

18 NA NA NA NA NA 0.0167

We analyze the likelihood of these vulnerabilities from 2009 to 2014 according to Equation (1). The result is shown in

Table IV. Table IV also shows the trend of theses vulnerabilities over years. For example, buffer error vulnerability (CWE id

= 119) have seen an increase from 2009 until 2011 and then it started decreasing. SQL injection vulnerability (CWE id = 89)

and code injection vulnerability (CWE id = 94) have seen an important decrease from 2009 to 2014. However, the

cryptographic vulnerabilities (CWE id = 310) have suddenly increased in 2014 to 25.64% from 2% to 3% before 2014. Other

vulnerabilities, such as input validation errors (CWE id = 20) show a mix trend during 2009-2014. We have also highlighted

these vulnerabilities in Table IV. In Fig. 2, we show the trends of some selected vulnerabilities from Table IV for better

visualization. The figure can be used by analysts to quickly pinpoint vulnerabilities that show constant increase or decrease.

We can see in Fig. 2 that the cryptographic vulnerabilities (CWE id =310) in 2014 have seen an astounding increase.

When we further examined the NVD repository, we found that many vulnerabilities that have been reported in 2014 are

related to Android applications, which were not present in previous years. The rise of cryptographic vulnerabilities is mostly

in mobile (Android) based software applications. To find the actual reason, detailed analysis of Android applications is

required. However, Rozenfeld [17] reported that there are more than one million mobile applications and equally the same

number of developers, compared to a handful of companies that develop laptop and desktop applications. Many of the

mobile application developers are novice designers with little knowledge of security and data privacy concepts [17]. We

shall further investigate this by individually analyzing applications’ vulnerability in the next section.

Fig. 2. Selected vulnerabilities and their likelihood over a period of time

We continue our investigation of trends of vulnerabilities further by using the Cox Stuart trend test [9]. We use the Cox

Stuart test to understand whether there is a significant difference in the impact of vulnerabilities across years or not. We state

the following null hypothesis: there is no significant difference in the trend of vulnerabilities across different years. We

evaluate this null hypothesis for every vulnerability type shown in Table IV. We use 95% confidence level to accept or reject

the null hypothesis.

The Cox Stuart trend test could not reject the null hypothesis for all the vulnerability types. This means that there is not

enough evidence to determine the statistically significant difference in the trend of vulnerabilities across years. This also

implies that the rise and fall in likelihood of vulnerabilities across different years is just by chance and the vulnerabilities in

software systems are continued to be exploited in a similar likelihood.

We conclude in this section that there is not enough evidence that the likelihood of software vulnerabilities has changed

significantly with the passage of time despite their rise and fall in each year. This answers our research question (RQ1).

4.2. RQ2: What is the trend of vulnerabilities over time within a software application?

In the previous section, the likelihood of software vulnerabilities in each year gave us useful information about the

trend of software vulnerabilities across different years. However, it did not reveal the likelihood of exploited vulnerabilities

within individual software applications. In this section, we analyze the likelihood of software vulnerabilities within each

software application in the NVD repository. The likelihood is measured using Equation (2). This section also analyzes

whether some software applications could have more software vulnerabilities than other software applications.

The NVD repository contains approximately 15,076 distinct software applications in total. In Table V, we present the

top 20 most frequently exploited software applications by attackers in the period of 2009 to 2014. Each cell in the table

represents the likelihood of vulnerabilities in an application in the mentioned year. We have also highlighted the most

ecploited software application for each year. It could be observed that Microsoft Internet Explorer was the highly vulnerable

software application in 2014. Similarly, Oracle JDK and Oracle JRE were the most vulnerable software applications in 2013,

Mozilla Thunderbird was the most vulnerable in 2012, Google Chrome took the lead in vulnerabilities in 2011 and 2010, and

Mozilla Firefox was the most vulnerable application in 2009. It can be inferred from Table V that there is no one single

software application that has been mostly exploited by software attackers.

Table V also shows the trend of vulnerabilities in each software application. For example, vulnerabilities in Google

Chrome peaked in 2011 since the tool’s launch in September 2008. In fact, Google Chrome had the highest number of

vulnerabilities in 2011 than any other application across all six years. However, in the years following 2011, vulnerabilities

have reduced substantially in Google Chrome.

