
�

�

��

The Impact of Regulatory Compliance on Agile
Software Processes with a Focus on the FDA

Guidelines for Medical Device Software

Hossein Mehrfard and Abdelwahab Hamou-Lhadj*
Software Behaviour Analysis Lab

Department of Electrical and Computer Engineering
Concordia University

1455 de Maisonneuve Blvd. West
Montréal, QC, Canada

ABSTRACT
The difficulty of complying with different regulations has become more evident as a large
number of regulated businesses are mandated to follow an ever-increasing set of regulations.
These regulations often drive significant changes in the way organizations operate to deliver
value to their customers. In this paper, we focus on the impact of the Food and Drug
Administration (FDA) regulations on agile software development processes, which in many
ways can be considered as just another type of organizational processes. We focus in particular
on the ability for Extreme Programming (XP) to support FDA requirements. Our findings show
that XP fails to meet many of the FDA guidelines for medical device software, which increases
the risks of non-compliance for organizations that have adopted XP as their main software
process. We believe, however, that the results of this study can lead the work towards designing
an extension to XP for FDA regulations.

Keywords: Regulatory Compliance, Organizational Dynamics, Organizational Processes,
Software Processes, IT Compliance.

INTRODUCTION
Recently, there has been a significant increase in attention to regulatory compliance and its
impact on the way organizations are managed and controlled. This increase is driven by several
factors including the recent corporate scandals such as the ones that involved some of the major
U.S. organizations (e.g., Enron, WorldCom), the new challenges that Information Technology
(IT) pose on protecting and securing sensitive information, and a higher need for business
continuity in an ever-changing business world.

As a result, more regulations, laws, standards, and guidelines are introduced every year
driving significant changes in the way companies are managed (Hamou-Lhadj & Hamou-Lhadj,
2007). These changes vary in scope and impact ranging from the introduction of new business
processes to changes at the governance and strategic level. Hamou-Lhadj et al. characterize these
changes in the form of a compliance support framework that can help effective handling of

�

�

��

regulatory compliance requirements (Hamou-Lhadj & Hamou-Lhadj, 2007). The framework is
composed of four main components: Governance, People, Process, and Technology. The aim of
the governance component is to provide the strategic direction that will guide an effective
delivery of end-to-end compliance support activities, while ensuring that these activities are
aligned with the company’s vision and business objectives. The people component revolves
around the proper selection, training, and retention of human potential that will operate the
compliance support framework. The process component (the topic of this paper) is concerned
with the need to adapt existing business processes (or creating new ones) for the handling of
compliance requirements at the operational level. Finally, the technology component emphasizes
the need for the proper tools and techniques in order to automate the delivery of compliance
support activities.

In this paper, we particularly focus on the impact of regulatory compliance on the process by
which software systems, used by regulated companies, are developed, maintained, and tested.
Software processes can be seen as just another type of organizational processes since they are
used by software companies to carry on the development of software products. As such, the
paper has the broader objective of looking into the issue of how regulatory compliance impacts
organizational processes used by software companies during product development.

More specifically, we target software systems used to control medical devices. These systems
are subject to heavy regulations from government organizations to ensure that their design is
carried out based on sound software engineering practices. One of the most predominant set of
regulations in North-America that regulate the way software systems used to control medical
devices should be developed is the Food and Drug Administration (FDA) regulations.

The FDA is a U.S. government agency that protects consumers by enforcing the U.S. Federal
Food, Drug, and Cosmetic Act (FDA, 2009b). It regulates more than $1 trillion worth of
consumer goods, about 25% of consumer expenditures in the U.S. (FDA, 2009b). The cost of not
complying with FDA regulations can be considerably high, which makes its regulations some of
the most important ones that should be on the priority list of a strategic compliance management
initiative of any organization subject to the FDA laws.

The FDA also regulates the design and use of medical devices. There are several guidelines
that have been issued by the FDA (e.g. (FDA, 2002) on how to monitor the manufacturing of
safe and reliable medical devices. This also includes the software systems that control these
medical devices. Due to complexity and criticality of medical devices, the FDA sets high
demands on how to develop software for medical devices. Most of the FDA requirements are
directly related to the process activities (e.g., requirement analysis, design, implementation, etc.)
used by an organization to develop software. In addition, the FDA expects sufficient level of
auditability within the software process itself. In other words, certain aspects of the development
life cycle need to be tracked to allow external auditors to assess whether the system is FDA-
compliant or not.

However, the requirements imposed by the FDA on the development process are very
stringent, and may not be easily attainable. These requirements have been developed to
overcome the difficulty of assessing the safety and reliability of software through traditional
testing techniques. Additional verification and validation techniques as part of a broader and
systematic process have to be applied. As such, The FDA requirements often translate into
documenting and following specific guidelines to certify that the system is built, verified, and
validated in a systematic manner and according to proven software engineering practices (FDA,
2002).

�

�

��

Therefore, from a risk management perspective, it is important for an organization to
understand whether a particular software process meets the FDA requirements or not. Areas
where the process fails to meet FDA should also be clearly indicated. In this paper, we chose to
study the capability of the Extreme Programming (XP) software process, an agile process, to
support these requirements. We choose to focus on XP due to the fact that it embeds most values
of the agile movement. As such, we believe that the results presented in this paper can be easily
generalized to other agile processes.

