

Compression Techniques to Simplify the Analysis of Large Execution Traces*

* This research is sponsored by the Consortium for Software Engineering Research (CSER) and supported by Mitel Networks and NSERC

Abdelwahab Hamou-Lhadj and Timothy C. Lethbridge
University of Ottawa

SITE, 150 Louis Pasteur
Ottawa, Ontario, Canada, K1N 6N5

{ahamou, tcl}@site.uottawa.ca

Abstract

Dynamic analysis consists of analyzing the behavior of

a software system to extract its proprieties. There have
been many studies that use dynamic information to
extract high-level views of a software system or simply
help software engineers to perform their daily
maintenance activities more effectively. One of the
biggest challenges that such tools face is to deal with very
large execution traces. By analyzing the execution traces
of the software systems we are working on, we noticed
that they contain many redundancies that can be
removed. This led us to create a comprehension-driven
compression framework that compresses the traces to
make them more understandable. In this paper, we
present and explain its components. The compression
framework is reversible that is the original trace can be
reconstructed from its compressed version. In addition to
that, we conducted an experiment with the execution
traces of two software systems to measure the gain
attained by such compression.

1. Introduction
Dynamic analysis is used in a large variety of

applications in software engineering such as software
testing, software performance analysis and, lately, reverse
engineering and program comprehension. Generally
speaking, it consists of analyzing the behavior of a
software system to extract its proprieties.

Dynamic information is typically expressed in the form
of execution traces. It is extracted by instrumenting the
code or modifying the execution environment. One of the
main advantages of run-time information is its precision
[1]. In this way, a software engineer can instrument
exactly the source code that needs to be analyzed and
ignore the other parts. In addition to that, dynamic
analysis becomes crucial when it comes to understand the

behavior of object-oriented systems. Indeed, dynamic
binding makes it almost impossible to fully understand
such systems by merely performing static analysis of the
source code [7, 8].

In reverse engineering in general and program
comprehension in particular, there have been many
studies that use dynamic information to extract high-level
views of a software system or simply help software
engineers to perform their daily maintenance activities
more effectively [4, 6, 7, 10, 11, 12]. However, because
of the considerable size of the data gathered by
performing dynamic analysis, there is a need to create
efficient tools to assist software engineers. One of the
challenges that such tools face is to deal with very large
execution traces.

By analyzing the execution traces of the software
systems we are working on, we noticed that they contain
many redundancies that can be removed. This led us to
create a comprehension-driven compression framework.
In this paper, we present and explain its components. The
compression framework is reversible – that is the original
trace can be reconstructed from its compressed version. In
addition to that, we experimented with two software
systems to estimate the gain attained by such
compression.

In information theory, there are many known data
compression techniques and algorithms. They are all
based on the same principle, which is compressing data by
removing redundancy [2]. Based on this, the key concept
of data compression is to “assign short codes to common
events (symbols or phrases) and long codes to rare
events” [2]. Even though these techniques produce very
good results, the information, once compressed, is no
longer readable by humans. So such algorithms certainly
will not help in program comprehension. The framework
for compression presented in this paper allows software
engineers to better comprehend an execution trace by
significantly reducing its size and at the same time

keeping its content readable, hence the name
comprehension-driven compression framework.

There are two types of compression techniques [2]:
lossless and lossy. Lossless compression techniques
achieve compression in such a way that the exact original
data set can be reconstructed from its compressed version.
Lossy compression techniques produce better
compression by dropping some information – but the
original data set cannot be exactly reproduced. This paper
is generally about lossless compression. However, in
program comprehension, lossy compression of execution
traces can be useful as well. We leave this point as future
work.

This paper focuses on traces of procedure calls, since
many of today’s legacy systems were developed using the
procedural paradigm. This is the case, for example, with
the large telecommunication system we are working on,
provided to us by the company that sponsors our research.
However, our framework can also be applied to object-
oriented systems by considering method invocations. First
we show that any procedure-call trace can be represented
by a rooted ordered labeled tree. Then, we reduce the
problem of detecting redundancies to the common
subexpression problem described in [3, 5, 9]; we
introduce this and explain it in depth in section 2. The
common subexpression problem consists of transforming
a rooted tree to an acyclic graph in such a way all the
isomorphic subtrees are represented only once.

The rest of this paper is organized as follows. In
section 2, we explain the common subexpression problem
and a linear algorithm that solves it. In section 3, we
present the compression framework and its components.
In section 4, we present the results of applying the
framework to the execution traces of two software
systems. In section 5, we present our conclusions and
future directions

In this paper, we use the word trace to mean
procedure-call trace and the words redundancy and
repetition are interchangeable.