In Section 4.1, we note that collective (cryptographic) vulnerabilities in Android applications are higher than all other

software applications. However, individually Android-based applications do not have as many vulnerabilities as traditional

software applications as we see in this section. The reason could be the large code base of traditional software applications

compared to the small code base of Android applications, due to the processing and storage limitations of mobile platforms.

This also implies that large vulnerabilities are not necessarily due to the novice developers of some mobile applications than

the professional developers of desktop applications. There are other reasons too, which need to be explored, such as large

code bases and popularity of the applications, etc..

In order to ascertain that there is a significant increase or decrease in software vulnerabilities of each application, we

employed the Cox Stuart trend test at the 95% confidence level on each individual application separately. Our null

Key Result: There is not enough evidence to conclude that the trend in vulnerabilities within every individual

application is really significantly increasing or decreasing.

hypothesis is that no significant difference exists in the trend of vulnerabilities in a software application across different

years. The results of the Cox Stuart trend test on each application showed that we cannot reject the null hypothesis for any

application. In other words, there is not enough evidence to conclude that the trend in vulnerabilities of every individual

application is really significantly increasing or decreasing.

Table V. Likelihood (in percentage) of top 20 attacked software applications sorted from 2014 to

2009, NA means that no information was found in NVD

Application 2009 2010 2011 2012 2013 2014

Microsoft Internet Explorer 0.45 0.014 NA 0.20 1.23 2.42

Apple Mac OS X 1.13 1.40 1.22 0.22 0.60 1.50

Apple IPhone OS 0.38 0.46 0.70 1.09 0.87 1.38

Google Chrome 0.43 2.20 5.70 1.49 1.78 1.24

Linux Kernel 1.53 2.06 2.09 0.76 1.52 1.20

Mozilla Firefox 1.78 1.49 1.47 1.69 1.43 1.17

Oracle JDK NA 0.01 0.04 0.55 1.83 1.04

Oracle JRE NA 0.01 0.06 0.66 1.83 1.04

Sun JDK 0.47 1.07 0.54 0.42 1.23 NA

Sun JRE 0.56 1.07 0.54 0.52 1.23 NA

Apple TV NA NA 0.06 NA 0.04 0.97

Adobe Flash Player 0.29 0.84 0.93 0.70 0.53 0.76

Apple Safari 0.99 1.77 0.70 0.91 0.16 0.71

Mozilla Thunderbird 0.56 0.87 0.99 1.53 1.09 0.66

Mozilla Seamonkey 0.79 1.13 0.97 1.53 0.99 0.63

Mozilla Firefox ESR NA NA NA 1.23 0.95 0.61

Oracle Fusion Middleware NA 0.46 0.40 0.66 0.41 0.59

Oracle MySQL NA NA 0.01 0.78 0.60 0.58

Moodle 0.19 0.16 0.70 0.64 0.30 0.47

 Adobe Air 0.10 0.10 0.40 0.58 0.46 0.45

Thus, the increase and decrease in vulnerabilities of an application is just showing numerical characteristics of rise and

fall of vulnerabilities but the numerical evidence is not sufficient to conclude that the trend is increasing or decreasing. This

answers our research question (RQ2).

4.3. What are the common patterns of software vulnerabilities across different software applications?

Vulnerabilities in the NVD repository can be chronologically ordered by their release dates and we can get the

sequences of vulnerabilities for any application in NVD. For example, for Apple Safari web browser, a sample of CWE

identifiers (vulnerability types), from the year 2014, in a chronological order are 119, 119, 20, 399, and 399. This sequence

Key Result: The most common patterns of vulnerabilities are the same type of vulnerabilities occurring multiple times

in the same application and at the same point of time.

can be read as two buffer error vulnerabilities (119) are followed by an input validation vulnerability (20) and two resource

management error vulnerabilities (399) during the year 2014.