This paper is a continuation of previous work in which we discussed how XP can be extended
to support one aspect of the FDA requirements which pertains to user studies and understanding
user characteristics (Mehrfard et al., 2010). In this paper, we cover all aspects of the FDA
requirements ranging from requirement analysis to testing, passing by design and
implementation.

More precisely, the main contributions of this paper are as follows:
• We present in detail all the FDA requirements for medical device software. These

requirements cover a large spectrum of process activities including requirement analysis,
design, implementation, and testing. We believe that this contribution can be used as a
reference work for many organizations who struggle to meet FDA requirements due to
their ambiguity.

• We study the capability of XP to meet FDA requirements for device medical software.
We uncover areas of XP that do not meet FDA requirements. We do this by mapping XP
practices and work products to FDA guidelines for each software process activity. Ways
to extend XP to meet the FDA requirements can be derived from the mapping table.

FDA GUIDELINES FOR MEDICAL DEVICE SOFTWARE
In this section, we start by presenting our generic approach for mapping a software process to
FDA regulations for medical device software. Then, we show the application of this approach for
extracting the software process requirements for medical devices from the regulations and
guidelines provided by the FDA. We map each of these requirements to XP practices. By doing
this, we uncover places where XP lacks support for FDA guidelines.

Mapping Approach
Our approach for mapping a software methodology to FDA guidelines and requirements is
shown in Figure 1, and encompasses the following steps:

1. We select among FDA guidelines, the ones that relate to software development.
2. We study these requirements from the software engineering process perspective and

present typical software practices and documentation that can help developers follow the
guidelines.

3. According to the suggested practices and documentation, we investigate the capabilities
of our desired software development methodology, i.e., XP, for supporting these
requirements.

�

�

��

Figure 1. The framework for mapping a development process to FDA requirements for medical
device software

Step 2 is particularly important since many FDA guidelines and requirements for software
development are defined in a way that is too generic to be applied to a development process,
which often causes ambiguities for software developers since no specific development
methodology can abide by the provided guidelines. For example, the FDA requests the medical
device software developers to build safe and reliable software while no specific methods on how
safety and reliability should be carried out are explicitly provided by the FDA.

Furthermore, the FDA often uses terms that are not too specific and may have different
meanings depending on the context. That is, a single term can be used in more than one field
while having many completely different meanings. For instance, “risk analysis” can refer to an
activity in both software requirements engineering and project management. This also can cause
confusion in the intended meaning of a term making it difficult for development companies to
comply with these guidelines as the developers do not know what they specifically have to
follow.

One of objectives of this paper is, therefore, to clarify FDA guidelines and relate them common
software process engineering concepts. Once this is done, we map each FDA requirement to XP
to assess whether it supports it or not.

The FDA guidelines and requirements are grouped into four categories depending on the
process activity to which the guidelines apply:

� Requirement analysis
� Design
� Coding and construction
� Testing

Requirements Analysis
The FDA has issues several guidelines on how the requirement gathering and analysis phase
should be carried out (FDA, 2002). These guidelines can be further described based on the
following sub-phases:

� Requirements Elicitation
� Requirements Evaluation
� Requirements Traceability Analysis

�

�

��

� System and Acceptance Test Plan

Requirements Elicitation
FDA guidelines require a complete documentation that clarifies the software inputs, a software
requirements specification (SRS) document, and the expected software outputs. For instance,
developers are required to illustrate all ranges, limits and default values which are acceptable as
software inputs, a detailed description of the functions of the system (part of the SRS), and the
expected results of applying these inputs to the system, i.e., software outputs (FDA, 2002).
Documenting software inputs and outputs helps understand the boundary of the system which is
necessary for requirements elicitation (Paetsch et al., 2003).

It also important to clearly define the non-functional requirements (NFR) such as performance,
reliability, security and the safety features of software. A particular emphasis is put on safety
requirements since an unsafe medical device may cause loss of human lives (FDA, 1997; FDA
2002).

In addition, the FDA requires that all communication points between the software in question
and other software systems, hardware, and persons be well defined. These communication points
are known as interfaces. For instance, the communication point between the software and users is
the user interface (FDA, 2002; FDA 2009).

Another key requirement mandated by the FDA is to identify requirements that are related to
human factors such as how the system will be used by end users. This requires studying the
characteristics of the various users of the system using Human Factors Engineering (HFE)
concepts. In particular, the FDA guidelines suggest many activities including observations,
interviews, and conducting focus groups to understand HFE requirements (FDA, 1996). To this
end, the SRS should describe all the user characteristics based on user’s knowledge, ability,
expectation, and limitation.

XP provides a number of techniques to elicit requirements. Story cards, for example, are used
to capture the software features expected by end users. User stories are written by customers with
the help of an XP programmer (who plays the role of an interaction designer). User story is
comparable to use cases since both aim to capture the user’s needs.

The high involvement of customers in XP is another effective factor for eliciting requirements.
After writing user stories, the customer is involved during the “iterations to release” phase and
helps break down the user story into multiple tasks. In addition, brainstorming is another
elicitation technique that is encouraged in XP with the help of customers and domain experts
(Paetsch et al., 2003). This customer involvement also results in better definition of HFE
requirements.

