

Measuring the Complexity of Traces Using Shannon Entropy

Abdelwahab Hamou-Lhadj
Department of Electrical and Computer Engineering

Concordia University
1455 de Maisonneuve West

Montreal, Quebec H3G 1M8
abdelw@ece.concordia.ca

Abstract

Exploring the content of large execution traces can be a
tedious task without efficient tool support. Building efficient
trace analysis tools, however, requires a good
understanding of the complexity embedded in traces. Trace
complexity has traditionally been measured using the file
size or the number of lines in the trace. In this paper, we
argue that these metrics provide limited indication of the
effort required to understand the content of a trace. We
address this issue by introducing new trace complexity
metrics based on the concept of entropy. Our metrics
measure two important aspects of an execution trace:
repeatability and variability. We present a case study where
we apply the metrics to several execution traces. A
discussion on how we can reduce the complexity of a trace
based on these metrics is also presented.

Keywords: Dynamic analysis, trace complexity, Shannon
entropy, program comprehension, software maintenance

1. Introduction
The analysis of execution traces can provide valuable

insight into the way a software system behaves. Traces,
however, can be quite complex due the excessive number of
events invoked. Typical traces can easily be millions of
lines long.

Existing trace simplification techniques such as the ones
presented in [1, 13, 14, 15] have been surveyed and found to
be limited in their ability to handle large and complex traces
[4]. This is partly attributable to the fact that these
techniques were designed without a clear understanding of
the amount of work required to understand the content of a
trace.

At first glance, one might imagine measuring the amount
of information contained in a trace could be rather
straightforward: A naïve approach might just be to report
the file size or the number of lines in the trace. However, a
myriad of subtleties arise, for example:

• The file size and number of lines depend on the schema
used to represent the trace and the syntax used to
convey the data specified by such a schema.

• Not all elements of a trace are equally important, or
contribute equally to complexity. For example, a long
series of identical method calls would be rather simpler
to understand than a highly varied and non-repetitive
sequence of the same length.

• The notion of complexity is itself rather vague,
suggesting that we need to be able to measure different
aspects that may contribute to complexity so we can
later experiment with various approaches to complexity
reduction.

The execution traces targeted in this paper are those
based on routine calls (i.e., call trees). We use the term
‘routine’ to represent functions, procedures or methods of
classes. Although the system analyzed in this paper is
object-oriented, the metrics proposed here can also be
applied to non-OO systems.

In this paper, we present two metrics, based on the
concept of entropy, to measure the amount of information
contained in an execution trace. The first metric is based on
the observation that traces are lengthy because they carry
way too many repetitions. Therefore, the aim of the metric
is to measure the amount of repetitions found in a trace. We
call this metric the measure of repeatability. The objective
of the second metric is to measure the degree of complexity
of highly varied and non-repetitive sequences of calls. Our
approach is based on the idea that, given a subtree rooted at
routine ‘r’, if we can always predict the next call made by
‘r’ then this subtree might be easier to understand than
another subtree for which this prediction is difficult to
make. We refer to this metric as the degree of variability of
the trace.

This paper is organized as follows: In the next section,
we present the metrics along with basic concepts of
information theory. In Section 3, we apply the metrics to
traces generated from an object-oriented system called
Weka. In Section 4, we discuss trace filtering techniques. In
Section 5, we present related work. Finally, we conclude our
work in Section 6.

2. Shannon Entropy Applied to Traces
Information theory defines several ways of quantities

that agree with what an information measure should be.

Shannon entropy is perhaps one most important of such
measures, and quantifies the amount of information in a
random variable. The basic concept of entropy in
information theory has to do with how much randomness
exist in a random event. The more uncertain we are about
the content of the message, the more informative it is [2].

Given a discrete random variable X with values in S and
probability mass function p(x), the Shannon entropy,
H(X),�of the variable X is defined by:

∑
∈

−=
Sx

xpxpXH)(log)()(

Shannon entropy H(X) depends on the probability
distribution of X rather than the actual values of X. The
logarithm with base two is usually considered in the
computation of H(X). In this case, H(X) represents the
average number of bits per symbol that is needed to encode
the values of X.

H(X) varies from zero to log(|S|); zero meaning that there
is no uncertainty, whereas log(|S|) is reached when all
elements of X have equal probabilities, in this case, the
uncertainty is at its maximum [2].

In the following subsections, we show how Shannon
entropy will be used to define the repeatability and
variability metrics.