Table VI. Frequent N-grams (5-grams) across all software applications in NVD

from 2009-2014

N-gram Pattern of Length 5

Occurrences

Min Max Total

"CWE-119" "CWE-119" "CWE-119" "CWE-119" "CWE-119" 1 148 1138

"CWE-362" "CWE-362" "CWE-362" "CWE-362" "CWE-362" 28 28 140

"CWE-200" "CWE-200" "CWE-200" "CWE-200" "CWE-200" 3 23 30

"CWE-399" "CWE-399" "CWE-399" "CWE-399" "CWE-399" 1 21 260

"CWE-264" "CWE-264" "CWE-264" "CWE-264" "CWE-264" 1 18 270

"CWE-94" "CWE-94" "CWE-94" "CWE-94" "CWE-94" 1 14 80

"CWE-79" "CWE-79" "CWE-79" "CWE-79" "CWE-79" 1 13 41

"CWE-20" "CWE-20" "CWE-20" "CWE-20" "CWE-20" 1 8 134

"CWE-264" "CWE-119" "CWE-119" "CWE-119" "CWE-119" 1 4 51

"CWE-119" "CWE-189" "CWE-119" "CWE-119" "CWE-119" 1 4 24

"CWE-189" "CWE-119" "CWE-119" "CWE-119" "CWE-119" 1 4 38

"CWE-119" "CWE-119" "CWE-119" "CWE-119" "CWE-20" 1 4 46

"CWE-20" "CWE-399" "CWE-20" "CWE-20" "CWE-20" 1 4 7

"CWE-399" "CWE-399" "CWE-399" "CWE-119" "CWE-399" 1 4 27

"CWE-399" "CWE-399" "CWE-399" "CWE-399" "CWE-119" 1 4 25

"CWE-119" "CWE-399" "CWE-399" "CWE-399" "CWE-399" 1 4 24

"CWE-119" "CWE-119" "CWE-119" "CWE-119" "CWE-399" 1 3 40

"CWE-119" "CWE-264" "CWE-119" "CWE-119" "CWE-119" 1 3 28

"CWE-119" "CWE-119" "CWE-189" "CWE-119" "CWE-119" 1 3 27

To automatically extract sequential pattern of vulnerabilities, recall from Section 3.3, that we employ N-gram pattern

extraction algorithm to extract vulnerabilities of length 2, 3, 4 and 5. We extract different length N-grams of vulnerabilities

for each application during each year. We also count the frequency of occurrence of each N-gram. The same N-gram of

vulnerabilities can occur in different applications and across different years too. We determine the frequency of N-grams

across all applications and years by summing their frequency of occurrences in individual applications.

For example, Table VI shows the list of top 20 frequently occurring 5-grams of vulnerabilities in the period of 2009 to

2014. The top 20 frequent 5-grams are determined by ordering the 5-grams in the descending order of their maximum

occurrence in an application. Consider the 5-gram pattern “CWE-119, CWE-119, CWE-119, CWE-119, CWE-119”of 5

buffer error vulnerabilities in Table VI. It has occurred 1138 times in all the applications and during all the years. This 5-

gram of buffer error vulnerability occurred only once at the minimum in one application and 148 times at the maximum in

another application during one year. Table VI also shows many other interesting patterns, such as the race condition

(CWE-362) vulnerability can follow each other up to 33 (28+5) times in an application, information leak vulnerability

(CWE-200) can occur as many as 29 (23+5) times in an application, and so on.

We found similar patterns of vulnerabilities in the case of 2-grams, 3-grams and 4-grams as for 5-grams. For example,

patterns of buffer error vulnerability, race condition and information leak vulnerability remained the most frequent patterns

with different lengths of N-gram. Thus, we showed here only 5-grams of patterns to avoid cluttering and 5-gram patterns

also show patterns of smaller lengths.

We further explored the NVD repository to examine if the sequential occurrences of the same vulnerabilities (e.g.,

“CWE-119, CWE-119, CWE-119, CWE-119, CWE-119”) are due to the duplicate entry in the database or they are really

due to the occurrence of a different vulnerability. We found that, in NVD, there are vulnerabilities with different CVE

identifiers but with the same vulnerability type (CWE identifier), release date, and description. We contacted the CVE

editor, the author of 2007 technical report [5], to validate the duplicate CVE identifiers. He explained that there are no CVE

identifiers that are duplicates. If two CVE identifiers occur at the same time and have the same description but no

distinguishing information, then the vendors have not provided distinguishing information other than that the vulnerabilities

are different. This could be due to the ripple effect of interconnected components in large software applications. Thus, the

patterns of occurrences of similar vulnerabilities occurring multiple times are perfectly valid.