2. The common subexpression problem
Any tree can be represented in a compact form by

representing the occurrences of the same subtrees only
once [5]. The result is a directed acyclic graph (see Figure
1). This process solves what is called the “common
subexpression problem”, and is also called “sharing” or
“subtree factoring”. The main advantage of such a
transformation is to save memory, but it can also facilitate
the construction of tools to explore trees efficiently.

An early work in the common subexpression problem
was presented by Downy, Sethi and Tarjan [3]. They
suggested solving it using a linear-time algorithm based
on radix sorting. However, their algorithm seems to be of

theoretical interest only due to its complexity and the use
of a large number of hidden constants.

A more practical algorithm is presented by Flajolet et
al [5]. Their top-down recursive algorithm computes the
compact form of a rooted binary tree in expected linear
time. The algorithm combines a dynamically maintained
table and hashing techniques to assign a unique identifier
(UID) to each distinct subtree. Two subtrees are then
isomorphic if their corresponding roots have the same
identifier. The unique identifier of a node n consists of a
triple <Label(n), UID(Left(n)), UID(Right(L))> where
Right(n) and Left(n) represent the right and left children of
n and Label(n) represents the label of the node n. The
unique identifier is computed for each node. However,
before assigning it to the node, the algorithm checks if the
identifier has not already been assigned to another node.
For this purpose, the algorithm uses a hash table to store
the identifiers. If yes, the identifier is then returned from
the table. Otherwise, the algorithm allocates the new
identifier to the node and updates the table. The time the
algorithm takes to compute the unique identifiers is
constant because the input tree is a binary tree. Since a
hash table is accessible in an expected constant time, the
running time of the algorithm is reduced to the time it
takes to traverse the tree, which is linear.

Valiente presents an iterative version of Flajolet et al’s
algorithm [9]. His algorithm is based on a bottom-up
traversal of the tree using a queuing mechanism.
Veliente’s approach extends the concept of unique
identifiers to the notion of certificates and signatures. A
certificate is a positive integer between 1 and n (n
represents the size of the tree). The certificates are
assigned to the nodes in such a way that two nodes have
the same certificate if and only if the trees rooted at them
are isomorphic as illustrated in Figure 1. To compute the
certificate, the algorithm uses a signature scheme that
identifies each node. The signature is similar to the unique

A

A

C B

E

C

C B

A

1 2

3 2 2 1

3 4

5

A E A C B
1 2 3 4 5

Figure 1. Compacted directed acyclic graph
of a tree

identifier of Flajolet et al’s algorithm. Similarly to the
previous algorithm, a hash table is used to maintain the
certificates and signatures, which limits the complexity of
the algorithm to the time it takes to traverse the tree and
the time it takes to compute the signature. If the degree of
the tree (the number of children of any given node) is
bounded by a constant, then the algorithm takes linear
time.

3. Trace compression framework
In this section, we present a framework for trace

compression without loss of information. The framework
takes as input an execution trace file based on procedure
calls and returns as output its compressed form. The trace
file can be seen as a sequence of calls C0C1...Cn-1 where n
represents the size of the trace (number of calls).
Generally speaking, Ci is composed of a triple <Fi, Pi, Li>
where Fi is the file name of the file that declares the called
procedure, Pi stands for the procedure call and Li is a
positive number representing the nesting level. Figure 2a
shows an example of a trace containing 6 calls. The same
trace can be represented by a tree as shown in figure 2b.

In the case of concurrent systems, the process’ names
are also indicated, usually before the file name, which
extends the definition of a call to a quadruple. Some other
information may be traced as well such as the running
time of each procedure and so on.

C0 = F0 P0 0 C0
C1 = F1 P1 1 ├─ C1
C2 = F2 P2 2 │ └─ C2
C3 = F3 P3 1 └─ C3
C4 = F4 P4 2 ├─ C4
C5 = F5 P5 2 └─ C5

 a) b)

Figure 2. Example of a procedure-call trace

An easy way of compressing the trace is to take its tree
representation and apply the common subexpression
algorithm. However, due to the size of the trace, the
degrees of the tree may vary considerably and therefore
have a significant impact on the performance of the
algorithm. To improve performance, and also help
software engineers browse the trace more easily, we
therefore propose preprocessing the trace tree before
using the subexpression algorithm. Preprocessing the
trace consists of detecting and removing non-overlapping
contiguous redundancies generated by loops and
recursion. Following preprocessing, we apply the
common subexpression algorithm to remove any
remaining redundancies.