2.1. A Measure of Repeatability
Through this subsection, we will use the simple call tree

illustrated in Figure 1. Let S be a set of distinct routines of
the trace T of Figure 1, that is S = {A, B, C, D}. Let X be a
random variable taking its values from S. We compute the
probability distribution x of S by dividing the frequency of
occurrences of x by the size of the trace. For example, p(A)
= 1/9. In this case, the entropy of variable X using the above
formula is H(X) = 1.66. That is, we need an average of 2
bits per symbol of X in order to represent the content of the
trace T.

Figure 1. Example of a trace with H(X) = 1.66

and RI = 0.18

We further normalize H(X) so as to have a metric that
ranges from 0 to 1. We achieve this by dividing H(X) by

log(|S|), which represents the maximum amount of
uncertainty possible.

Furthermore, we define the repeatability index, RI, of a
trace as:

RI = 1 – H(X)/log(|S|)

RI quantifies the amount of certainty with which we can
predict the values of X. RI equals zero in two cases. The
first case is when the trace (or the part of the trace under
study) contains no repetitions (e.g. see Figure 2a). The
second case is when all distinct routines invoked are
repeated the same number of times. When applied to the
entire trace, the second case does not happen in practice
since we have at least the entry point of the program that
occurs only once. If applied to parts of the trace, we need to
fine tune RI so as to take into account the number of events
invoked in this portion of the trace. In this paper, we only
focus on measuring the repeatability index of the entire
trace. Future work will focus on refining the concepts
presented in this paper to take into account other types of
metrics such as the size of the trace, etc. It is easy to see that
RI converges to 1 if the trace consists of one repeated
routine (Figure 2b).

Figure 2. Two traces used to illustrate the repeatability

index

It should be noticed that RI does not take into account
the order in which the routines are invoked. In other words,
any trace whose elements have the same probability
distribution will have the same repeatability index. This
converges with the definition of RI since it only indicates
the amount of repeatability that exists in a trace no matter
how or where repetitions occur.

2.2. A Measure of Variability
In this subsection, we are interested in measuring the

degree of variability of the calls invoked in the trace. For
example, consider the two traces T1 and T2 of Figure 3.
These traces have the same number of calls and invoke
identical routines. The repeatability index is also the same
since both traces have the routines B and C repeated twice
and A and D invoked only once. However, in T1, the
routine B calls C whenever B occurs, whereas, in T2, the
structure of B varies depending on whether C or D is
invoked. This suggests that the content of T1 might be
easier to understand than T2. For example, one can simply
collapse the subtrees rooted at B in T1 in order to have a
more compact trace than T2.

Figure 3. The trace T2 has higher variability than T1

which suggests that it is also more complex

Our approach for computing the variability of a trace is

based on the concept of conditional entropy, which
measures how much entropy a random variable Y has
remaining if we have already learned completely the value
of a second random variable X. The higher the conditional
entropy the more one can predict the value of a variable by
knowing the value of the other variable. When applied to
traces T1 and T2 of Figure 3, we can see that when B
occurs, in T1, the probability that C occurs is 100%,
whereas, in T2, the probability that C appears after knowing
that B is 50%.

More formally, suppose X and Y are two random
variables that take their values from sets P and R and p(y|x)
is the conditional probability of ‘y’ of R given a value ‘x’ of
P. The conditional entropy H(Y|X), which is also the
variability index (VI) of the trace, is then defined as [2]:

∑
∈

∑
∈

−==
Px

xyp
Ry

xypxpXYHVI)|(log)|()()|(

Our approach for computing conditional entropy
encompasses several steps. First, we define P as a set of
distinct routines of a trace that make calls (at least one) to
other routines (i.e. routines with outgoing edges) and R as a
set of routines that are called by at least one routine (i.e. the
ones with incoming edges). For example, when applied to
the trace of Figure 1. P = {A, B, D} and R = {B, C, D}.

Table 1. Matrix corresponding to tree of Figure 1

 B C D
A 1 0 1
B 0 1 0

Second, we transform the call tree into a matrix where
the rows represent the routines of P and the columns
represent R’s routines (see Table 1). For each row x and
column y, we set Matrix[x, y] to 1 if there is a call made
from the routine x to the routine y. Note that we have
deliberately chosen to ignore the frequency of calls. In other
word, the matrix in Table 1 represents the dynamic call
graph generated from the trace T1. The rationale behind
using the dynamic call graph is that software engineers will
most likely want to ignore the number of repetitions when
browsing parts of the trace. And in this case, two subtrees

that contain identical routines but invoked with different
frequencies should be considered similar and have,
therefore, the same degree of variability.

The next step is to normalize the content of the matrix
such as the entries of each row sum up to one as shown in
Table 2. Hence, for a routine x, the corresponding vector of
the normalized matrix holds the conditional probability
p(Y|X = x).

