
 

Measuring the Complexity of Traces Using Shannon Entropy 
 

Abdelwahab Hamou-Lhadj 
Department of Electrical and Computer Engineering 

Concordia University 
1455 de Maisonneuve West 

Montreal, Quebec H3G 1M8 
abdelw@ece.concordia.ca 

 
 

Abstract 
 

Exploring the content of large execution traces can be a 
tedious task without efficient tool support. Building efficient 
trace analysis tools, however, requires a good 
understanding of the complexity embedded in traces. Trace 
complexity has traditionally been measured using the file 
size or the number of lines in the trace. In this paper, we 
argue that these metrics provide limited indication of the 
effort required to understand the content of a trace. We 
address this issue by introducing new trace complexity 
metrics based on the concept of entropy. Our metrics 
measure two important aspects of an execution trace: 
repeatability and variability. We present a case study where 
we apply the metrics to several execution traces. A 
discussion on how we can reduce the complexity of a trace 
based on these metrics is also presented. 
 
Keywords: Dynamic analysis, trace complexity, Shannon 
entropy, program comprehension, software maintenance 

1. Introduction 
The analysis of execution traces can provide valuable 

insight into the way a software system behaves. Traces, 
however, can be quite complex due the excessive number of 
events invoked. Typical traces can easily be millions of 
lines long.  

Existing trace simplification techniques such as the ones 
presented in [1, 13, 14, 15] have been surveyed and found to 
be limited in their ability to handle large and complex traces 
[4]. This is partly attributable to the fact that these 
techniques were designed without a clear understanding of 
the amount of work required to understand the content of a 
trace.  

At first glance, one might imagine measuring the amount 
of information contained in a trace could be rather 
straightforward: A naïve approach might just be to report 
the file size or the number of lines in the trace. However, a 
myriad of subtleties arise, for example:  

• The file size and number of lines depend on the schema 
used to represent the trace and the syntax used to 
convey the data specified by such a schema. 

• Not all elements of a trace are equally important, or 
contribute equally to complexity. For example, a long 
series of identical method calls would be rather simpler 
to understand than a highly varied and non-repetitive 
sequence of the same length. 

• The notion of complexity is itself rather vague, 
suggesting that we need to be able to measure different 
aspects that may contribute to complexity so we can 
later experiment with various approaches to complexity 
reduction. 

The execution traces targeted in this paper are those 
based on routine calls (i.e., call trees). We use the term 
‘routine’ to represent functions, procedures or methods of 
classes. Although the system analyzed in this paper is 
object-oriented, the metrics proposed here can also be 
applied to non-OO systems.  

In this paper, we present two metrics, based on the 
concept of entropy, to measure the amount of information 
contained in an execution trace. The first metric is based on 
the observation that traces are lengthy because they carry 
way too many repetitions. Therefore, the aim of the metric 
is to measure the amount of repetitions found in a trace. We 
call this metric the measure of repeatability. The objective 
of the second metric is to measure the degree of complexity 
of highly varied and non-repetitive sequences of calls. Our 
approach is based on the idea that, given a subtree rooted at 
routine ‘r’, if we can always predict the next call made by 
‘r’ then this subtree might be easier to understand than 
another subtree for which this prediction is difficult to 
make. We refer to this metric as the degree of variability of 
the trace. 

This paper is organized as follows: In the next section, 
we present the metrics along with basic concepts of 
information theory. In Section 3, we apply the metrics to 
traces generated from an object-oriented system called 
Weka. In Section 4, we discuss trace filtering techniques. In 
Section 5, we present related work. Finally, we conclude our 
work in Section 6.  

2. Shannon Entropy Applied to Traces 
Information theory defines several ways of quantities 

that agree with what an information measure should be. 



 

Shannon entropy is perhaps one most important of such 
measures, and quantifies the amount of information in a 
random variable. The basic concept of entropy in 
information theory has to do with how much randomness 
exist in a random event. The more uncertain we are about 
the content of the message, the more informative it is [2].  

Given a discrete random variable X with values in S and 
probability mass function p(x), the Shannon entropy, 
H(X),�of the variable X is defined by: 
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Shannon entropy H(X) depends on the probability 
distribution of X rather than the actual values of X. The 
logarithm with base two is usually considered in the 
computation of H(X). In this case, H(X) represents the 
average number of bits per symbol that is needed to encode 
the values of X.  