3.1 Trace Preprocessing
Redundant calls caused by simple loops and recursion

tend to encumber the trace and should be removed. We

store the number of occurrences of each redundancy so it
is possible to reconstruct the original trace. We
distinguish between contiguous redundancies of a single
procedure call and contiguous redundancies of a sequence
of calls.

The first type of redundancy is easy to detect in linear
time. However, one needs to distinguish between repeated
calls due to loops and those due to recursion. The former
appear in the trace file in the form of contiguous calls
with the same nesting level. That is Ci+1 is a repetition of
Ci generated by a loop if Fi+1 = Fi, Pi+1 = Pi and Li+1 = Li.
Repetitions due to recursion appear exactly the same way
except that the nesting levels are increased by 1 after each
call, that is Li+1 = Li+1. Once the redundant calls are
detected, we need to represent them only once and store
the number of their occurrences. For this purpose, we
delete the repeated lines and add a counter to the call that
represents them.

The rest of this section discusses the second type of
redundancy – detection of contiguous redundant
sequences.

In a trace based on procedure calls, the size of a
sequence represents the number of procedure calls that
exist in a loop or nested loops (we deal with nested
sequences later). Let d be the largest size of a repeated
sequence. It is a well-known fact that d is extremely small
compared to the size of the trace.

Once the contiguous sequences are detected, we need
to remove them and replace them by the number of their
occurrences. However, it is important to maintain the
hierarchical nature of the trace as shown in Figure 3 so it
is possible to use it as input for the next step of the
framework. For this reason, we add a virtual call that will
be inserted at the beginning of the repeated sequence. The
number of occurrences is added between brackets as
illustrated in Figure 3. A consequence of such a
representation is to avoid detecting overlapping
sequences.

A A
├─ B │
├─ C ├─ Sequence (3)
├─ B │ ├─ B
├─ C │ └─ C
├─ B ├─ D
├─ C └─ E
├─ D
└─ E

 a) b)

Figure 3. A contiguous sequence replaced with the
number of its occurrences

The rest of this section is organized as follows. First,
we present an algorithm that detects non-overlapping
contiguous sequences and represent them once. Then, we
discuss its running time.

Our algorithm is divided into two main steps. The first
step is concerned with detecting non-nested contiguous
redundancies. The second step uses the algorithm defined
in the first step to detect nested sequences. In both steps,
we are interested in non-overlapping sequences only. To
begin with, we introduce the following definitions:

Definition 1:

Two calls Ci and Cj are similar (denoted as Ci = Cj) if they
refer to the same file name, procedure name and nesting
level. In addition to that, in case Ci and Cj are repeated
(the first type of redundancy discussed above), they have
to be repeated the same number of times. This last
condition can be verified by comparing the counters of Ci
and Cj.

Definition 2:

Two sequences of calls S1 = C1C2...Cn and S2 = C1C2...Cm
are similar if n = m and Ci = Cj using Definition 1, for all
i and j such that 0 < i ≤ n and 0 < j ≤ m.

The algorithm of Figure 4 detects and removes non-
overlapping non-nested contiguous redundancies. The
algorithm proceeds through the calls of the trace. For a
call Ci, the algorithm looks at most d lines back starting
from i-1 until it finds a call Cj such that Cj = Ci (according
to Definition 1). If j exists, that means that CjCj+1…Ci-1 is
a candidate redundant sequence, we will call S. In this
case, the algorithm looks for all the possible contiguous
occurrences of S (using Definition 2). For example, If S is
repeated, then its first redundancy should be the sequence
CiCi+1... Ci+(i-j)-1. If the algorithm finds redundancies of S
then it removes them, inserts the virtual call
SEQUENCE(m) such that m is the number of occurrences
of S, shifts the nesting levels of the calls of S and finally
makes sure not to have overlapping by ignoring part of the
trace that has been already processed (using the variable
start) – it is important not to forget that, in this step, we
are looking for non-nested sequences only.

To estimate the running time of the algorithm, let us
consider m1 the total number of all removed occurrences
of any redundant sequence. Therefore, the number of lines
that have been removed from the trace according to the
algorithm is at most dm1 - obviously dm1 < n. The time
the algorithm takes to look for candidate redundant
sequences (step 2.2) is bounded by O(d(n-dm1)) since the
number of lines that are not removed is equal to n-dm1
and the largest size of a sequence is d. Step 2.5 makes at
most dm1 comparisons and step 2.7 takes at most O(dm1)
to remove the repeated occurrences. Step 2.9 can be
bounded by O(dm1) since the number of redundant
sequences is certainly less or equal than the number of
their occurrences. Step 2.8 and 2.10 can be bounded by
O(dm1) as well for the same reason. Since, dm1 < n then

the whole algorithm takes O(dn) time. Since d is normally
very small compared to n, therefore the algorithm runs in
linear time.

