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Abstract—Software maintainers use the traces of field 

failures to understand and diagnose faulty functions that 

cause the system to fail. Despite their usefulness, traces 

from the field can be quite overwhelming, especially for 

software systems with a vast client base. In the execution of 

realistic applications, many of them being millions of lines 

of code, there are just too many traces that are generated. 

In addition, traces are known to be extraordinarily large, 

which further complicates matters. Fortunately, not all 

field failures are caused by new faults. In fact, previous 

studies showed that 50% to 90% of field failures are due to 

previously known faults. In this paper, we propose a 

machine learning approach that automatically detects 

recurring faulty functions in the traces of new field 

failures. We achieve our goal by training decision trees on 

earlier resolved traces of system failures from the current 

and prior releases of the system. When applied to a large 

industrial system with 20 million lines of code and 200,000 

functions, our approach was able to detect recurring faulty 

functions in the traces of field failures with an accuracy of 

90%, to even 97% in some cases.  
 

Index Terms—Recurrent faults, software maintenance, 

crashing failures, non-crashing failures, function call 

traces, decision tree. 

 

ACRONYMS AND ABBREVIATIONS 
 

LOC      Lines of Code 

MDL      Minimum Description Length  

WPM     Windows Performance Monitor  

 

I. INTRODUCTION 

 

Maintainers use failure reporting techniques to collect 

information about system failures in the field. System failures 

in the field can be of two types: crashing failures, and non-

crashing failures. Examples of failure reporting tools for 

crashes include the Windows Error Reporting tool [44], the 

Mozilla crash reporting system [28], and Ubuntu’s Apport 

crash reporting tool [42] that collect stack traces (function 

calls on the stack). Examples of tools for non-crashing failures 

include IBM DB2 [26], and IBM WebSphere [16] reporting 

systems that collect all of the executed function calls from a 

specific time
1
. 

Despite their usefulness, field traces of software products 

with a large client base can be quite overwhelming to software 

developers. There are just too many traces that can be reported 

by the users. This problem is further complicated by the fact 

that typical traces of failures can be quite large. It is often an 

arduous task to analyze their content. Fortunately, not all the 

traces of failures yield new faults. In fact, studies have shown 

that, when a software product has a large number of instances 

(copies of the same software product) in the field, 

approximately 50% to 90% of the  failures occur due to 

previously known faults [51], [19], [3]. We refer to such faults 

as recurring faults. Thus, when a new failure trace is reported, 

it is most likely due to a fault that was previously reported in 

other failure traces.  The same fault reappears because users 

do not install patches (updates) on time, or vendors do not 

provide patches on time [18]. The users do not update systems 

on time because an updated software application could cause 

other software applications to crash, and result in a loss of 

valuable time and money. Similarly, delays from vendors 

occur because of the time to diagnose and fix the faults. 

During that time, many faults would reappear in different 

instances of the deployed software systems. 

To aid developers in reducing the time spend analyzing the 

traces of field failures, and identifying faults that cause the 

field failures, it is therefore important to automatically identify 

recurring faults in the traces of field failures. Previous 

techniques use clustering algorithms to address this problem 

of diagnosing recurrent faults that cause crashing [3], [8], [10], 

[19], and non-crashing [33] failures. Usually, these techniques 

measure a similarity distance between the function call traces 

of failures, and form groups (clusters) of the traces with 

minimal distances. Developers then go through the function 

call traces of a group to discover the locations of faults. 

Ideally, each group should have one failure type (e.g., crash 

type), but a group can be associated to more than one failure 

types. 

In this paper, we propose to use supervised learning; more 

specifically, we generate decision trees from historical traces 

of field failures with faulty functions already known. We then 

use decision trees to identify recurring faulty functions in new 

traces of crashing and non-crashing failures. Our historical 

collection of failure traces consists of the traces from the 

 
1Non-crashing failures can manifest themselves long after the execution of the 
fault, and are difficult to resolve than crashes. 
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current and prior releases. The intuition behind our solution is 

that faulty functions persist across releases [20], and a 

majority (50 to 90%) of them are recurrent [3], [19], [51]. 

Unlike clustering based techniques, our approach is capable of 

pinpointing recurring faulty functions that cause failures, 

instead of a group of similar faults. In addition, clustering 

techniques are known to suffer from various limitations 

including the selection of the adequate distance measure, the 

clustering algorithm, etc.  