Table 2. Normalized matrix

 B C D
A 1/2 0 1/2
B 0 1/1 0
D 0 1/1 0

The conditional entropy equals zero if we can always
predict the value of Y by knowing X as illustrated in the
following example:

Figure 4. The conditional entropy of this trace is zero

3. Case Study

In this section, we present a case study where we apply
the proposed metrics to traces generated from the execution
of a Java-based system called Weka (ver. 3.0) [7, 8]. Weka
supports a collection of machine learning algorithms for
data mining tasks. It contains tools for data pre-processing,
classification, regression, clustering, and generation of
association rules.

Weka has 10 packages, 147 classes, 1642 public
methods, and 95 KLOC. We did not bother to count the
number of private methods since they are often ignored
when generating traces. The reason is that they are
considered mere utility components and do not add much
value to the content of a trace from the comprehension
perspective.

3.1. Generating Traces
We used our own instrumentation tool based on the BIT

framework [6] to insert probes at the entry and exit points of
each system’s non-private methods. Constructors are treated
in the same way as regular methods. Traces are generated as
the system runs, and are saved in text files. Although all the
target systems come with a GUI version, we can invoke
their features using the command line. We favoured the
command line approach over the GUI to avoid encumbering
the traces with GUI components. A trace file contains the
following information:

 Thread name
 Full class name (e.g. weka.core.Instance)
 Method name and
 A nesting level that maintains the order of calls

We noticed the Weka tool uses only one thread, so we
ignored the thread information.

We generated several traces from the execution of the
target system. The idea was to run the systems invoking
different features in order to cover a large portion of the
code. This will also allow us to better interpret the results.
Table 3 describes the features that have been traced.

Table 3. The features used to generate traces

Trace Description
T1 Cobweb Clustering algorithm
T2 EM Clustering algorithm
T3 IBk Classification algorithm
T4 Decision Table Classification algorithm
T5 J48 (C4.5) Classification algorithm
T6 Naïve Bayes Classification algorithm
T7 ZeroR Classification algorithm
T8 Apriori Association algorithm

3.2. Applying the Metrics
Table 4 shows the results of applying the repeatability

and the variability indices, RI and VI=H(X|Y), to Weka
traces. We also added two other metrics, S and M that
measure, respectively, the total number of calls (i.e. the size
of the trace), and the number of distinct methods invoked in
the trace.

Table 4. Results of applying the metrics to Weka traces

Trace S M H(X) RI VI = H(X|Y)
T1 193165 75 3.05 0.51 0.63

T2 66645 64 3.16 0.53 0.50

T8 156814 72 3.8 0.62 0.71

T3 39049 114 4.37 0.64 0.63

T4 43681 97 4.27 0.65 0.68

T6 37095 114 4.71 0.69 0.61

T7 12395 93 4.51 0.69 0.58

T5 97413 181 5.22 0.70 0.72

Trace T1 is the largest of all traces in terms of the
number of calls invoked although the number of distinct
methods contained is relatively small, 75 methods. The
repeatability index, RI = 0.51, suggests that the trace has a
large number of repetitions. We analyzed the frequency of
calls trace T1 in order to understand which parts of the trace
are repeated the most. Figure 5 shows the frequency
distribution of the routines invoked in T1. The frequency of
66 routines (out of 75) does not exceed 1% of the total
number of calls in the trace, while the frequency of the
remaining 9 routines varies from 1% to 20%. These routines

are shown in Table 5. Based on the Weka documentation,
we have concluded that these highly repetitive methods are
mere utility components – Routines that help implement the
core functionality of the system. Knowing this can help tool
builders develop filtering techniques that are based on the
removal of utility components, which can be used by
software engineers, browsing traces, to automatically
identify the most important content of a trace.

Table 5. The routines that are highly repeated in T1

weka.clusterers.Cobweb$CTree.UIndividual
weka.clusterers.Cobweb$CTree.sigma
weka.core.Instance.numAttributes
weka.core.Attribute.numValues
weka.core.FastVector.size
weka.core.Instance.attribute
weka.core.Attribute.isNominal
weka.core.Instances.attribute
weka.core.FastVector.elementAt

The trace T2 has a repeatability index (RI = 0.53) that is
similar to T1. However, its variability index, VI = 0.50,
indicates that the structure of the routines in T2 is less
complex than the ones in T1. This might be due to the fact
that the number of routines invoked in T2 is less than T1 (64
compared to 75).