1 start = 0; i = 0;
2 While (i < n)
2.1 For call Ci
2.2 Find j such that: start <= j < i and (i – j) <= d

and Cj = Ci
2.3 If j exists then
2.4 CjCj+1….Ci-1 is a candidate sequence denoted S
2.5 Find all contiguous redundancies of CjCj+1....Ci-1
2.6 If there are any
2.7 Remove them
2.8 Insert a virtual call before Cj labeled

SEQUENCE(m) such that m is the number of
occurrences of S

2.9 Shift the nesting levels of Cj… Ci-1
2.10 start = the index of the call that comes after the

last call of the last redundancy to avoid
overlapping

2.11 End if
2.12 Else
2.13 i++
2.14 End if
3 End

Figure 4. Algorithm for detecting non-overlapping
non-nested contiguous redundancies

However, this algorithm excludes contiguous
sequences due to recursion and the sequences presented in
Figure 5. In fact, one can generalize it to deal with these
sequences as well. However, the goal of the preprocessing
step is to reduce the size of the trace to increase of the
performance of the common subexpression algorithm, so
we want to keep it as simple as possible and more
importantly run in linear time. The common
subexpression algorithm will detect all remaining
redundancies.

A
├─ B
├─ C
├─ B
├─ D
├─ B
├─ C
├─ B
└─ D

Figure 5. A sequence that is not detected by the
algorithm of Figure 4

Nested sequences may occur usually due to the
presence of nested loops in the source code. A nested loop
can appear either in the same procedure or involve two or
more procedures that call each other. Let k be the largest
level of nesting. k will normally be very small since loops
nested more than a few times are impractical for
programmers. An intuitive algorithm that detects nested

sequences consists of iterating the algorithm of Figure 4 k
times as shown in Figure 6

1 t = 0
2 While (t < k)
2.1 Perform the algorithm of Figure 4
2.2 t++;
2.3 d++;
2.4 End while
3 End

Figure 6. An algorithm for detecting nested
sequences

If we consider k = 2, the example of Figure 7 requires
two passes of the trace. During the first pass, the
algorithm detects and removes the sequences EF in both
subtrees and replaces them by their corresponding virtual
calls. The second pass detects the sequence
BCDSequence(2)EF and represents it only once. We
notice that d (the size of the largest contiguous redundant
sequence) is incremented by 1 in order to consider the
virtual calls that are eventually inserted after each
iteration. The reader can notice that the running time of
this algorithm is O(kn(d+k)). Since d and k are very small
compared to n, the running time of the algorithm is then
reduced to O(n).

k and d are considered as thresholds and need to be
determined. One way of determining them is to perform a
static analysis of the files that are involved in the
execution trace. Another way is to run the algorithm until
no more redundant sequences are detected.

Trace Pass 1 Pass 2

A A A
│ │ │
├─ B ├─ B └─ Sequence (2)
├─ C ├─ C ├─ B
├─ D ├─ D ├─ C
│ ├─ E │ └─ Sequence (2) └─ D
│ ├─ F │ ├─ E └─Sequence (2)
│ ├─ E │ └─ F ├─ E
│ └─ F ├─ B └─ F
├─ B ├─ C
├─ C └─ D
└─ D └─ Sequence (2)
 ├─ E ├─ E
 ├─ F └─ F
 ├─ E

 └─ F

Figure 7. An example of detection and replacement of
nested sequences

3.2 Application of the common subexpression
algorithm

The next step consists of removing more complex
redundancies, such as those shown in Figure 5 and the
non-contiguous redundancies. First, the trace is

represented in the form of a rooted tree and then the
common subexpression algorithm is used.

3.2.1 Tree representation of a trace

Any trace based on procedure calls can be represented
by a rooted ordered labeled tree as illustrated in the
figures used in the previous section. The nodes represent
the procedure calls. The tree levels are similar to the
nesting levels. We will need to perform a preorder
traversal of the tree in order to output the trace with
respect to the sequence of calls. The depth of the tree
should be equal to the largest nesting level.

It is important that the tree be ordered. This means that
two subtrees are not isomorphic if they have the same
nodes but their order is different. However, some
application domains may omit this restriction, resulting in
greater compression but an inability to reverse the
compression. This could be useful in program
comprehension, for example, where it may not always be
important to know the exact sequence of calls when
merely trying to understand high-level architecture. In this
paper, we consider ordered trees only.