However, there is no specific activity in XP that deals with documenting the different
interfaces of the system as required by the FDA. As for the functional requirements, they are
described in XP by developers during the “iterations to release” phase based on user stories. The
non-functional requirements, on the other hand, are dealt with in XP the same way as the
functional requirements, i.e., during the “iteration to release” phase. There is a common belief
that XP tends to neglect the representation of non-functional requirements during the
requirement gathering phase. This is due to the fact that XP tends to focus more on the
functionality requested by the customers and less on non-functional requirements. Most of these
requirements are only dealt with during the implementation phase. The level of documentation of
the requirements in XP is less than what is expected by the FDA. XP, for example, does not
require the presence of an SRS. The XP as an agile process tends to maximize team

�

�

��

communication in detriment of documentation. The user story is the only document during the
requirement elicitation stage used as the requirements document.

Requirements Evaluation
The FDA seeks from organizations to establish ways to evaluate and document requirements
through written policies and procedures to resolve any incomplete, ambiguous, inconsistent and
conflicting requirements. In addition, the requirements should be evaluated against possible
risks. The FDA considers the possibility of applying requirements evaluation in multiple steps
(i.e., incrementally) to arrive to clear functional and non-functional requirements (FDA, 2002).
Requirement risk analysis focuses on potential risks that may cause the project to fail. The FDA
puts a particular emphasis on risks due to misunderstanding of HFE requirements. Risk
management is planned and conducted before entering the requirement phase, i.e., at the project
level (FDA, 2002). The FDA also recommends a formal review of the requirements before
starting extensive software design (FDA, 2002).

From the software engineering perspective, the term requirements evaluation from the FDA
perspective carries many similarities with the concepts of requirement analysis and validation
found in software requirements engineering. There exist many techniques to evaluate
requirements including formal review meetings, risk analysis, requirements inconsistency
management, requirements prioritization, evaluation of alternative options in requirements,
requirement verification, and prototyping (Paetsch et al., 2003; Sommerville, 2004).

Due to the incremental nature of XP, requirements are evaluated within different iterations and
releases. In fact, the product resulting from an XP iteration or release is seen in XP as a prototype
that can be evaluated by customers (Abrahamsson et al., 2002). Requirement prioritization,
which includes risk analysis, is a constant practice in XP during the planning phase and the
“iteration to release” phase. During the planning phase, the customer selects the story cards for
the next release based on its business values which is documented in the release plan. He is also
responsible for choosing the story cards for each iteration during the “iteration to release” phase
and document these stories in an iteration plan. This practice is done with the help of developers
during these phases (Larman, 2003).

A general rule for agile processes is that they deal with the most probable risks to the project
during the first release and primary iteration of each release (Larman, 2003). However, there is
no specific method in XP for analyzing the risks in requirements. Moreover, XP does not support
formal review meetings to evaluate requirements.

The FDA guidelines also suggest the presence of a documented mechanism for evaluating
requirements. However, XP does not support the presence of any documentation for
requirements evaluation.

Requirements Traceability Analysis
Traceability analysis is an essential activity during the entire development process and is
required by the FDA regulations. Traceability analysis defines the relationship between the
software development artefacts to keep the logical order of these artefacts. This logical order
becomes more evident when we are transiting from one development phase to another one (FDA,
2002, 2009).

�

�

��

The FDA puts an emphasis on traceability analysis during the requirement analysis phase by
requiring from regulated organizations to establish, in a documented way, the following
relationships:

• Software requirements and system requirements (and vice versa)
• Software requirements and the risk analysis results

In addition, the relationship of the requirements with recognized risks coming from the risk
analysis results must also be determined. In software requirement engineering, requirement
traceability analysis is considered as part of the requirement management activities. Requirement
management is usually supported by CASE tools during software development. To achieve this,
different traceability matrices are suggested such as source traceability, requirement traceability,
design traceability and other traceability matrices based on the expected level of quality
(Sommerville, 2004).

XP is completely blind with respect to traceability analysis. There is not practice or process
artefact that account for having traceability matrices in any of the development phases.

System and Acceptance Test Plan
At this stage, the FDA requires to develop the system and acceptance test plans. According to
ANSI/IEEE standard 829, a test plan is defined as “the documentation of scope, approaches,
resources, and schedule of intended testing activities. This document should identify test items,
the features to be tested, the testing tasks, responsibilities, and any risks requiring contingency
planning” (FDA, 2002, FDA, 2009a).

An acceptance test plan is documented based on a set of acceptance criteria provided by the
customer to approve the final product. It is usually created through a close collaboration between
customers and developers (FDA, 2002; Pressman, 2003). A system test plan is written with
respect to criteria for testing the software product on a specific operating platform to detect
performance issues, and situations of stress (FDA, 2002; Pressman, 2003).

In XP, customers are asked to explain the acceptance criteria of the system before each release
(Larman, 2003). These criteria are used to generate acceptance tests which are later executed
either by the customer or the developer. In XP, the acceptance test plan is known as the customer
test document (Larman, 2003). System testing is supported in XP at the end of each release. The
XP programmer (who plays the role of an architect) is responsible for performing system testing
(Beck & Andres, 2004). A System test plan is written by an architect and put in practice with the
help of an XP tester.