We evaluated our approach on field traces of a very large 

industrial system of 20 million lines of code LOC, 200,000 

distinct functions, and a user base of approximately one 

million users
2
. Our results show that, on average, 90% of the 

recurring faulty functions in failure traces are correctly 

identified across the releases. Our results also show that 

functions can have different faults, but recurring faulty 

functions can still be accurately identified because of the 

similarity of traces.  

This work is an extension of our previous work where we 

presented a technique that aims to identify recurring faults 

using only the current release [29]. We applied that earlier 

approach to small open source utilities (around 1000 LOC) 

with small failure traces generated using test suites. This paper 

particularly contributes by showing that recurring faulty 

functions, irrespective of the type of faults, can be identified 

using field traces of different releases too. It also contributes 

by evaluating the approach on a realistic commercial 

application with traces collected from the field. It also shows 

that different types of events (e.g., exception thrown) present 

in failure traces of commercial applications do not contribute 

significantly in automatic fault diagnosis, and removal of 

unnecessary events can reduce the trace size by approximately 

50%. In short, we have made many fine adjustments to the 

technique to make it scalable and applicable in the industrial 

context. 

This paper continues as follows. The next section  describes 

our technique. Section III shows the case study of a large 

commercial application. Section IV explains threats to 

validity. Section V describes related techniques. Section VI 

concludes, and describes future work. 

II. THE APPROACH 

We term our technique, F007, the faulty function finder. 

The key objective is to discover faulty functions in system 

failure traces by using earlier system failure traces of the same 

release or previous releases. F007 actually builds decision tree 

models from historical system failure traces. Faulty functions 

in historical traces are known.  F007 then uses the decision 

tree models to  diagnose faulty functions in newly generated 

traces of system failures from the field. This problem should 

not be confused with the problem of predicting new faults. As 

mentioned earlier, our focus is on helping software 

maintainers reduce the number of field failure traces they need 

to look at by automatically pinpointing the faults if the failures 

are caused by previously reported faults. 

Our approach encompasses four main steps. The first one 

is to collect function call traces that are generated when the 

 
2System name is anonymous due to proprietary reasons.  

system fails. In this paper, we include traces of both crashing 

and non-crashing system failures. In the second step, we train 

decision trees on the system failure traces of known faulty 

functions. We actually train one decision tree for each faulty 

function. We will discuss the rationale behind this approach in 

the next subsections. The next step is a testing step. Whenever 

a new system failure trace arrives from the field, we pass it to 

the decision trees. Each decision tree then associates the trace 

with its knowledge of earlier traces, and their corresponding 

faulty functions. Each decision tree then emits the probability 

of its faulty function for the new trace. The suspected faulty 

functions from the decision trees are then arranged in a ranked 

list in decreasing order of their probabilities. The intuition 

behind this ranking is that the function ranked higher is more 

likely to be faulty than the function ranked lower. Finally, the 

list of suspected faulty functions with their ranking is 

presented to  software developers for evaluation. These steps 

are detailed in the subsequent subsections. 

A. Collecting Traces of Failures 

In this paper, we focus on traces of function calls because, 

in practice, function call traces are the commonly collected 

traces from the field (see Section I). Other traces such as 

statement-level traces can also be used, but they tend to be not 

practical because of the  additional overhead they cause during 

trace generation.  

A typical scenario for failure analysis in the deployed 

system is the following [27]. A software service analyst 

receives a phone call from a customer reporting software 

failure. The analyst has to quickly determine the root cause of 

the failure. The analyst tries to determine whether it is a 

recurring fault, already known from another customer, or it is 

a new fault. If it is a recurrent fault, then the analyst will 

quickly provide the customer a fix-patch or another known 

solution. If it is a new fault, then the analyst has to notify 

developers in the maintenance team to start detailed 

investigation about the origin of the new fault. In both cases, 

the customer must be quickly provided with a solution; the 

faster the solution, the better the customer satisfaction. 

 To determine the recurrent fault, the analyst asks the 

customer to reproduce the failure by enabling a tracer [16], 

[26]. The analyst collects the trace from the customer. An 

example of a raw failure trace from the customer is shown in 

Fig. 1. The trace contains function entry, function exit, 

function probe point, and error codes (exceptions)  for each 

thread of a process. Additional trace information may also be 

collected via logging programs for specific operating systems, 

such as the Windows Performance Monitor (WPM). WPM 

generates performance counters that monitor characteristics 

such as CPU state and disk usage, and configuration 

information such as important values in the Windows registry. 