3.2.2 Application of the algorithm

The main step of the framework is to detect and
remove all remaining redundancies that may exist in the
trace, such as those shown in Figure 5 and non-contiguous
redundancies. One should be very careful not to ignore
the nesting levels when detecting these sequences. The
reason is that they can be subject to further analysis in
order to discover other characteristics of the system (e.g.
dependencies between the trace components).

The result of applying the common subexpression
algorithm is an acyclic graph where all repetitions are
represented only once. The size of the graph corresponds
to the number of its nodes.

3.3 Measuring Compression
There are different ways of measuring the gain attained

by a compression process. The easiest way is to compute
the difference between the size of the original trace and
the size of the compressed version. In this paper, we use a
compression ratio that we define as the ratio of the
compressed trace size to the original trace size. The
smaller the ratio, the better the result. Generally speaking,
we are interested in two compression ratios. The first one
estimates the gain reached after preprocessing the trace –
removing most of the contiguous redundancies. The
second compression ratio represents the gain attained
after applying the common subexpression algorithm.

More formally, Let n be the size of the original trace. n
represents the number of calls that exist in the trace. Since
any trace can be represented by a rooted tree, n also
represents the number of nodes of the tree representation

of the original trace. Let n1 represent the size of the trace
after preprocessing it, which is the number of nodes of the
tree representation of the trace after removing the
repetitions caused by loops and recursion. Let n2 be the
size of the acyclic graph (the number of its nodes). The
compression ratios we are interested in are r1 and r2 such
that:

1. r1 = n1 / n
2. r2 = n2 / n

4. Experiment
4.1 Description

We experimented with execution traces of two
software systems. Our main objective is to estimate the
expected gain attained by compressing them. However,
we also want to understand how this gain is reached and if
there is a way to further improve it.

The first system is a drawing editor under UNIX called
XFig [13]. The reason we chose XFig is because its
domain concepts are intuitive and easy to understand.
This facilitates the design of the software features that will
be traced. Another reason is that XFig is a small open
source system and therefore easy to instrument.

The second system is a large legacy telecommunication
system provided to us by the company that sponsors our
research. An interesting thing about this system is that it is
already instrumented with probes, usually used for testing
or performance analysis. An internal mechanism allows
generating all kinds of traces just by turning the probes on
and executing the scenarios that correspond to the
software features we wish to trace. We discuss the
specifics of each system in the next section.

In order to attain our objective, we collect different
kinds of data for a deeper analysis. There are three
different types of data we think are important to our
experiment. We categorize them according to the
following criteria:

- Size criteria
- Design criteria
- Performance criteria

Size criteria: In this category, we want to estimate the
gain in terms of size obtained by applying the trace
compression framework shown in the previous section.
Typical results would be:

1. The initial size of the trace n
2. The size of the trace after preprocessing it n1
3. The compression ratio r1 such that r1 = n1 / n
4. The size of the trace after using the common

subexpression algorithm n2.
5. The compression ratio r2 such that r2 = n2 / n

Design criteria: The aim is to understand how the trace
components can influence the compression result. We are
interested in the following data:

1. The number of procedures involved in a specific
trace. It is important to distinguish between a
procedure and a procedure call. The same procedure
can be called several times

2. Similarly, we are interested in the number of files

There are many other data that can help understand the
behavior of the trace components and therefore suggest a
better compression technique. For example, if a particular
procedure call appears everywhere in the trace, chances
are that the corresponding procedure is a utility
procedure. Such a procedure may not be of great interest
for program comprehension as shown in [12] and might
be ignored. However, this paper focuses on compression
without loss of information only.

Performance criteria: The running time of the common
subexpression algorithm is linear if the degrees of the tree
are small and bounded by a certain constant. However, the
degrees of an execution trace can vary considerably even
though the trace has been preprocessed. In order to assess
the performance of the algorithm, we present and compare
two graphs that show the variation of the degrees of the
tree according to depth before and after the preprocessing
step.

4.2 Experiment Design
The first step of our experiment is to design the

scenarios that need to be traced. An easy way of doing
this is to take different software features of each system
and generate the corresponding execution traces.
However, to increase the accuracy of our experiment, the
software features should cover different parts of the
system.