Design Phase
The FDA defines the design phase as the process of translating the user requirements into their
related logical components to be implemented. Due to the complexity of medical devices, it
suggests to have both a high-level and detailed design. The design activity and associated FDA
requirements can be further divided into the following sub-phases (FDA, 2002):

� Design for usability
� Software Design Evaluation
� Design Traceability Analysis
� Updating the Test Plans
� Test Design Generation

�

�

	�

Design for Usability
The FDA guidelines highlight the importance of usability analysis during the design process to
improve human performance in using medical equipments based on their abilities (FDA, 1996).
It recognizes that the design for safety of medical devices should take into account human
factors. The reason is that according to the FDA Center for Devices and Radiological Health
(CDRH), the lack of attention to human factors during product development may lead to errors
that can potentially cause serious patient injuries or even death (FDA, 1996). A number of
guidelines have been proposed on how to deal with HFE during the design of software including
following Human Computer Interface (HCI) guidelines, improving software usability, and
performing software design coordinated with hardware design. To improve software usability,
the FDA suggests a number of usability tests such as scenario-based testing, and testing the
product by users per iteration of software development (FDA, 1996).

In XP, the user interface design (UI) is done during the “iterations to release” phase, but XP
does not suggest any guideline for UI design. In addition there is no specific practice in XP that
supports usability inspection or any other form of usability testing. However, due to the fact that
XP tends to be a user-centered process by working with users throughout the process to obtain
constant feedback and that it favours communication with customers, one can assume that XP
considers the usable aspect of the final product although at a limited extent (Kowalczykiewicz &
Weiss, 2002).

During the exploration phase, there is no specific practice in XP that mandates the use of
usability design patterns or evaluate usability at the design or architectural level. To design the
software system architecture, XP suggests building a system prototype during the exploration
phase to evaluate different architectures. The final architecture is consolidated during the first
release (Abrahamsson et al., 2002; Beck & Andres, 2004). There are two practices in XP that
affect the design of the system architecture: System metaphors and simple design. System
metaphors are shared stories that describe how the system works and the simple design principle
aims to make easier to understand each design component (Nord et al., 2004). Despite the
existence of the XP interaction designer, there is no explicit guideline in XP with respect to
following specific architectural patterns and assessing the usability of the system at the
architectural level.

Software Design Evaluation
The software design evaluation is considered as an integral part of the design process. The
objective is to validate correctness, completeness, consistency, and maintainability of the design
(FDA, 2002). The FDA guidelines define two categories of design evaluation activities: Design
review, and design verification and validation (FDA, 1997). During the evaluation of the design,
activities such as analysis of control flow, data flow, complexity, timing, memory allocation, and
criticality analysis should be supported (FDA, 2002). Moreover, the FDA puts an emphasis on
analysing component interfaces during the design evaluation to ensure that all the defined
interfaces in the requirement phase suit well the proposed design.

Design review meetings are required by the FDA to support the fact that a design inspection
has taken place. The focus of these meetings is to identify different concerns of software design
and their potential side-effects, possible solutions, and the corresponding corrective actions in
software design. During these meetings, designers present their design to the design reviewers.
There are three types of design review: preliminary design review, critical design review, and

�

�

�

system design review. The process is conducted in an iterative manner until potential problems
are explored and solutions have been proposed (FDA, 1997, FDA 2002, FDA 2009).

The FDA defines design verification as a confirmation by examination that a specific
requirement has been fulfilled. This requires documenting the design verification process. The
FDA suggests using some verification techniques such as fault tree analysis, and worst case
analysis. In design control document, the FDA references the ISO 9001:1994 standard, where
activities such as prototype evaluation, demonstration, simulation and comparing the design with
other similar proven designs are considered as software design verification activities (FDA,
1997; ISO, 2000).

Design validation is the examination that a design responds to user needs or the intended use of
the product. The FDA requires documenting the design validation process. Design validation
should be executed under actual or simulated use condition. It also needs to follow a successful
verification to ensure that each user requirements is fulfilled. For this purpose, the FDA requires
to provide a validation plan, validation methods and validation review. Some of the design
validation techniques recommended by the FDA include analysis and inspection methods,
compilation of relevant scientific literature, and provision of historical evidence that similar
designs are clinically safe (FDA, 1997).

The design in XP is kept as simple as possible and is informally documented. XP does not
account for activities that deal with analysis of communication links among the system
interfaces, control flow, and data flow as required by FDA. Also, the design review in XP is
significantly different from the FDA design review, because there is no formal design document
in XP to review. Instead of having formal meetings, design review is limited to pair
programming. It is recognized that an iterative cycle of pair programming provides continuous
analysis and review of the design to improve and simplify it (Abrahamsson et al., 2002). The
development teams using pair programming have reported good quality of design with fewer
lines of code as they worked together on both the design and the implementation (Cockburn &
Williams, 2001). However, XP does not support any specific practices which are required by the
FDA for design verification and validation.

Design Traceability Analysis
As mentioned in the requirement phase, the FDA requires traceability analysis throughout the
entire development process. In the design phase, tractability analysis is conducted to verify that
the entire design components are traceable to the software requirements and that all requirements
can be mapped to a software design (FDA, 2002). For this reason, there should be a design
traceability matrix which relates software requirements documents to design specification.
There is overlap between design traceability analysis and design verification. Both of them put
an emphasis on conformance of design with the requirements while traceability aims only to
show the relations between the requirements and the design. XP does not support any traceability
matrix during the design to show this relation.