Hence, the trace report may also contain separately the 

profiling information about the software system; e.g., memory 

usage, CPU usage, etc.  
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Fig. 1.  An example of a function call trace with entry 

events, exit events, probe points, and error codes. 

Once the trace is collected from the customer, the analyst 

compares it against a library of existing traces collected in the 

past, whose fault origins are already known. The analyst 

identifies a set of similar traces in the library by filtering 

(searching) the library by the names of functions present in the 

new faulty trace. The filtered subset of the traces from the 

library is then examined manually to identify common 

patterns with the new faulty trace. If the analyst finds an 

existing trace with common patterns, then it is a recurrent 

fault; else it is a newly discovered fault. Once recurrence is 

ascertained, then the analyst can determine the fixes from the 

fault management database for the selected trace in the library. 

A fault management record for the trace may contain the fault 

identifier, the problem description, the problem solution, fixes, 

the status, the open date, the close date, comments, the 

components affected, the version number, the operating 

system, and maybe more. 

In short, this process is similar to a usage event of an 

Internet search engine. A user queries the search engine with 

keywords, and the engine’s algorithm returns a list of ranked 

web pages. The user then examines the returned pages to 

identify the relevant pages. The better the algorithm of the 

search engine, the less time the user would spend in examining 

the web pages. This model also applies to recurrent fault 

diagnosis. When there are thousands of traces present in the 

library, then the manual approach becomes daunting.  A fault 

diagnosis technique, like F007, can facilitate the analyst in 

getting the ranked list of the most relevant fault identifiers, 

and traces associated with fault identifiers. The analyst then 

only needs to review the top few traces in the ranked list to 

determine the recurrent fault, and avoid the laborious work 

needed for a manual investigation. 

Initially, the library of historical failure traces with known 

faults can be built using field traces, if available; otherwise, 

in-house traces can be generated from failed test cases. Studies 

have shown that the origins of in-house and field faults, in 

many cases, overlap significantly [15]. This library can 

contain traces (as shown in Fig. 1) of both crashing failures 

and non-crashing failures (see Section I). F007 trains on these 

failure traces of known faults by extracting the events of all 

the processes and threads in a trace. The events include 

function entry, function probe points, function exit, and error 

codes, as shown in Fig. 1. The details of training are explained 

in the next section.   

 

B. Training the Decision Trees on System Failure Traces 

We train the decision tree on traces of system failures by 

transforming the trace information into a dataset, as shown in 

Table I.  A row in Table I Error! Reference source not 

found. represents a trace from a historical collection of failure 

traces. The columns represent the decision tree attributes, 

which are the distinct events invoked in the traces (see Fig. 1). 

For example, Foo1 represents a function, Foo2_P1 represents 

a function and associated probe point, and Foo1_Err1 

represents a function and associated error code. A cell 

represents the probability of the occurrence of an event 𝐸𝑖 in a 

trace, calculated using (1). The probability of an event 𝑃(𝐸𝑖) 
is calculated as the ratio of the frequency of an event in a trace 

|𝐸𝑖| to the sum of the frequencies of all the events in the trace 

∑ |𝐸𝑗
𝑛
𝑗=1 |. For example, if an event Foo1 has occurred 50 

times in a trace, and a total number of events in a trace is 

1000, then the probability of Foo1 is 0.05. 

 

𝑃(𝐸𝑖) =
|𝐸𝑖|

∑ |𝐸𝑗
𝑛
𝑗=1 |

                (1)  

 

The last column in Table IError! Reference source not 

found. shows faulty functions for an historical trace.  In data 

mining terminology, faulty functions in the last column are the 

labels, and the events in the other columns form attributes 

[45]. In the case of multiple faulty functions, the labels contain 

the names of multiple faulty functions, shown as the label 

Foo3 & Foo6 in Table IError! Reference source not found.. 
Foo3 & Foo6 represents that two functions F003 and Foo6 are 

faulty simultaneously. In a similar manner, we also represent 

more than two faulty functions.  
The reason for selecting single events as attributes in Table 

I Error! Reference source not found. lies in the empirical 

investigation of our earlier paper [29], where we have 

empirically investigated that the patterns (sequences) of events 

do not yield better results than the single events when used 

with the decision tree. For example, if a trace has four events 

{E1, E2, E3, E4}, and a decision tree is trained on patterns 

{E1E2, E2E3, E3E4, etc.} and on only individual events, then 

the decision tree yields the same accuracy, implying that 

training on individual events is as efficient as when using 

patterns. Similarly, we also observed that, if the decision tree 
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is trained on both single events and patterns (i.e., {E1, E2, 

E1E2, etc.}), then the results will be the same as training on 

individual events. Thus, we can avoid using patterns as their 

extraction causes additional overhead. 