XFig:

XFig is a drawing system under UNIX [13]. XFig uses a
menu to allow the users to manipulate objects
interactively. We instrumented XFig semi-automatically
by adding print statements at the entry and return points of
each procedure. We considered software features that are
related to the ability to draw and edit different shapes. We
chose to compress the execution traces of the following
software features:

1. Draw a circle
2. Draw a regular polygon
3. Draw a polyline
4. Draw text
5. Delete an object
6. Rotate an object

7. Move an object
8. Copy an object

The Telecommunication System:

The telecommunication system, we experimented with,
is a large legacy system. Generating the system’s traces
needs a very good understanding of how the scenarios are
executed. We asked the software engineers to provide us
with the software features they are interested to
investigate and the way to execute them. Among the
execution traces we gathered, we present an analysis of
five of them.

Due to the concurrent nature of the system, a trace file
shows all the processes being executed at the same time.
Therefore, there is a need to split the trace file into many
other files that we call process files. For each trace file,
we will have as many process files as processes in the
trace. The compact form of the original trace is the
accumulation of compacting all its process files.

An issue that needs to be addressed when a real-time
legacy system is used is the fact that the trace may be
incomplete, that is, it may not contain some of the
procedure calls that actually occurred. This is reflected as
an inconsistency in the trace with respect to the nesting
levels. There are many reasons that may cause such
inconsistencies, e.g. a bug in the trace generation
application, real-time interference, and so on.

One solution to this problem is to complete the trace
by filling up the gaps with virtual procedure calls. In this
case, we say that the trace contains errors and it becomes
necessary to estimate the error ratio, which is the number
of missing calls to the size of the original trace. We
represent the error ratio as:

e = g / (g+n)

Such that g is the number of gaps (missing procedure
calls) and n the size of the trace.

4.3 Results
In this section, we summarize the results of applying

the trace compression framework to the scenarios of XFig
and the telecommunication system.

XFig:

Table 1 shows the size and design criteria results of
compressing XFig’s traces. The compression ratio
reached after removing the contiguous redundancies is
almost the same for all the traces except for trace 2
(drawing a regular polygon). A regular polygon is a
polygon whose sides have all the same length, and whose
angles are all the same. By default, XFig draws a regular
polygon with 5 sides. We think that the presence of so
many contiguous redundancies (r1 = 7.13%) is due to the
fact that XFig repeats the same pattern to manipulate the 5

sides and angles at the same time. Trace 4 (drawing text)
has the smallest number of contiguous redundancies (r1 =
41.92%). We think that this is due to the nature of this
feature, which tends to be different from manipulating
shapes.

The next step of the framework shows interesting
results. The compression ratios after removing all
redundancies lies between 2.46% (trace 2) and 9.92%
(trace 1). The results seem homogeneous except for trace
2 that we think is due to the same reasons mentioned
above.

Table 1. Size and design criteria of compressing
XFig’s traces

Trace n n1 r1 (%) n2 r2(%) # Proced. # Files
1 2198 623 28.34 218 9.92 167 30

2 9076 647 7.13 223 2.46 174 31

3 5140 889 17.30 236 4.59 178 30

4 2710 1136 41.92 248 9.15 190 28

5 3077 700 22.75 236 7.67 190 33

6 6215 869 13.98 261 4.20 197 31

7 3381 839 24.82 253 7.48 187 33

8 4336 830 19.14 267 6.16 190 33

We think that one of the major factors that contributed
in getting such results is the number of procedures
involved in the traces. For example, the software feature
represented by trace 1 uses 167 procedures to generate
2198 calls. This represents 7.59% only. Therefore, there
must be many redundancies all along the trace. Another
reason can be associated with the nature of the system
itself. It is very common, in the case of a drawing system,
to have repeated patterns to manage the layout, the
coordinates, the zoom and so on. This could explain why
the compression ratios are so low.

The performance criteria consist of analyzing how the
degrees of the tree representation of the trace vary
according to depth. The reason we are interested in this is
to evaluate the performance of the common subexpression
algorithm (see section 2). For this purpose, we present
two graphs using 3 traces of XFig (we cannot show all the
results here because of space limitations).

The first graph shows the variation before the
preprocessing step see Figure 8a and the second graph
shows the variation after the preprocessing step (see
Figure 8b). In Figure 8b, we notice that the degrees of the
tree decrease continuously, which makes the performance
of the subexpression algorithm depends essentially on the
size of the trace.

Another observation related to the graph illustrated in
Figure8b derives from the fact that, after the
preprocessing step, the 3 curves look similar even though

the scenarios are different. In fact, one can do a very
useful analysis of the structure of XFig and its complexity
just by analyzing its traces. For example, according to the
graph, it is evident that XFig uses similar patterns to draw
a polyline or text, or to move an object. The analysis of
XFig’s structure is then reduced to discovering these
patterns.