H(X) varies from zero to log(|S|); zero meaning that there 
is no uncertainty, whereas log(|S|) is reached when all 
elements of X have equal probabilities, in this case, the 
uncertainty is at its maximum [2]. 

In the following subsections, we show how Shannon 
entropy will be used to define the repeatability and 
variability metrics. 

2.1. A Measure of Repeatability 
Through this subsection, we will use the simple call tree 

illustrated in Figure 1. Let S be a set of distinct routines of 
the trace T of Figure 1, that is S = {A, B, C, D}. Let X be a 
random variable taking its values from S. We compute the 
probability distribution x of S by dividing the frequency of 
occurrences of x by the size of the trace. For example, p(A) 
= 1/9. In this case, the entropy of variable X using the above 
formula is H(X) = 1.66. That is, we need an average of 2 
bits per symbol of X in order to represent the content of the 
trace T. 

 
Figure 1. Example of a trace with H(X) = 1.66    

and RI = 0.18 

We further normalize H(X) so as to have a metric that 
ranges from 0 to 1. We achieve this by dividing H(X) by 

log(|S|), which represents the maximum amount of 
uncertainty possible.  

Furthermore, we define the repeatability index, RI, of a 
trace as: 

RI = 1 – H(X)/log(|S|) 

RI quantifies the amount of certainty with which we can 
predict the values of X. RI equals zero in two cases. The 
first case is when the trace (or the part of the trace under 
study) contains no repetitions (e.g. see Figure 2a). The 
second case is when all distinct routines invoked are 
repeated the same number of times. When applied to the 
entire trace, the second case does not happen in practice 
since we have at least the entry point of the program that 
occurs only once. If applied to parts of the trace, we need to 
fine tune RI so as to take into account the number of events 
invoked in this portion of the trace. In this paper, we only 
focus on measuring the repeatability index of the entire 
trace. Future work will focus on refining the concepts 
presented in this paper to take into account other types of 
metrics such as the size of the trace, etc. It is easy to see that 
RI converges to 1 if the trace consists of one repeated 
routine (Figure 2b). 

 
Figure 2. Two traces used to illustrate the repeatability 

index  

It should be noticed that RI does not take into account 
the order in which the routines are invoked. In other words, 
any trace whose elements have the same probability 
distribution will have the same repeatability index. This 
converges with the definition of RI since it only indicates 
the amount of repeatability that exists in a trace no matter 
how or where repetitions occur.  

2.2. A Measure of Variability 
In this subsection, we are interested in measuring the 

degree of variability of the calls invoked in the trace. For 
example, consider the two traces T1 and T2 of Figure 3. 
These traces have the same number of calls and invoke 
identical routines. The repeatability index is also the same 
since both traces have the routines B and C repeated twice 
and A and D invoked only once. However, in T1, the 
routine B calls C whenever B occurs, whereas, in T2, the 
structure of B varies depending on whether C or D is 
invoked. This suggests that the content of T1 might be 
easier to understand than T2. For example, one can simply 
collapse the subtrees rooted at B in T1 in order to have a 
more compact trace than T2. 



 

 
Figure 3. The trace T2 has higher variability than T1 

which suggests that it is also more complex  
 
Our approach for computing the variability of a trace is 

based on the concept of conditional entropy, which 
measures how much entropy a random variable Y has 
remaining if we have already learned completely the value 
of a second random variable X. The higher the conditional 
entropy the more one can predict the value of a variable by 
knowing the value of the other variable. When applied to 
traces T1 and T2 of Figure 3, we can see that when B 
occurs, in T1, the probability that C occurs is 100%, 
whereas, in T2, the probability that C appears after knowing 
that B is 50%.  

More formally, suppose X and Y are two random 
variables that take their values from sets P and R and p(y|x) 
is the conditional probability of ‘y’ of R given a value ‘x’ of 
P. The conditional entropy H(Y|X), which is also the 
variability index (VI) of the trace, is then defined as [2]: 
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Our approach for computing conditional entropy 
encompasses several steps. First, we define P as a set of 
distinct routines of a trace that make calls (at least one) to 
other routines (i.e. routines with outgoing edges) and R as a 
set of routines that are called by at least one routine (i.e. the 
ones with incoming edges). For example, when applied to 
the trace of Figure 1. P = {A, B, D} and R = {B, C, D}.  