Table I 

 Dataset of functions of traces of a large software system 

to train the decision trees (for confidentiality reasons, the 

function names are obfuscated) 

 

  Events in a trace (i.e., Function calls, 

Function calls with probe point, and 

function calls with error code) 
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Faulty 

Functi-

ons 

Trace 1 .040 .030 .005 .010 . .050 .010 Foo1 

Trace 2 .020 .010 .003 .010 . .110 .100 Foo5 

Trace 3 .001 .005 .010 .003 . .510 .030 
Foo3&

Foo6 

Trace 4 .023 .001 .002 .040 . .530 .020 Foo1 

……… ….. ….. ….. …. . …. … …… 

Trace n .004 .032 .111 .003 . .100 .101 Foo5 

(a) Original dataset for all categories 

Trace 1 .040 .030 .005 .010 . .050 .010 Foo1 

Trace 4 .023 .001 .002 .040 . .530 .020 Foo1 

Trace 3 .001 .005 .010 .003 . .510 .030 Others 

……… …... ….. …... ….. . …... ….. …….. 

Trace n .004 .032 .111 .003 . .100 .101 Others 

(b) Dataset for function Foo1 against all others 

 
 

We use the one-against-all approach in training the decision 

tree classifier [45]. In this approach, a dataset (of traces) with 

M categories of labels (faulty functions) is decomposed into M 

new datasets with binary categories. Each new binary dataset 

Di has a category Ci (where i = 1 to M) labeled as positive, 

and all other categories are labeled as negative.  An example 

of a dataset of the faulty function Foo1, against all other faulty 

functions, is shown in part b of Table I Error! Reference 

source not found..  In part b of Table I, all rows are assigned 

a label of others except rows having Foo1 as a label. 

Similarly, a new dataset is generated for every faulty function 

in the original dataset. 

On each new dataset Di,, the decision tree algorithm is 

trained, resulting in M trees in total. Empirical evidence shows 

that training multiple decision trees (one-against-all) on 

several binary datasets yields better results than training a 

single decision tree on a dataset with many categories of labels 

[34]. 

The decision tree algorithm we used in this paper is C4.5 

because of its popularity and tool support [45]. It is also 

suitable for a dataset with numerical values of attributes, 

unlike other algorithms such as the ID3 decision tree 

algorithm which works only with nominal values of attributes 

[45]. The details of the C4.5 algorithm can be found in the 

standard textbook by Quinlan [37].  

There exist several other classification algorithms such as 

neural networks, support vector machines, naïve Bayes 

classifiers, etc. In one of our earlier papers, we have formally 

compared different classification algorithms on function call 

traces and system call traces [30]. The classification 

algorithms include the C4.5 decision tree, Naïve Bayes, 

Bayesian Belief Network, Multilayer Perceptron (Neural 

Network), Support Vector Machine, and Hidden Markov 

Models. We have conducted a Wilcoxon signed rank 

significance test, and an effect size test. According to the 

significance test, no significant differences exist among the 

classification accuracy of classifiers on the function call 

traces. According to the effect size test, the C4.5 decision tree 

should be preferred over other classifiers when there are 

multiple classes. We have also (informally) observed that the 

C4.5 decision tree is faster in processing time, and can 

generate rules that can be interpreted by human experts. 

Therefore, we have chosen the C4.5 decision tree for 

classification. Nonetheless, other classification algorithms can 

also be used, and readers are referred to [30] for in-depth 

results.  

We have used one C4.5 classifier with the one-against-all 

approach. The ensemble methods like Random Forrest, 

AdaBoost, and Stacking can also be used with the one-against-

all approach, instead of only one C4.5 classifier. However, the 

ensemble classifiers still must be adjusted to generate rankings 

like our approach does (see Section II.C), and they must be 

compared with our current approach for improvement in 

accuracy and time. Thus, it remains outside the scope of this 

paper which ensemble method is the best for field failure 

diagnosis. 