The Telecommunication System:

Table 2a shows the size criteria results of compressing
the telecommunication system’s traces. The table 2b
shows the design criteria. Before presenting the
compression ratios, we notice that table 2a contains two
additional columns to represent the number of missing
procedure calls g and the error ratio e presented in section
4.2. Even though, the error ratio is very small, one needs
to do a deeper analysis to understand its impact on the
resulting compression. We leave this point as future work.

The compression ratio attained after removing the
contiguous redundancies is almost the same for all the
traces and lies between 82.43% and 90.91% which is very
high compared to XFig’s traces. We think that this is due
to the complex nature of this system and to the presence
of missing calls that we had to replace with distinct virtual
calls. The next step of the framework shows a
compression ratio that lies between 14.04% to 31.86%,

which is still a good result given that this compression is
reversible.

Table 2a. Size criteria (n represents the sum of the
initial size of the trace and g)

 Trace n g e (%) n1 r1 (%) n2 r2 (%)
1 17465 589 3.37 14396 82.43 2452 14.04

2 11095 313 2.82 9715 87.56 3308 29.82

3 10175 381 3.74 8654 85.05 2361 23.20

4 3621 121 3.34 3226 89.09 649 17.92

5 3609 109 3.02 3281 90.91 1150 31.86

Table 2b. Design criteria of compressing the

telecommunication system’s traces.

Trace # Procedures # Files
1 802 189
2 828 184
3 876 190
4 657 160

5 668 164

We notice that the number of procedures and files
involved are considerably higher compared to XFig’s
traces. This could explain why the compression ratios are
also higher. In addition to that, we think that the presence
of errors can be a significant factor as well. In fact, one
can come up with a very interesting complexity metric
based on the concepts presented here. The
telecommunication system is obviously more complex
than XFig and this is clearly shown in analyzing its traces.

The graph presented in Figure 9a shows the variation
of the degrees according to the depths of the rooted trees
corresponding to three processes of trace 2 before
preprocessing them. We cannot present all the results here
but most of the graphs look similar to the graph presented
in this figure. Figure 9b shows how the degrees decrease
after the preprocessing step, which will result in an
increase in the performance of the common subexpression
algorithm.

 Obviously, there is a gain in terms of execution time
in having the preprocessing step. However, one needs to
experiment with more software systems to assess this
gain. From the comprehension perspective, we think that
removing contiguous redundancies will help software
engineers to better understand the traces.

4.4 Discussion
We showed that procedure-call traces could be

considerably compressed in a way that preserves the
ability for humans to understand them. The experiment’s
results have exceeded our expectations with the

Figure 8a. Variation of the degrees of the tree
according to depth before the preprocessing step

Figure 8b. Variation of the degrees of the tree
according to depth after the preprocessing step

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16

Depth

D
eg

re
e Polyline

Text

Move

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Depth

D
eg

re
e Polyline

Text

Move

satisfactory compression ratios that we got for both
systems. However, we need to do more experiments to see
how all this could be useful to software engineers.

We saw that one of the major factors that make this
compression possible is the number of procedures
involved in the trace. We notice that the higher this
number, the higher the compression ratio (hence the lower
the reduction in trace size). This is easy to explain since
the trace is composed of invocations of these procedures.
Therefore, if the trace is very large and the number of
procedures it invokes is small then there must be many
redundancies.

One possible improvement to the techniques showed
above is to look for procedures that are not of a great
interest to software engineers and remove them before the
compression process. Such procedures can be referred to
as utility procedures. However, the resulting compressed
trace will not be reversible.

Another interesting finding is the idea that compressing
a trace allows the software engineer to focus on useful
information that it conveys. We believe that this is very
helpful to understand the trace’s structure and the system
in general.

Finally, we notice that the preprocessing stage was
very useful to reduce the trace size and therefore increase
of the performance of the common subexpression
algorithm.

5. Conclusions and future directions
The results shown in this paper can help build better

tools based on execution traces in general and procedure-
call traces in particular. We showed that an execution
trace can be reduced to a very small size if the repeated
patterns are removed and represented only once. The
same principles can apply to other kinds of traces as well.
In fact, trace compression is not concerned with reducing
the size of the trace only but removing what is not
necessary in order to focus on the useful information that
is conveyed. We also showed that the result of the
compression can be subject to a deeper analysis to
understand the complexity of the software feature that is
represented. We intend to conduct more experiments with
this framework to see how helpful it is to software
engineers.

Future directions should focus on lossy compression,
that is, the original trace is not totally reconstructed from
the compressed version. This can help to further reduce
the trace by getting rid of what is not useful to software
engineers. Types of information eliminated can include
the number of repetitions, the order of calls, and some
lower-level utility procedures. There are many criteria that
help determine which procedures are useful to retain and
which ones can be considered utilities. For example, the
number of occurrences of the procedure in the trace, its
execution time and so on.