In this section, we conclude that the most common patterns of vulnerabilities are the same type of vulnerabilities

occurring multiple times in the same application and at the same point of time. This may be due to the large number of

components in an application: when a given vulnerability occurs in one component, it ripples through the whole source

code. This answers our research question (RQ3).

4.4. How can we predict the type of vulnerability in a software application?

In this section, we discuss the use of patterns (N-gram) of historical vulnerabilities in software applications to predict

the next vulnerability that can occur in any application. For example, suppose that we have a software application, a buffer

error vulnerability has recently been discovered in that application, and we also have a historical collection of 2-grams of

vulnerabilities (i.e., patterns of 2 consecutive vulnerabilities) found in NVD. We can search for all those 2-grams whose

first vulnerability is the buffer error vulnerability and use the second (following) vulnerability to predict the next possible

vulnerability. Similarly, if we know the first two vulnerabilities in an application, then we can search 3-grams of

vulnerabilities to predict the third vulnerability in an application. We can continue this trend for higher N-grams too by

finding the match of N-1 vulnerabilities in a collection of N-gram patterns to predict the nth vulnerability.

In Table VII, we show an excerpt of 2-grams, 3-grams, 4-grams, and 5-grams, when the first n-1 vulnerabilities are

similar, and the n
th

vulnerability is different. For example, in the case of 2-grams, it is shown that Numeric errors (CWE -

189) is followed by two buffer error vulnerabilities are often followed by resource management error (CWE-399) and the

buffer error vulnerability (CWE-119). Similarly, in the case of 5-grams, it is shown that two buffer error vulnerabilities

(CWE-119), input validation error (CWE-20), and a buffer error vulnerability (CWE-119) are followed by resource

management error (CWE-399), and privilege and access control error (CWE-264).

In order to evaluate the predictive capability of N-grams to predict the next vulnerability, we perform a simple

information retrieval experiment. We divide our collection of N-gram vulnerabilities into training set and test set, as

explained in Section 3.4. We performed two experiments. First, we use the N-gram vulnerabilities from 2009 to 2012 for

training and N-gram vulnerabilities from 2013-2014 (2 years) for testing. Second, we use the N-gram vulnerabilities from

2009 to 2011 for training and N-gram vulnerabilities from 2012-2014 (3 years) for testing; we use only data of 2009-

Key Result: The 2-gram patterns of historical vulnerabilities in different software applications can be used to predict

the next vulnerability in a new application with approximately 90% precision and approximately 80% recall.

2011for training because we wanted to test the prediction power with less and older data. We perform these two

experiments for four types of N-grams: 2-gram, 3-grams, 4-grams and 5-grams.

Table VII. An excerpt of different length vulnerability patterns (2-grams, 3-

grams, 4-grams and 5-grams)

Different N-gram Patterns

"CWE-189" "CWE-399"

"CWE-189" "CWE-119"

"CWE-20" "CWE-119" "CWE-264"

"CWE-20" "CWE-119" "CWE-399"

"CWE-119" "CWE-119" "CWE-189" "CWE-94"

"CWE-119" "CWE-119" "CWE-189" "CWE-119"

"CWE-119" "CWE-119" "CWE-20" "CWE-119" "CWE-399"

"CWE-119" "CWE-119" "CWE-20" "CWE-119" "CWE-264"

Our criterion for evaluation is simple. We use the N-1 vulnerability sequences from N-grams in the test set to search

for the next (Nth) probable vulnerability from the N-grams in the training set. We then determine how many N-gram

patterns that start with N-1 vulnerabilities in the test set are actually present in the retrieved list of patterns in the training

set, and quantify it by using the precision and recall measures (see Section 3.4). Table VIII and Table IX show the results

of our experiments for two different combinations of the training set and the test set. The first column in the tables show the

N-gram type, the second column shows the N-1 grams of vulnerabilities used to search the N
th

 vulnerability, the third

column shows the recall and the fourth column shows the precision. For example, the first row in Table VIII shows that

when the first vulnerability is known, then the following (second) vulnerability can be predicted with 78% recall and 90%

precision. Similarly, if first two vulnerabilities are known then the third vulnerability can be predicted with 60% recall and

59% precision.