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%
11%
12%
13%
14%
15%
16%
17%
18%
19%
20%
21%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73

Figure 5. Frequency analysis of Trace T1

T3 and T6 have the same number of distinct methods and
similar size. The repeatability and variability indices are
also close, which suggests that these traces have similar
complexity. A deeper look at the content of both traces
reveals that these traces share a considerable number of
distinct routines (almost 90% of the routines invoked in T3
are also invoked in T6). These traces represent two
classification algorithms (IBk and Naïve Bayes) supported
by Weka. The traces show that the implementation of these
features share a large portion of the code.

The trace T5 seems to be the most complex of all traces
with the highest repeatability and variability indices (RI =

0.70, VI = 0.72). Figure 6 shows the frequency distribution
of the routines invoked in T6. We notice that except one
routine whose calls represent more than 12% of the total
calls, the frequency of any other routine does not exceed 8%
of the total size of the trace. The reduction of complexity
based on the removal of utilities, as suggested earlier, might
not be sufficient when applied to this trace, since it will
approximately result in a trace with only about 12% less
calls. This suggests that this trace might necessitate the
application of more advanced trace reduction techniques
(see next Section for ways for reducing complexity).

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

11%

12%

13%

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177

Figure 6. Frequency analysis of Trace T6

4. Reducing Complexity

In this section, we discuss techniques for reducing the
complexity of traces based on repeatability and variability
indices.

The easiest way to reduce the amount of repetitions in a
trace is to collapse contiguous repetitions of calls into one
call and keep track of the number of repetitions if necessary.
To understand the behavior of an algorithm by analyzing its
traces, it is often just as effective to study the trace after
most of the repetitions are collapsed. And, in that case,
studying a trace of execution over a very large data set
would end up being similar to studying a trace of execution
over a moderately sized data set. In previous work [3], we
showed that this technique reduces the size of traces to
between 5% and 46% of the original size. However, the
resulting traces continue to have thousands of calls, which
makes this basic type of collapsing necessary but not
sufficient.

A more interesting alternative is to filter the trace by
removing the components that are mere implementation
details. For example, the methods of the classes Instance,
Attribute, FastVector, and Instances are the ones causing the
excessive number of repetitions of Weka traces. These
components are clearly utilities and need to be filtered out in
order to exhibit the important content of the traces.

However, there is no evidence that the routines with
high frequency are always utilities although it might appear
to be the case. There is a need to study the relationship
between the frequency of occurrence of a routine and the
concept of utilities. In addition, there might be many other
utilities that do not manifest themselves through their
frequency of occurrence. A good example for this is the
class Utils, which is invoked in most of the traces presented
in the previous section. This class is clearly a utility class
despite the fact that its methods are not as frequently
invoked as other components.

One approach for reducing the variability of a trace is to
consider similar subtrees, which are not necessarily
identical, as parts of the same pattern. For example, consider
a portion of a trace of routine calls, T1:
A(B(CCCCCD)(B(DCC)), where A(B) denotes “A calls B”.
This trace can be transformed into T2: A(B(CD)) if the
contiguous repetitions of “C” and the order of calls from
“C” to “D” are ignored when comparing the two subtrees
rooted at “B”. At a high level, the information contained in
T2 might be sufficient for the programmer’s purposes.

There exist a variety of matching criteria in the
literature (e.g. see [1]) that software engineers can use to
explore large traces. However, the sheer size of typical
traces makes this exploration process a daunting task,
further complicated by the fact that some criteria require, in
advance, the setting of specific parameters. In addition, the
order in which they are applied can have a significant
impact on the resulting trace. What is needed is a set of
algorithms that will combine several criteria and
automatically suggest appropriate settings for the rapid
exploration of the trace content. The algorithms should be
designed by taking into consideration the nature of the trace
being studied (e.g. trace of routine calls, inter-process
messages, etc.), as well as the current goals and experience
of the maintainer. They will vary depending on the criteria
used, the order in which they are applied, and input
parameters specific to each criterion.

5. Related Work
We are not aware of any work that uses entropy to

measure the information content of a trace.

There are several metrics that aim at measuring the
complexity of traces, among which the most interesting one
is presented by Larus in [9] and Reiss et al. in [10]. The
authors converted the call tree into a directed acyclic graph
by representing repetitive subtrees only once. This
transformation allows to factor out repetitions and provides
a good indicator of the repeatability aspect of the trace. The
drawback is that it requires the transformation of the call
tree into a graph. We intend to compare out techniques to
the ones presented by these authors.

In [3], we presented several metrics that measure various
properties of a trace of routine calls such as the number of
distinct components (e.g. routines, classes, packages, etc)
invoked in a trace, the number of calls of a trace remaining
after all contiguous repetitions are collapsed, etc. These
metrics can be used in combination with the ones presented
in this paper to gain a deep understanding of the complexity
of traces.