Table 1. Matrix corresponding to tree of Figure 1 

 B C D 
A 1 0 1 
B 0 1 0 

Second, we transform the call tree into a matrix where 
the rows represent the routines of P and the columns 
represent R’s routines (see Table 1). For each row x and 
column y, we set Matrix[x, y] to 1 if there is a call made 
from the routine x to the routine y. Note that we have 
deliberately chosen to ignore the frequency of calls. In other 
word, the matrix in Table 1 represents the dynamic call 
graph generated from the trace T1. The rationale behind 
using the dynamic call graph is that software engineers will 
most likely want to ignore the number of repetitions when 
browsing parts of the trace. And in this case, two subtrees 

that contain identical routines but invoked with different 
frequencies should be considered similar and have, 
therefore, the same degree of variability.  

The next step is to normalize the content of the matrix 
such as the entries of each row sum up to one as shown in 
Table 2. Hence, for a routine x, the corresponding vector of 
the normalized matrix holds the conditional probability 
p(Y|X = x).   

Table 2. Normalized matrix 

 B C D 
A 1/2 0 1/2 
B 0 1/1 0 
D 0 1/1 0 

The conditional entropy equals zero if we can always 
predict the value of Y by knowing X as illustrated in the 
following example:  

 
Figure 4. The conditional entropy of this trace is zero 

 
3. Case Study 

In this section, we present a case study where we apply 
the proposed metrics to traces generated from the execution 
of a Java-based system called Weka (ver. 3.0) [7, 8]. Weka 
supports a collection of machine learning algorithms for 
data mining tasks. It contains tools for data pre-processing, 
classification, regression, clustering, and generation of 
association rules. 

Weka has 10 packages, 147 classes, 1642 public 
methods, and 95 KLOC. We did not bother to count the 
number of private methods since they are often ignored 
when generating traces. The reason is that they are 
considered mere utility components and do not add much 
value to the content of a trace from the comprehension 
perspective. 

3.1. Generating Traces 
We used our own instrumentation tool based on the BIT 

framework [6] to insert probes at the entry and exit points of 
each system’s non-private methods. Constructors are treated 
in the same way as regular methods. Traces are generated as 
the system runs, and are saved in text files. Although all the 
target systems come with a GUI version, we can invoke 
their features using the command line. We favoured the 
command line approach over the GUI to avoid encumbering 
the traces with GUI components. A trace file contains the 
following information:  



 

 Thread name 
 Full class name (e.g. weka.core.Instance) 
 Method name and  
 A nesting level that maintains the order of calls 

We noticed the Weka tool uses only one thread, so we 
ignored the thread information.  

We generated several traces from the execution of the 
target system. The idea was to run the systems invoking 
different features in order to cover a large portion of the 
code. This will also allow us to better interpret the results. 
Table 3 describes the features that have been traced. 

Table 3. The features used to generate traces 

Trace Description 
T1 Cobweb Clustering algorithm 
T2 EM Clustering algorithm 
T3 IBk Classification algorithm 
T4 Decision Table Classification algorithm 
T5 J48 (C4.5) Classification algorithm 
T6 Naïve Bayes Classification algorithm 
T7 ZeroR Classification algorithm 
T8 Apriori Association algorithm 

3.2. Applying the Metrics 
Table 4 shows the results of applying the repeatability 

and the variability indices, RI and VI=H(X|Y), to Weka 
traces. We also added two other metrics, S and M that 
measure, respectively, the total number of calls (i.e. the size 
of the trace), and the number of distinct methods invoked in 
the trace. 