Moreover, we used Minimum Description Length (MDL) 

correction and a 25% confidence interval to prune the decision 

tree.  Another alternate would be to use Laplace correction. As 

noted by Provost and Domingos [36], Laplace correction can 

improve the accuracy of the decision tree while reducing 

probability estimation errors. However, we did not find any 

difference in our results with and without the use of Laplace 

correction. Thus, we generated the decision tree without the 

use of Laplace correction.  

An excerpt of the C4.5 decision tree when applied to part b 

of Table IError! Reference source not found. is shown in 

Fig. 2. Each line contains an event, its probability of 

occurrence, and the name of the faulty function after a colon 

sign, if any. The event names represent the tree nodes, and the 

faulty function name after the colon sign represents the leaf of 

the tree. 



 

 

 

5 

 

Fig. 2. An excerpt of the C4.5 decision tree model for the 

function Foo1 of the large software system. 

 

C. Testing the Decision Trees 

Whenever a new failure trace arrives, F007 extracts the 

same events as the ones used to train the decision trees, and 

provides the extracted events to the trained decision tree 

models. Each decision tree, which we trained using the one-

against-all approach, predicts its category Ci of the label (i.e., 

faulty functions in our case) along with the probability of 

being faulty. The method of generation of the probability from 

a decision tree can be found in a standard text [37]. In the one-

against-all approach, a common method is to select the 

category Ci with the highest probability  as the predicted 

category (i.e., faulty function) of the trace [45], [34]. We 

employed the one-against-all approach with a little 

modification: we ranked the predicted faulty functions in 

decreasing order of their predicted probabilities. The function 

list is then presented to the developer with the premise that the 

higher the function in the list, the more likely it is the faulty 

function. 

An example of a ranked list of faulty functions, predicted by 

F007, for two different traces obtained from the industrial 

software system, is shown in Table II. The actual faulty 

function in the two traces is Foo2, which is ranked at the first 

position for the first failure trace, and ranked at the second 

position for the second failure trace. 

Table II= 

Predicted ranking of functions suspected to be faulty for 

for new failure traces. (Foo3 & Foo6 is a label representing 

multiple faulty functions that are predicted to be faulty 

simultaneously. Foo1, Foo8 are two labels representing two 

single faulty functions,   ranked at the same position, but 

predicted to be faulty separately. Rest of the labels 

represent single faulty functions and different rankings.) 

  Function Probability 

Trace 1 

Rank 1 Foo2 0.044 

Rank 2 Foo1 0.032 

Trace 2 

Rank 1 Foo3: Foo6 0.119 

Rank 2 Foo2  0.017 

Rank 3 Foo1, Foo8 0.010 

 

 

To accurately evaluate the approach of training and testing 

the decision trees on our dataset, we actually divided the 

dataset into three different stratified parts [45]. In the 

stratification of data, each of the categories of labels (different 

faulty functions in our case) is represented in approximately 

the same ratio in each new part as it is in the original dataset. 

We randomly selected one part (approximately 33% of the 

dataset) for training the C4.5 decision tree algorithm (using 

the one-against-all approach), and used the remaining parts 

(approximately 67%) for testing. The literature recommends 

selecting more than 50% of the data (more than one part) for 

training, and the remaining part for testing [45]. However, we 

used a small proportion of data for training the decision tree 

because only a limited number of traces are usually available 

in industry. The training of F007 on a smaller proportion 

shows that, even by using a limited number of traces, F007 

can diagnose faulty functions with good accuracy. Moreover, 

in the case of the identification of faulty functions across 

releases, we tested F007 by training it on the traces of earlier 

releases, and testing it on the latest releases. 

III.  CASE STUDY ON A LARGE PROPRIETARY COMMERCIAL 

APPLICATION 

In this section, we show the validation of our approach on a 

large-scale industrial software product (of size over 20 million 

lines of code (LOC)) deployed in the field for more than 20 

years. The system is written mainly in C and C++. It is 

developed by several thousands of software engineers over 

many years, and had many field faults across many functions 

and components. A component can span many files, and files 

can encompass many functions. The system has a large user 

base of millions of users, which makes it a good candidate for 

the problem of identifying recurring faults in field traces. 

A. Collecting System Failure Traces and Executing F007 

Table III, first, shows the characteristics of this large 

industrial application including the number of traces generated 

from system failures, faulty components, and faulty functions 

for three releases. The last row in Table III shows the total 

distinct faulty functions and components across all three 

releases.  