In [11], the authors present an extensive list of metrics to
measure various aspects of run-time information generated
from Java programs ranging from measuring the mere size
of traces to assessing the degree to which polymorphism is
used in Java program. Although these metrics are
interesting, they do not directly quantify the amount of
information found in a trace of routine calls. However, they
can help design techniques for complexity reduction. For
example, one can hide the details of polymorphic methods if
the need is to display the content of the trace at a high-level.
Knowing the number of polymorphic calls invoked in a
trace can help predict the gain resulting from applying this
complexity reduction technique.

There is also a large body of work in the area of profiles
that focus on measuring cumulative data in order to
assess/improve the performance of the system under study.
For example, the frequency analysis metrics discussed
earlier can be considered as one of these metrics (as shown
by Ball in [12]). These metrics can be used in combination
with the ones presented in this paper to detect parts of the
trace that repetitive and hence design techniques for
reducing the amount of repetitiveness.

6. Conclusion and Future Directions
In this paper, we presented two metrics based on the

concept of entropy that can be used to assess the complexity
of traces. One of our metric RI measures the amount of
repetitions contained in a trace. The other metric, referred to
as VI, measures the degree of variability of the sequences of
calls. The higher is the variability, the more complex the
trace.

We applied the metric to traces generated from an object-
oriented system called Weka. RI showed that traces contain
a very large number of repetitions. Using frequency
analysis, we were able to uncover the most repetitive
components.

We also discussed ways for reducing the complexity of
traces including the use of pattern detection algorithms, the
detection of utilities, etc.

Future directions should focus on conducting further
experiments with these metrics on larger traces. The long-
term objective is to design efficient trace simplification
algorithms and tools.

References

[1] W. De Pauw, D. Lorenz, J. Vlissides, M. Wegman,
“Execution Patterns in Object-Oriented Visualization”, In Proc. of
the 4th USENIX Conference on Object-Oriented Technologies and
Systems, pp. 219-234, 1998
[2] T. M. Cover and J. A. Thomas. Elements of Information
Theory. Wiley & Sons, New York, NY, USA, 1991
[3] A. Hamou-Lhadj, and T. Lethbridge, “Measuring Various
Properties of Execution Traces to Help Build Better Trace
Analysis Tools”, In Proceedings of the 10th International
Conference on Engineering of Complex Computer Systems, IEEE
Computer Society, pages 559–568, 2005.
[4] A. Hamou-Lhadj and T. Lethbridge, “A Survey of Trace
Exploration Tools and Techniques”, In Proceedings of the 14th
IBM Conference of the Centre for Advanced Studies on
Collaborative Research, IBM Press, pages 42-55, 2004.
[5] A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge,
“Recovering Behavioral Design Models from Execution Traces”,
In Proceedings of the 9th European Conference on Software
Maintenance and Reengineering, IEEE Computer Society, pages
112-121, 2005
[6] H. B. Lee, B. G. Zorn, “BIT: A tool for Instrumenting Java
Bytecodes”. USENIX Sympo-sium on Internet Technologies and
Systems, 1997, pp. 73-82.
[7] WEKA: http://www.cs.waikato.ac.nz/ml/weka/
[8] I. H. Witten, E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations,
Morgan Kaufmann, 1999.
[9] S. P. Reiss, M. Renieris, “Encoding program executions”, In
Proc. of the 23rd international conference on Software
engineering, Toronto, Canada, pp. 221-230.
[10] J. R. Larus, “Whole program paths”, In Proc. of the ACM
SIGPLAN '99 conference on Programming language design and
implementation, Atlanta, United States, ACM Press, 1999, pp. 259-
269.
[11] B. Dufour, K. Driesen, L. Hendren and C. Verbrugge,
"Dynamic Metrics for Java", OOPSLA 2003.
[12] T. Ball, “The Concept of Dynamic Analysis”, In Proceedings
of the 7th European Software Engineering Conference, Springer-
Verlag, pages 216-234, 1999.
[13] T. Systä, “Dynamic Reverse Engineering of Java Software”,
In Proc. of the ECOOP Workshop on Experiences in Object-
Oriented Reengineering, Lisbon, 1999, pp. 174-175.
[14] D. Jerding, and S. Rugaber, "Using Visualization for
Architecture Localization and Extraction", In Proc. of the 4th
Working Conference on Reverse Engineering, Amsterdam,
Netherlands, October 1997, pp. 219-234.
[15] T. Richner, and S. Ducasse, “Using Dynamic Information for
the Iterative Recovery of Collaborations and Roles”, In Proc. of
the 18th ICSM, Montréal, Canada, 2002, pp. 34-43.