Table VIII. Using initial vulnerabilities to predict the next vulnerability when

training set spans 2009-2012 years and test set spans 2013-2014 years

N-grams Type Vulnerability Search (N-1) Recall Precision

2-grams 1 0.78 0.90

3-grams 2 0.60 0.59

4-grams 3 0.34 0.39

5-grams 4 0.16 0.32

It can be observed from Table VIII and Table IX that the recall and precision are high when we are searching for

the next vulnerability based on a single vulnerability (i.e., using 2-grams). However, the recall and precision

measures decrease when higher N-grams are used to search for the next vulnerability. This is because the number of

ordered (sequential) combinations of vulnerabilities increases in higher N-grams and there are more chances of not

finding an existing pattern of vulnerabilities similar to the pattern searched. Nonetheless, the recall of 77-78% and

precision of 90-92% shows that the following vulnerability based on an existing vulnerability can be predicted

efficiently by using the 2-grams patterns of vulnerabilities.

Table IX. Using initial vulnerabilities to predict the next vulnerability when training set

spans “2009-2011” years and test set spans “2012-2014” years

N-grams Type Initial Vulnerability Search Recall Precision

2-grams 1 0.77 0.92

3-grams 2 0.50 0.67

4-grams 3 0.33 0.43

5-grams 4 0.15 0.36

 Table VI and Table VII show that many vulnerabilities reoccur after their first occurrences. One may argue that high

precision and recall in the case of 2-grams could simply be due to the contiguous repetition of the same vulnerability. To

ascertain the results of our experiments, we repeated our experiments by removing the contiguous repetitions of

vulnerabilities—i.e., if a vulnerability occurs more than once contiguously, we just consider that it occurred once. Some

examples of the vulnerability patterns after removing contiguous repetitions are shown in Table X.

Table X. Different N-gram patterns of vulnerabilities without contiguous repetitions

N-grams

“CWE-20" "CWE-362"

“CWE-20" "CWE-399"

"CWE-119" "CWE-189" "CWE-399"

"CWE-399" "CWE-119" "CWE-399" "CWE-119"

"CWE-362" "CWE-20" "CWE-399" "CWE-20" "CWE-399"

We again performed the same two experiments on N-grams (2-grams to 5-grams) without contiguous repetitions of

vulnerabilities. In the first experiment, training was performed on vulnerabilities from 2009-2012 and testing was

performed on vulnerabilities from 2013-2014. In the second experiment, training was done on vulnerabilities from 2009-

2011 and testing was done on vulnerabilities from 2013-2014. The results are shown in Table XI and Table XII.

It is clear from Table XI and Table XII that the precision and recall are similar to the precision and recall of Table VIII

and Table IX. This means that contiguous repetition of vulnerabilities is not the cause of high precision and recall with 2-

grams and there are indeed similar patterns of vulnerabilities across software applications and they can be used to predict

vulnerabilities. Also, training on older data have reduced the recall of predicting new patterns (can't predict the

vulnerabilities that were not known before) but can still predict the occurrence of known vulnerabilities with high precision.

Table XI. Using initial vulnerabilities to predict the next vulnerability when training set spans “2009-2012”

years, test set spans “2013-2014” years and contiguous repetitions of vulnerabilities are removed.

N-grams Type Initial Vulnerability Search Recall Precision

2-grams 1 0.83 0.88

3-grams 2 0.57 0.55

4-grams 3 0.30 0.36

5-grams 4 0.11 0.27

Table XII. Using initial vulnerabilities to predict the next vulnerability when training set spans “2009-2011” years, test set

spans “2012-2014” years and contiguous repetitions of vulnerabilities are removed

N-grams Type Initial Vulnerability Search Recall Precision

2-grams 1 0.76 0.91

3-grams 2 0.46 0.62

4-grams 3 0.28 0.40

5-grams 4 0.10 0.32

In Table XIII, we show the precision and recall for prediction of vulnerabilities in Linux and Windows operating

systems and their components. We predict vulnerabilities in one operating system (e.g., Linux or Windows) and components

related to that operating system by using the prior vulnerabilities in the same operating system and associated components.