Updating the Test Plans
The FDA requires updating existing test plans by generating module and integration test plans
during the design phase. A module test plan should be created to test specific units of the system.
On the other hand, the integration test plan should be updated to test the flow of control and data
between program units (FDA, 2002).

�

�

���

In addition, the acceptance and system test plans, which are created during the requirements
phase, should also be updated considering HFE criteria defined during the software requirements
and design phases.

Both unit testing and integration testing are performed within iteration in XP. But there is no
mention in XP about having a specific test plan. The nature of testing in XP is explained in the
testing section.

Test Design Generation
After preparing the test plan, the FDA requires from the development team to start generating
test procedures and test cases for unit, integration, system and acceptance test based on the
results of requirement and design phases. These tests should be completed and finally executed
during the coding and test phases (FDA, 2002).

In XP, unit tests cases are generated after the design within an iteration. In addition, acceptance
tests which are already generated by customers before the iteration starts are automated by an XP
tester to be executed after an iteration is completed. Furthermore, integration tests executed by an
XP programmer (who assumes the role of an integrator) at the end of an iteration before
acceptance testing so as to integrate the pieces of the code developed during the iteration
(Abrahamsson et al., 2002; Larman, 2003).

System test is done per release and supported by an XP programmer (architect). As XP
architect is the person who is charge of designing the system structure. He is responsible for
developing system test cases during multiple iterations (Beck & Andres, 2004). These activities
show that XP supports developing test cases before coding as requested by the FDA. However,
XP does not require documenting the test procedures.

Coding and Construction Activities
In this phase, the detailed design specification should be implemented as a computer program.
The construction is done either by directly start programming or assembling code components.
The selection of the programming language and builder tools (i.e. assembler, linker or compiler)
should be based on the availability of debugging and testing tools (FDA, 2002). The coding and
construction activities regulated by the FDA are:

� Source Code Evaluation
� Source Code Documentation Evaluation
� Code Traceability Analysis
� Source code Interface Analysis

Source Code Evaluation
Source code is evaluated before compilation to make sure that it follows design specification and
coding standards. The FDA recommends using desk checking techniques to evaluate the
software code. Desk checking methods include code audit, code inspection, code walkthrough,
and code review (FDA, 2009). During code inspection, the author of the code explains statement
by statement what the code is supposed to do in a meeting convened to analyze the program
logic and its conformance to coding standards. During code walkthrough, developers manually
trace the source code with small set of test cases. Code audit is a review of the source code by an
independent person, or team to make sure that the source code follows software design and
programming standards. A code review consists of organizing meetings, where the software code

�

�

���

is presented to project personnel, managers, and customers for feedback and approval (FDA,
2002, FDA 2009).

XP does not support any of the formal desk checking practices required by FDA. Instead, XP
claims that pair programming is more successful than any inspection and formal review methods.
According to experimental studies, the pair programming technique has been shown to be
effective in uncovering errors in the code while programming, saving costs since errors are
discovered before compilation (Cockburn & Williams, 2001). Therefore, it is reasonable to
assume that pair programming satisfies FDA requirements with respect to source code evaluation
without the need of having formal desk checking techniques.

Source Code Documentation Evaluation
The FDA requires documenting the coding and the construction process. In most software
projects, the commented code and the generated html or text files from the source code by tools
are considered sufficient for documenting the code. However, the FDA requires documentation
for each implemented module or function to show its agreement with coding standards and
quality policies, defined within the organization. In addition, the existing errors after coding and
construction have to be documented. Moreover, the whole process of compilation should be
documented (errors found, solutions and unsolved errors and warnings) (FDA, 2002).
XP does not support the production of any documentation needed to satisfy the FDA
recommendations such as documenting modules, errors, the compilation process, and the used
tools and techniques.

Code Traceability Analysis
The FDA requires having a traceability matrix to show the relation between the source code
modules and the design specification and vice versa (FDA, 2002). In addition, the traceability
matrices to show the relation of the test cases and the source code as well as the test cases and
the design specification is also needed (FDA, 2002).

XP does not support the development of traceability matrices from source code-to-design, from
test cases-to-source code, from test cases-to-design, from test cases-to-risk analysis, and from
source code-to-risk analysis as required by the FDA.

Source code Interface Analysis
The implementation of the interfaces between the system modules should be clearly specified in
the source code to ensure that the implemented communication links are well integrated with the
software implementation. This aims to increase the safety of the final software product.
There is no specific guideline in XP on how to analyze different interfaces of the subsystems for
implementing and integrating the various parts of the code.

Test Generation
Besides the test procedures and test cases created to test the software design, the new test cases
and their corresponding test procedures are generating based on the implementation. The new
test cases can be unit, integration, acceptance, and system testing.

There are two types of test cases in XP that are possible to map to the design: unit and
integration test cases. XP follows the test-driven development method (TDD), in which test cases
are design before coding starts. Therefore, unit test cases are generated as the result of TDD after

�

�

���

the design and before coding. Integration test cases are generated at the end of an iteration once a
new piece of code is adding to the collective codebase. These two test cases have the potential to
map to the code and the design. For the acceptance test, it is not possible to map it to elements of
the design or code. In addition, dividing XP into small iterations and having simple design
enables developers to relate the elements of a design to code and therefore create a code-to-
design traceability matrix. System test cases are generated during the whole release to be
executed during the productionizing phase.