Table 4. Results of applying the metrics to Weka traces 

Trace S M H(X) RI VI = H(X|Y) 
T1 193165 75 3.05 0.51 0.63 

T2 66645 64 3.16 0.53 0.50 

T8 156814 72 3.8 0.62 0.71 

T3 39049 114 4.37 0.64 0.63 

T4 43681 97 4.27 0.65 0.68 

T6 37095 114 4.71 0.69 0.61 

T7 12395 93 4.51 0.69 0.58 

T5 97413 181 5.22 0.70 0.72 

Trace T1 is the largest of all traces in terms of the 
number of calls invoked although the number of distinct 
methods contained is relatively small, 75 methods. The 
repeatability index, RI = 0.51, suggests that the trace has a 
large number of repetitions. We analyzed the frequency of 
calls trace T1 in order to understand which parts of the trace 
are repeated the most. Figure 5 shows the frequency 
distribution of the routines invoked in T1. The frequency of 
66 routines (out of 75) does not exceed 1% of the total 
number of calls in the trace, while the frequency of the 
remaining 9 routines varies from 1% to 20%. These routines 

are shown in Table 5. Based on the Weka documentation, 
we have concluded that these highly repetitive methods are 
mere utility components – Routines that help implement the 
core functionality of the system. Knowing this can help tool 
builders develop filtering techniques that are based on the 
removal of utility components, which can be used by 
software engineers, browsing traces, to automatically 
identify the most important content of a trace.  

Table 5. The routines that are highly repeated in T1 

weka.clusterers.Cobweb$CTree.UIndividual 
weka.clusterers.Cobweb$CTree.sigma 
weka.core.Instance.numAttributes 
weka.core.Attribute.numValues 
weka.core.FastVector.size 
weka.core.Instance.attribute 
weka.core.Attribute.isNominal 
weka.core.Instances.attribute 
weka.core.FastVector.elementAt 

The trace T2 has a repeatability index (RI = 0.53) that is 
similar to T1. However, its variability index, VI = 0.50, 
indicates that the structure of the routines in T2 is less 
complex than the ones in T1. This might be due to the fact 
that the number of routines invoked in T2 is less than T1 (64 
compared to 75). 
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Figure 5. Frequency analysis of Trace T1 

T3 and T6 have the same number of distinct methods and 
similar size. The repeatability and variability indices are 
also close, which suggests that these traces have similar 
complexity. A deeper look at the content of both traces 
reveals that these traces share a considerable number of 
distinct routines (almost 90% of the routines invoked in T3 
are also invoked in T6). These traces represent two 
classification algorithms (IBk and Naïve Bayes) supported 
by Weka. The traces show that the implementation of these 
features share a large portion of the code.  

The trace T5 seems to be the most complex of all traces 
with the highest repeatability and variability indices (RI = 



 

0.70, VI = 0.72). Figure 6 shows the frequency distribution 
of the routines invoked in T6. We notice that except one 
routine whose calls represent more than 12% of the total 
calls, the frequency of any other routine does not exceed 8% 
of the total size of the trace. The reduction of complexity 
based on the removal of utilities, as suggested earlier, might 
not be sufficient when applied to this trace, since it will 
approximately result in a trace with only about 12% less 
calls. This suggests that this trace might necessitate the 
application of more advanced trace reduction techniques 
(see next Section for ways for reducing complexity). 
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Figure 6. Frequency analysis of Trace T6 

 
4. Reducing Complexity 

In this section, we discuss techniques for reducing the 
complexity of traces based on repeatability and variability 
indices.  

The easiest way to reduce the amount of repetitions in a 
trace is to collapse contiguous repetitions of calls into one 
call and keep track of the number of repetitions if necessary. 
To understand the behavior of an algorithm by analyzing its 
traces, it is often just as effective to study the trace after 
most of the repetitions are collapsed. And, in that case, 
studying a trace of execution over a very large data set 
would end up being similar to studying a trace of execution 
over a moderately sized data set. In previous work [3], we 
showed that this technique reduces the size of traces to 
between 5% and 46% of the original size. However, the 
resulting traces continue to have thousands of calls, which 
makes this basic type of collapsing necessary but not 
sufficient.  

A more interesting alternative is to filter the trace by 
removing the components that are mere implementation 
details. For example, the methods of the classes Instance, 
Attribute, FastVector, and Instances are the ones causing the 
excessive number of repetitions of Weka traces. These 
components are clearly utilities and need to be filtered out in 
order to exhibit the important content of the traces.  

However, there is no evidence that the routines with 
high frequency are always utilities although it might appear 
to be the case. There is a need to study the relationship 
between the frequency of occurrence of a routine and the 
concept of utilities. In addition, there might be many other 
utilities that do not manifest themselves through their 
frequency of occurrence. A good example for this is the 
class Utils, which is invoked in most of the traces presented 
in the previous section. This class is clearly a utility class 
despite the fact that its methods are not as frequently 
invoked as other components.  