We again performed two experiments by using the vulnerability patterns from 2013-2014 as a test-set with vulnerability

patterns from 2009-2012 as training-set and patterns from 2012-2014 as a test-set and patterns from 2009-2011 as a training-

set for both Windows and Linux separately. It can be seen that the trend of precision and recall is similar to the trend shown

earlier for vulnerabilities of all types of software application—i.e., 2-grams are the best predictor of next vulnerability. In a

similar manner, we also show the prediction of vulnerabilities in individual applications by using the prior vulnerability

patterns in exactly the same application in Table XIV. The precision and recall in this case is low implying that the same

applications mostly do not experience the same vulnerability pattern again.

Table XIII. Predicting next vulnerabilities for only Linux and Windows OS and their components, when test-set spans

“2013-2014” years and “2012-2014” years

N-grams

Type

Initial

Vulnerability

Search

Linux

(2013-2014)

Windows

(2013-2014)

Linux

(2012-2014)

Windows

(2012-2014)

Recall Precision Recall Precision Recall Precision Recall Precision

2-grams 1 0.80 0.70 0.85 0.45 0.78 0.80 0.84 0.52

3-grams 2 0.56 0.48 0.73 0.34 0.48 0.54 0.73 0.37

4-grams 3 0.16 0.31 0.29 0.23 0.13 0.33 0.31 0.26

5-grams 4 0.04 0.27 0.09 0.24 0.05 0.30 0.09 0.23

Table XIV. Predicting next vulnerabilities by using the training-set and test-set of patterns of the same product

N-grams

Type

Initial

Vulnerability

Search

Test-set Duration:

2013-2014

Test-set Duration:

2012-2014

Recall Precision Recall Precision

2-grams 1 0.51 0.65 0.45 0.73

3-grams 2 0.34 0.55 0.27 0.60

4-grams 3 0.15 0.44 0.11 0.47

5-grams 4 0.05 0.41 0.04 0.43

The results from Table VIII to Table XIV show that including more historical events in the N-gram model (e.g.,

increasing the N value), not only did not improve the prediction power of the model, but resulted in a significant decrease in

prediction, as shown by precision and recall for N=3, 4, and 5 in Table XIII. One of the most interesting finding is that 2-

grams yield the best prediction results in all the cases. This shows that the prediction of the next vulnerability only depends

on the previous vulnerability and not on a sequence of historical vulnerabilities, confirming that the sequential pattern of

vulnerability events follows a first order Markov property. A first order Markov chain is a stochastic model for a sequence of

events in which the probability of the next event is dependent only on the present event [19]. It seems that the temporal

correlation between vulnerabilities diminishes quickly over time, which may be explained by the high speed at which the

attacks continue to evolve. These findings may have important practical implications because by only monitoring the recent

history of vulnerabilities, we should be able to predict future vulnerabilities with high precision. This would help mitigate

future threats and zero-day attacks.

Another interesting finding is that the best precision and recall is obtained in the cases of Table VIII to Table XII, when

prior vulnerability patterns from all the applications are used to predict unknown vulnerabilities in an application. The reason

lies in the vulnerability types (CWE), which are general and mostly applicable to all the software applications [16], making it

possible to predict the next vulnerability accurately in an application.

In this section, we conclude that the sequential pattern of vulnerability events possess a first order Markov property;

i.e., 2-gram patterns of historical vulnerabilities can be used to predict the next vulnerability in an application with

approximately 90% precision and approximately 80% recall. There will be vulnerability patterns that may not be predicted

because of their absence in the historical set of 2-grams due to which the recall and precision may not be 100%. This answers

our research question (RQ4).

5. Threats to Validity

In this section, we outline the threats to the validity of our analysis in the form of four categories: construct validity,

conclusion validity, internal validity and external validity [25].

A threat to construct validity may exist due to the choice of attributes from NVD for our analysis. This paper looks at

software vulnerability types and software applications to address the specific research questions discussed in the

introductory section. The paper ignores other attributes present in the vulnerability information. It is possible that other

information attributes, such as vulnerability severity and CVSS score, may change our findings of vulnerability trends over

a period of time. However, we have used all the valid information in NVD for our analysis and we consider using the

remaining information as part of our future work.

A threat to conclusion validity may exist because we assumed that every vulnerability corresponds to a possible attack

via an exploit. Though, there exists a theoretical possibility that attacks exist for every such vulnerability reported in NVD,

the actual exploits might not exist for some of these vulnerabilities. This threat is mitigated by the fact that the majority of

vulnerabilities have possible exploits.