The Testing Phase
The FDA focuses extensively on software testing during the development process to ensure the
reliability and safety of the software product. It lists a number of software testing principles to
examine software effectively such as the importance of what is to be tested rather than how to
apply the test, anticipating the results expected from the testing process, ensuring the
independence of the testing process from coding, and documenting the tests. The FDA guidelines
highlight four types of testing activities that need to be supported: structural testing, functional
testing, statistical testing, and regression testing (FDA, 2002; FDA, 2009a).

Structural or white box testing evaluates the internal code structure. The amount of structural
test coverage is defined based on common metrics such as coverage of statements, branches,
loops, conditions, and data flows (FDA, 2002).

Functional testing is a black box testing technique which is conducted to evaluate the program
functionality and program interfaces. The FDA divides functional testing into four different
types: normal case, output forcing, robustness, and combinations of inputs (FDA, 2002).

Regression testing is another type of testing technique to manage the changes during the
software development life cycle. Regression testing ensures that changes to the system do not
negatively impact the other parts of the system (FDA, 2002; FDA 2009).

Test Documentation
Documenting test activities is an important concern for the FDA during the testing process. The
documents that the FDA requires during the testing process include a test plan, test procedures,
test cases, test reports, and test logs (ANSI/IEEE, 1983; FDA, 2002; FDA 2009).

Test plan, as defined in the requirement phase, should be created early in the process to identify
the testing tasks during each development stage. A test procedures document is generated from
the test plan. It contains instructions about each test on how to setup the test and evaluate the
results. Test cases are designed and implemented depending on the type of testing (i.e. structural,
functional, statistic, and regression). This document should identify system inputs, expected
results, and a set of execution conditions for test. A test log is defined as a record of the test
execution (FDA, 2009). For instance, all detected errors during test execution should be logged.
Once test execution is finished, the direction and results of the test should be recorded (FDA,
2002; FDA 2009).

Except a limited number of documents that are created to reach a running product, XP attempts
to minimize the amount of efforts on documentation as one of its values. Among the testing
documents created in XP, the test cases exist usually in a form that is readable by automatic
testing tools.

�

�

���

Test Execution
The FDA requires to perform the following testing activities: unit testing, integration testing,
system testing and acceptance (FDA, 2002).

In unit testing, the program is divided to smaller components (modules). Then, the structure
and functionality of each component is examined early in program testing (FDA, 2002).
Integration testing is one level higher than unit testing. Integration testing concentrates on the
flow of control and data between units (FDA, 2002). The system level testing, all aspects of
functionality and performance of the software product are tested. This test is done on working
software products and developers should consider the requirements that exist at the level of the
operating environment. The FDA highlights some aspects of software to examine during system
testing such as performance issues, responses to stress conditions, security features, effectiveness
of software recovery, HFE and usability, accuracy of documentation, and compatibility with
other software products (FDA, 2002).

Finally, for user site testing, the FDA requires the conduct of user site testing as the last step of
the testing activity of the software product. It defines user site testing as any testing through
actual or simulated use of software as the part of installed system configuration at the user’s site.
As mentioned in the requirement phase, the FDA assumes that user site testing is the same as the
installation testing, beta testing, site validation, installation verification, and user acceptance test.

XP supports unit testing. Unit tests are generated in each iteration based on the design to test
subsequent code. Then, after writing the code, the unit tests are executed to find probable faults
(Maximilien & Laurie, 2003). In addition, XP supports integration testing by continuous
integration whenever new code is written, added to the collective codebase, and unit tested
(Abrahamsson et al., 2002).

There is system test in XP with a scope limited to testing the system structure. An XP
programmer (architect sub-role) is responsible for providing the system tests to examine the
architecture during the productionizing phase for each release (Beck & Andres, 2004).

Test Traceability Analysis
The FDA requires several traceability matrices to link unit tests to detailed design, integration
tests to high-level design, and system tests to software requirements (FDA, 2002).
There is no support in XP for traceability matrices from unit tests to detailed design, from
integration tests to high-level design, and from system tests to software requirements. But
developing such traceability matrix for unit test to detailed design should be straightforward
since the unit tests are developed based on the design and before coding starts.

Summary
Tables 1 to 4 summarize for each process activity the recommended practices according to the
FDA guidelines for medical device software. The tables also show the documentation that is
required to be generated throughout the process for the system to be FDA compliant. Areas
where XP fails to meet the FDA requirements as shown in bold. As shown in these tables, many
projects that adopt XP run high-risk of non-compliance with the FDA regulations because of the
inability of XP to meet several FDA required practices.

�

�

���

To address this issue, there is a need to extend XP for projects that requires FDA compliance
by explicitly addressing the missing requirements. This extension will require adding new roles,
practices and work products (documentation). However, we believe that any extension to XP
should consider the following points:

� The XP values should not be affected by the extension. These include increased
communication among team members, pair programming, collective ownership of the
code, rapid iteration, light-weight documentation, etc. These practices have been shown
to be useful in many software projects.