One approach for reducing the variability of a trace is to 
consider similar subtrees, which are not necessarily 
identical, as parts of the same pattern. For example, consider 
a portion of a trace of routine calls, T1: 
A(B(CCCCCD)(B(DCC)), where A(B) denotes “A calls B”. 
This trace can be transformed into T2: A(B(CD)) if the 
contiguous repetitions of “C” and the order of calls from 
“C” to “D” are ignored when comparing the two subtrees 
rooted at “B”. At a high level, the information contained in 
T2 might be sufficient for the programmer’s purposes. 

There exist a variety of matching criteria in the 
literature (e.g. see [1]) that software engineers can use to 
explore large traces. However, the sheer size of typical 
traces makes this exploration process a daunting task, 
further complicated by the fact that some criteria require, in 
advance, the setting of specific parameters. In addition, the 
order in which they are applied can have a significant 
impact on the resulting trace. What is needed is a set of 
algorithms that will combine several criteria and 
automatically suggest appropriate settings for the rapid 
exploration of the trace content. The algorithms should be 
designed by taking into consideration the nature of the trace 
being studied (e.g. trace of routine calls, inter-process 
messages, etc.), as well as the current goals and experience 
of the maintainer. They will vary depending on the criteria 
used, the order in which they are applied, and input 
parameters specific to each criterion. 

  

5. Related Work 
We are not aware of any work that uses entropy to 

measure the information content of a trace. 

There are several metrics that aim at measuring the 
complexity of traces, among which the most interesting one 
is presented by Larus in [9] and Reiss et al. in [10]. The 
authors converted the call tree into a directed acyclic graph 
by representing repetitive subtrees only once. This 
transformation allows to factor out repetitions and provides 
a good indicator of the repeatability aspect of the trace. The 
drawback is that it requires the transformation of the call 
tree into a graph. We intend to compare out techniques to 
the ones presented by these authors. 



 

In [3], we presented several metrics that measure various 
properties of a trace of routine calls such as the number of 
distinct components (e.g. routines, classes, packages, etc) 
invoked in a trace, the number of calls of a trace remaining 
after all contiguous repetitions are collapsed, etc. These 
metrics can be used in combination with the ones presented 
in this paper to gain a deep understanding of the complexity 
of traces.  

In [11], the authors present an extensive list of metrics to 
measure various aspects of run-time information generated 
from Java programs ranging from measuring the mere size 
of traces to assessing the degree to which polymorphism is 
used in Java program. Although these metrics are 
interesting, they do not directly quantify the amount of 
information found in a trace of routine calls. However, they 
can help design techniques for complexity reduction. For 
example, one can hide the details of polymorphic methods if 
the need is to display the content of the trace at a high-level. 
Knowing the number of polymorphic calls invoked in a 
trace can help predict the gain resulting from applying this 
complexity reduction technique. 

There is also a large body of work in the area of profiles 
that focus on measuring cumulative data in order to 
assess/improve the performance of the system under study. 
For example, the frequency analysis metrics discussed 
earlier can be considered as one of these metrics (as shown 
by Ball in [12]). These metrics can be used in combination 
with the ones presented in this paper to detect parts of the 
trace that repetitive and hence design techniques for 
reducing the amount of repetitiveness.  

6. Conclusion and Future Directions 
In this paper, we presented two metrics based on the 

concept of entropy that can be used to assess the complexity 
of traces. One of our metric RI measures the amount of 
repetitions contained in a trace. The other metric, referred to 
as VI, measures the degree of variability of the sequences of 
calls. The higher is the variability, the more complex the 
trace. 

We applied the metric to traces generated from an object-
oriented system called Weka. RI showed that traces contain 
a very large number of repetitions. Using frequency 
analysis, we were able to uncover the most repetitive 
components.  

We also discussed ways for reducing the complexity of 
traces including the use of pattern detection algorithms, the 
detection of utilities, etc. 

Future directions should focus on conducting further 
experiments with these metrics on larger traces. The long-
term objective is to design efficient trace simplification 
algorithms and tools.  
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