In this paper, we considered ordered trees only, that is,
the sequence ABC is different from the sequence ACB. It
is very common that this gives the same result and it is
just an omission from the developer to keep track of the
order. It would be interesting to explore when this order is
important and when it is not and suggest lossy
compression based on that.

Finally, the non-contiguous redundancies that are
detected using the common subexpression algorithm can
be subject to further analysis to understand other
proprieties of the system such as the relationships between
its components. The common subexpression algorithm
can be used to extract them efficiently.

Thanks
We would like to thank the software engineers at Mitel

Networks who helped us to generate the execution traces
that correspond to the software features of the
telecommunication system used in this paper.

Figure 9a. Variation of the degrees of the tree
according to depth before the preprocessing step

Figure 9b. Variation of the degrees of the tree
according to depth after the preprocessing step

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17

Depth

D
eg

re
e Process1

Process2

Process3

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17

Depth

D
eg

re
e Process1

Process2

Process3

About the Authors
Abdelwahab Hamou-Lhadj is a Ph.D. student at the

School of Information Technology and Engineering at the
University of Ottawa. His research interests include
reverse engineering, program comprehension and object-
oriented technology. His URL is
www.site.uottawa.ca/~ahamou

Dr. Timothy C. Lethbridge is an associate professor at
the school of Information Technology and Engineering at
the University of Ottawa. His research interests include
user interfaces, software engineering tools, knowledge
representation and software engineering. Dr. Timothy
Lethbridge is also the co-author of McGraw Hill textbook
- Object Oriented Software Engineering: Practical
Software Development using UML and Java. His URL is
www.site.uottawa.ca/~tcl

6. References
[1] T. Balls, “The concepts of dynamic analysis”, In

Nierstrasz and Lemoine [14], pages 216-234

[2] D. Salamon, “Data Compression, the complete

reference ”, 2nd Edition, Springer-Verlag, NY 2002

[3] J.P. Downey, R. Sethi and R.E. Tarjan, “Variations

on the common subexpression problem”, J. ACM. 27,
pages 758-771, 1980

[4] T. Eisenbarth, R. Koschke, D. Simon, “Feature-

Driven Program Understanding Using Concept
Analysis of Execution Traces”, In the Proceedings of
the International Workshop on Program
Comprehension (IWPC), Toronto, Canada, May 2001

[5] P. Flajolet, P. Sipala, J.–M. Steyaert, “Analytic

variations on the common subexpression problem”,
In Automata, Languages, and Programming, volume
443 of Lecture Notes in computer science, pages 220-
234, Springer-Verlag, 1990

[6] D.F. Jerding, J.T. Stasko, T. Ball, “Visualizing

Interactions in Program Execution”, ICSE, 1997

[7] T. Richner, S. Ducasse, “Recovering High-Level

Views of Object-Oriented Applications from Static
and Dynamic Information”, IEEE, 1999

[8] T. Systä, “On the relationship between Static and

Dynamic Models in Reverse Engineering Java
Software”, In the Proceedings of the 6th WCRE,
pages 304--313, 1999.

[9] G. Valiente, “Simple and Efficient Tree Pattern

Matching”, Research report, Technical University of
Catalonia, Department of Software, E-08034
Barcelona, December 2000

[10] R.J. Walker, G. C. Murphy, J. Steinbok, M. P.

Robillard, “Efficient Mapping of Software System
Traces to Architectural Views”, In Proceedings of
CASCON, pages 31-40, Toronto, Canada, November
2000.

[11] R.J. Walker, G. C. Murphy, B. Freeman-Benson, D.

Swanson, J. Isaak, “Visualizing dynamic software
system information through high-level models”, In
Proceedings of the ACM Conference on Object-
Oriented Programming, Systems, Languages, and
Applications, British Columbia, Canada, 18-22
October 1998

[12] I. Zayour and T.C. Lethbridge, “A Cognitive and

User Centric Based Approach For Reverse
Engineering Tool Design”, In Proceedings of
CASCON, pages 31-40, Toronto, Canada, November
2000.

[13] Xfig System, http://www.xfig.rg

http://www.xfig.rg/

	Introduction
	The common subexpression problem
	Trace compression framework
	Trace Preprocessing
	Application of the common subexpression algorithm
	Tree representation of a trace
	Application of the algorithm

	Measuring Compression

	Experiment
	Description
	Experiment Design
	Results
	Discussion

	Conclusions and future directions
	References