� There should be a compromise between keeping the process agile and meeting the FDA
requirements. This is particularly difficult to achieve since XP roles are defined in such a
way that optimizes the time it takes to produce a release. Adding new practices to XP
may XP time to market norms. Tradeoffs that balance agility and auditability need to be
investigated.

�

���������	�

������� ������������������������� ����������

Requirement Phase FDA Recommended
Practices

FDA Required
Documentation XP Practices XP

Documentation

Requirements
Elicitation

Interviews, use cases,
observation and social
analysis, focus group,
brainstorming, and
prototyping

Software Requirements
Specification (SRS)

User story card writing,
High customer
involvement, Eliciting
requirements in number
of iterations

User stories are
the only
documentation
of requirements
in XP

Requirements
Evaluation

Formal review meetings,
risk analysis, requirements
inconsistency management,
requirements prioritization,
evaluation of alternative
options in requirements,
requirement verification,
prototyping, requirements
risk analysis

Result of the evaluation
needs to be documented

System prototype,
Building software
functionality in number
of iterations, Handling
possible risks early in
the development process

The process of
evaluating
requirements is
not documented
in XP

Requirements
Traceability Analysis Create traceability matrices

Software requirements
and system requirements
traceability matrix,
software requirements
and the risk analysis
result traceability matrix

There is no practice in
XP for traceability
analysis

There is no
documentation
that relates
different
artefacts

Test Plan Working on acceptance and
system test plans

Acceptance test plan,
system test plan

Customers are involved
in the writing of
acceptance tests, The
XP architect is
responsible for creating
a system test plan

Both system and
acceptance test
plans are
documented

�

�

�

�

�

�

�

���

���������	�

������� �����������������������������

Design Phase FDA Recommended
Practices

FDA Required
Documentation XP Practices XP

Documentation

Design for usability

Usability testing, usability
inspection, usability inquiry,
usability design patterns,
scenario-based assessment
of architecture

Documentation on design
decisions that relate to
making the system more
usable

System prototyping to
obtain feedback for the
end users.

The prototype itself is
the only evidence that
prototyping took place

Software Design
Evaluation

prototype evaluation,
demonstration, simulation,
comparing the design with
other similar proven
designs, analysis and
inspection methods,
compilation of relevant
scientific literature,
provision of historical
evidence that similar designs
are clinically safe

design review document,
design verification
document, design
validation document,
Software Design
Specification (SDS)

 Pair Programming,
Refactoring

Design evaluation is
not documented

Design Traceability
Analysis Create traceability matrices Requirement-to-design

traceability matrix

There is no practice in
XP for traceability
analysis

There is no
documentation that
relates different
artefacts

Update Test Plan Working on unit and
integration test plans

Unit and integration test
plans

Updating test plans
taking into account
design elements

Unit and integration
test plans

Test Design
Generation

Generating test cases for
unit, integration, acceptance
and system testing

Test cases and test
procedures

Generating test cases for
unit, integration,
acceptance and system
testing

Unit test cases,
integration test cases,
acceptance test cases,
and system test cases

���������	�

������� ����������������� !����������

Coding Phase FDA Recommended
Practices

FDA Required
Documentation XP Practices XP

Documentation

Source Code
Evaluation

code audit, code
inspection, code
walkthrough, code review

Documentation that shows
that code has been reviewed Pair programming No documentation is

produced

Source Code
Documentation
Evaluation

Although there is no
specific practices defined
in the FDA guidelines,
the FDA requires that the
source code be
documented and that the
evaluation of this
documentation should be
performed

Source code document There is not support
for this activity

Since the code does not
need to be
documented, the
evaluation of the
documentation does
not apply.

Code Traceability
Analysis

Create traceability
matrices

Traceability matrices for:
source code to design
specification, test cases to
source code, test cases to
design specification, test
cases to risk analysis results,
source code to risk analysis
results

There is no practice
in XP for traceability
analysis

There is no
documentation that
relates different
artefacts

Source code Interface
Analysis Interface checking

Documents that show that
interfaces between the
system components have
bee verified

There is no support
for this activity

No documentation is
created

Test Generation

Updating test cases for
unit, integration,
acceptance and system
testing

Document that describes test
cases and test procedures

Updating test cases for
unit, integration,
acceptance and system
testing

Unit test case,
Integration test case,
Acceptance test case,
System test case

�

�

���

������"��	�

������� ������������������������������

Testing Phase FDA Recommended
Practices

FDA Required
Documentation XP Practices XP

Documentation

Test Documentation
The FDA requires
documenting the testing
process

Test plan, test procedures,
test cases, test report, and
test logs

XP is a test-driven
approach and there are
many practices and
roles that are dedicated
to testing

Test plans, test
procedures, test logs,
and test cases

Test Execution
Execution of unit tests,
integration tests, system
tests, and user site testing

Document that describes the
results of executing the tests Tests are executed Test logs are kept for

debugging purposes

Test Traceability
Analysis

Create traceability
matrices

Traceability matrices for:
unit tests to detailed design,
integration tests to high
level design, and system
tests to software
requirements

There is no practice
in XP for traceability
analysis

There is no
documentation that
relates different
artefacts

CONCLUSION AND FUTURE DIRECTIONS
In this paper, we discussed the changes that regulatory compliance can have on software processes with a
particular focus on agile practices such as XP. We particularly looked into the requirements imposed by
the FDA on the way medical device software is built, tested, and maintained. Some of the contributions of
the paper include extracting the requirements that FDA imposes on software processes by focusing on
process activities, and analyzing the capability for XP (an agile process) to support FDA requirements.
We uncovered areas where XP fails to support many of the FDA key requirements. We suggested that one
way of meeting the FDA requirements is to extend XP by adding new roles, practices, and artefacts.
However, this extension should be carefully designed so as to (1) minimize the impact on the XP values,
and (2) balance the agility of XP with the need to satisfy the FDA requirements.