A threat to internal validity may arise due to the lack of available information about vulnerabilities. Some

vulnerabilities (CVE identifiers) lack information about the vulnerability type (CWE identifier). In these cases, we have

ignored such vulnerabilities. This may have skewed statistics of our empirical analysis. However, such cases have been rare

and do not affect the overall conclusions. Additionally, vulnerability types that have directly been used from NVD are large

in number, error free and adequately informative across all six years.

 The number of representative vulnerabilities that have been selected may be a threat of external validity. We selected

a total of 25,915 vulnerabilities over six years for our analysis. While this forms a large representative subset of the total

number of vulnerabilities over the past six years, the numbers and percentages of vulnerabilities may have minor distortions

as vulnerabilities from earlier years beyond the last six years.

6. Conclusion and Future Work

Everyday new software attacks are emerging and they continue to threaten the security of software systems, despite

the development of new techniques and security mechanisms. In this paper, we mine the patterns and trends of

vulnerabilities in an attempt to facilitate vendors in making proactive decisions about the occurrence of vulnerabilities in

software applications. In particular, we addressed the following novel research questions. (RQ1) How significantly is the

trend of software vulnerabilities increasing or decreasing over time? (RQ2) What is the trend of vulnerabilities over time

within a software application? (RQ3) What are the common patterns of software vulnerabilities across different software

applications? (RQ4) How can we predict the type of vulnerability in a software application?

 We use National Vulnerability Database (NVD), supported by US government, to mine the last six years of software

vulnerabilities from 2009 to 2014. The most interesting findings of our analysis is that the sequential patterns of

vulnerability events follow the first order Markov property; i.e., the next vulnerability can be best predicted by the

previous vulnerability and the next vulnerability is not dependent on historical sequences of vulnerabilities. We found that

the next vulnerability can be predicted with approximately 90% precision and 80% recall by using the previous

vulnerability. Another interesting finding is that collectively mobile applications have higher vulnerabilities than traditional

software applications but individually traditional software applications have higher vulnerabilities than the mobile

applications in a year. This implies that lesser professional developers for many mobile applications compared against the

developers of large firms for traditional mature applications are not the only cause of more vulnerabilities in mobile

applications. The vulnerabilities in an application may be due to its large code base, its popularity and other reasons that we

have yet to uncover.

Our other results show that no significant difference exists in trend of vulnerabilities overall and in individual

applications. The trend of any type of vulnerability in software applications cannot be considered significantly increasing or

significantly decreasing despite the rise and fall of trend of vulnerabilities in different years. Our results also show that

sequences of similar vulnerability patterns of buffer errors can occur more than 150 times in a software product.

Using the answers of our research question, software vendor can improve the security of their systems. For example,

they can focus on employing additional measures for those vulnerabilities that are expected to occur because of frequent

pattern of vulnerabilities. If the trend of vulnerabilities is not significantly changing in vendors’ applications, then they

need to further enhance the software quality (e.g., testing, code review, etc.) process for specific vulnerabilities.

 NVD contains a rich repository of information about software vulnerabilities in most publicly known software

applications. We did not consider all the fields present in the repository, such as description of vulnerability, vulnerability

metrics, vulnerability score, etc. In future, we plan to utilize the additional characteristics of vulnerabilities in our analysis

of vulnerabilities and their patterns.

7. References

[1] Barlowe, B.; Blackbird, J.; et al. “The Evolution of Malware and the Threat Landscape—a 10 Year Review,”

Microsoft Security Intelligence Report: Special Edition, 2012. Available online: download.microsoft.com

[2] Barua, A.; Stephen W., T..; “A Hassan, Ahmed E., H.;What are developers talking about? An analysis of topics and

trends in Stack Overflow,” Journal of Empirical Software Engineering, vol. 9, issue 13, 2014, pp. 1382-3256.

[3] Blei, D., Ng, A., Jordan, M.; “Latent Dirichlet allocation,” The Journal of Machine Learning Research, Vol. 3,2003,

pp. 993–1022.