The immediate future work would be to investigate ways to extend XP to meet the FDA requirement
and experiment with this extension in practice. We anticipate that designing an extension to XP while
keeping its agility could be a challenging task. Another future direction would be to apply the techniques
presented in this paper to other agile processes such as Scrum, FDD, and others.

REFERENCES
Abdeen, M. M., Kahl, W., & Maibaum, T. (2007). FDA: Between Process and Product

Evaluation. In J. M. Goldman, I. Lee, O. Sokolsky, S. Whitehead (Ed.), The joint
Workshop on High Confidence Medical Devices, Software, and Systems and Medical
Device Plug-and-Play Interoperability (pp. 181-186). Cambridge, MA, USA: IEEE
Computer Society Press.

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile Software Development
Methods: Review and Analysis. Kajaan, Finland: VTT Publications.

ANSI/IEEE. (1983). IEEE Standard for Software Test Documentation. Retrieved August 9,
2009, from http://standards.ieee.org/reading/ieee/std_public/description/se/829-
1983_desc.html

Beck, K., & Andres, C. (2004). Extreme Programming Explained: Embrace Change (2nd
Edition). Addison-Wesley Professional.

Cockburn, A., & Williams, L. (2001). The Costs and Benefits of Pair Programming. In G. Succi,
M. Marchesi (Ed.), Extreme Programming Examined (pp. 223-248). Boston, MA, USA:
Addison-Wesley Longman Publishing.

FDA. (1996). Do It by Design: An Introduction to Human Factors in Medical Devices. Retrieved

�

�

���

September 6, 2009, from
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/Guidanc
eDocuments/UCM095061.pdf.

FDA. (1997). Design Control Guidance for Medical Device Manufacturers. Retrieved August
10, 2009, from
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/Guidanc
eDocuments/UCM070642.pdf.

FDA. (2002). General Principles of Software Validation; Final Guidance for Industry and FDA
Staff. Retrieved August 3, 2009, from http://www.pacontrol.com/download/General-
Principles-of-Software-Validation.pdf.

FDA. (2009a). Glossary of Computer Systems Software Development Terminology. Retrieved
March 19, 2010, from
http://www.fda.gov/iceci/inspections/inspectionguides/ucm074875.htm

FDA. (2009b). Guidelines, Regulatory Information. Retrieved April 3, 2010, from
http://www.fda.gov/RegulatoryInformation/Legislation/default.htm

Forsström, J. (1997). Why Certification of Medical Software Would Be Useful? International
Journal of Medical Informatics, 47(3), 143-151.

Hamou-Lhadj, A.K, & Hamou-Lhadj, A (2007). Towards a Compliance Support Framework for
Global Software Companies. The IASTED International Conference on Software
Engineering and Applications (pp 31-36). Cambridge, MA, USA: ACTA Press.

Kowalczykiewicz, K., & Weiss, D. (2002). Traceability: Taming uncontrolled change in
software development. Foundations of Computing and Decision Sciences, 27(4), 239-
248.

Larman, C. (2003). Agile and Iterative Development: A Manager's Guide. Addison-Wesley
Professional.

Maximilien, E. M., & Laurie, W. (2003). Assessing test-driven development at IBM. In L.
Clarke, L. Dillon, W. Tichy (Ed.), International Conference on Software Engineering
(pp. 564 - 569). Portland, Oregon, USA: IEEE Computer Society Press.

Mehrfard, H., Pirzadeh, H., & Hamou-Lhadj, A. (2010). Investigating the Capability of Agile
Processes to Support Life-Science Regulations: The Case of XP and FDA Regulations
with a Focus on Human Factor Requirements. In R. Lee, O. Ormandjieva, A. Abran, C.
Constantinides (Ed.), Software Engineering Research, Management and Applications
(pp. 241-255), Berlin / Heidelberg, Germany: Springer Studies in Computational
Intelligence.

Nord, R. L., Tomayko, J. E., & Wojcik, R. (2004). Integrating Software-Architecture-Centric
Methods into Extreme Programming (XP) (Tech. Rep. CMU/SEI-2004-TN-036).
Pittsburgh PA: Carnegie-Mellon University, Software Engineering Institute.

Paetsch, F., Eberlein, A., & Maurer, F. (2003). Requirements Engineering and Agile Software
Development. The International Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises (pp. 308 - 313). Linz, Austria: IEEE Computer Society Press.

Pressman, R. (2003). Software Engineering: A Practitioner's Approach (6th Edition). McGraw-
Hill.

Sommerville, I. (2004). Software Engineering (7th Edition). Pearson Addison Wesley.