[4] Check Point Ltd., “2015 Security Report”, Check Point Technologies Ltd., June 2015 [Online]:

https://www.checkpoint.com/resources/2015securityreport/

[5] Christey, S.; Martin, R.; “A 2007 report on vulnerability type distribution in CVE”, 2007, Available online at:

http://cwe.mitre.org/documents/vuln-trends.html

[6] Common Vulnerability and Exposure (CVE): [Online]: http://cve.mitre.org/

[7] Common Vulnerability Exposure (CVE): http://cve.mitre.org/

[8] Common Weakness Enumeration (CWE): http://cwe.mitre.org/

[9] Cox, D. R., and Stuart, A.; “Some Quick Sign Rests for Trend in Location and Dispersion,” Biometrika, vol. 42,

no. 1–2, 1955, pp. 80–95.

[10] Frei, S.; May, M.; Fiedler, U.; Plattner, B.; “Large-scale Vulnerability Analysis,” In Proc. of the 2006 SIGCOMM

Workshop on Large-scale attack defense (LSAD), 2006, pp. 131-138.

[11] Houmb, S.H. and Nunes Leal Franqueira, V.; “Estimating ToE Risk Level using CVSS,” In Proc. of the 4th

International Conference on Availability, Reliability and Security, 2009, pp. 718-725.

[12] Khreich W.; Granger E.; Miri A.; and Sabourin R.; "Iterative Boolean combination of classifiers in the ROC space:

An application to anomaly detection with HMMs, Pattern Recognition," Pattern Recognition Journal, vol. 43, no. 8,

2010, pp. 2732-2752.

[13] Murtaza S. S.; Hamou-Lhadj A.; Couture M.; and Khreich W.; “TotalADS: Automated Software Anomaly

Detection System,” In Proc. of the 14th International Working Conference on Source Code Analysis and

Manipulatino, 2014, pp. 83-88, 2014.

[14] Murtaza, S. S.; Khreich, W.; Hamou-Lhadj, A.; and Couture, M.; “A Host-based Anomaly Detection Approach by

Representing System Calls as States of Kernel Modules,” In Proc. of 24th International Symposium on Software

Reliability Engineering (ISSRE), 2013, pp. 431-440.

https://www.checkpoint.com/resources/2015securityreport/
http://cve.mitre.org/
http://cve.mitre.org/
http://cwe.mitre.org/

[15] National Vulnerability Database (NVD): [Online]: http://nvd.nist.gov

[16] Neuhaus, S.; Zimmermann, T.; "Security Trend Analysis with CVE Topic Models," In Proc. of the21st

International Symposium on Software Reliability Engineering (ISSRE), 2010, pp.111,120.

[17] Rozenfeld, M., “Mobile Devices Lack Security”, Special Report Cyber Security Thwarting Attacks, The Institute

Magazine, Vol. 39, Issue 1, 2015, pp. 7-9

[18] Security Focus Vulnerability Database: [Online]: http://www.securityfocus.com/

[19] Stroock, W. D. An Introduction to Markov Processes, Springer Berlin Heidelberg, 2005

[20] Symantec 2013 trends., “Internet Security Threat Report”, Volume 19, April 2014

[21] Wijayasekara, D.; Manic, M.; McQueen, M.; "Information Gain Based Dimensionality Selection for Classifying

Text Documents," In Proc. of IEEE Congress on Evolutionary Computation,, 2013, pp. 440-445

[22] Wijayasekara, D.; Manic, M.; McQueen, M.; "Vulnerability Identification and Classification Via Text Mining Bug

Databases," In Proc. 40th Annual Conference of the IEEE Industrial Electronics Society, 2014, pp. 3612-3618.

[23] Wijayasekara, D.; Manic, M.; Wright, J. L.; McQueen, M.; “Mining Bug Databases for Unidentified Software

Vulnerabilities," In Proc. of the 5th International. Conference on Human System Interaction, 2012, 2012.

[24] Witten I.H.; Frank E. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San

Francisco, USA, 2005.

[25] Wohlin, C.; Runeson, P.; Host, M.; Ohlsson, M. C.; Regnell, B.; Wesslen, A. Experimentation in Software

Engineering: An Introduction. Springer, Berlin, 2002.

[26] Zaman, S.; Adams, B.; Hassan, A.E.; “Security versus performance bugs: a case study on Firefox,” In Proc, of the

8th Working Conference on Mining Software Repositories, 2011, 93-102.

http://nvd.nist.gov/
http://www.securityfocus.com/