The average size of a trace in Table III is 50 MB, and often 

the size of a trace reaches few GBs.  Due to their large sizes, 

the traces were not kept in the data repository for a long time, 

and were purged soon after the resolution of the problem. This 

purging inhibited us from collecting traces for all the faults. 

Thus, we collected system failure traces present in the 

repository for three releases during a period of two years. 

For this large industrial application, no explicit records of 

faulty functions are kept for traces. Instead, a fault identifier is 

assigned to each failure trace. We have selected all those 

functions
 
as faulty that were modified by developers due to the 

fault identifiers. We extracted faulty functions with their scope 
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(e.g., namespace, file) because two functions in different 

namespaces can have the same name. We also grouped 

together all the selected faulty functions of different fault 

identifiers under one name, if they matched one or more faulty 

functions of another fault identifier. In Table , the Faulty 

Functions column shows the number of faulty functions after 

forming the groups. Similarly, we followed the same 

procedure for faulty components. 

Table III 

Characteristics of three releases of the large commercial 

application 

20+ million LOC, 300+ components, approx. 200 K+ 

functions,  average trace size is 50 MB, average number 

of unique events (function calls, probe points,  and error 

codes) are 10,000 per trace,  and 82%  recurring faults in 

failure traces 

 # Failed 

Traces 

# Faulty 

Components 

# Faulty 

Functions 

Release 1 269 52 65 

Release 2 337 35 47 

Release 3 99 30 31 

Total Distinct Faults 

(Union) 

65 103 

 

We implemented F007 using Java, MySQL, and Weka. We 

executed F007 on a system with 3GB RAM, and a dual core 

CPU. F007 extracted functions from the traces, and stored 

them in a MySQL database. The time to parse a trace and store 

it into the database took up to 10 minutes. This time to process 

traces was due mostly to MySQL. We used bulk processing 

techniques to store the trace quickly into MySQL; however, 

we believe that this time can be further reduced. 

Once the traces were stored in the MySQL database, we 

generated decision trees from them. The time to build  

multiple decision tree models using the one-against-all 

approach was approximately 15 minutes. The time to build  a 

single decision tree model without using the one-against-all 

approach was approximately 8 minutes. The difference in 

training time between a single model and multiple models is 

not big. In addition, multiple decision trees using the one-

against-all approach yield better classification accuracy [34].  

Finally, the new field trace was also processed and stored into 

the database, and the classification of faulty functions in a new 

field trace was done instantaneously by the decision trees.  

 

B. Using Different Events for the Identification Faulty 

Functions 

The traces of this large software consist of many events, 

such as function entry, function exit, function probe points, 

and error codes (exceptions thrown). Traces are known to be 

difficult to examine because of their large sizes [13], [14]. A 

wise classification approach would be to only use the right set 

of events for the discovery of faulty functions. A large number 

of events can increase the training time, noise, and memory 

consumption of the classification model. However, removing 

necessary events can decrease the accuracy of the 

classification model. Therefore, we decided to train F007 on 

three heuristics to identify the right set of events for function 

call traces.  

 Heuristic A: Train F007 on all the events, which 

includes function event, function with probe point event, 

and function with error code event. The intuition is to 

use all the events in the function call traces to identify 

faulty functions. 

 Heuristic B: Train F007 on only function events. The 

intuition is that we can identify faulty functions by only 

using the functions in traces without error codes and 

probe points.  

 Heuristic C: Train F007 on functions with higher 

variations in traces. The intuition is that functions with 

smaller variances do not contribute much in the 

classification using the decision trees, and we can 

identify faulty functions without them. 

 

Table IV 

Results of F007 using different heuristics of events 

selection (SD represents the standard deviation of 

functions) 

# of 

Funcs 

Reviewed 

Heur 

A 

Heur 

B 

Heuristic C 

SD  

> 10 

SD  

> 100 

SD  

> 200 

SD  

> 400 

1 52.0 52.4 52.8 56.0 54.6 54.6 

2 55.1 52.8 53.3 56.8 56.0 55.5 

3 56.8 57.7 58.2 61.3 60.4 59.1 

4 62.7 58.6 58.6 62.2 61.3 60.4 

5 64 64.8 64.8 64.4 63.5 62.6 

6 73.7 67.1 67.1 68.4 68.4 68.0 

7 74.6 75.1 75.1 78.6 78.6 78.2 

8 74.6 75.5 75.5 79.1 79.1 78.6 

All 100 100 100 100 100 100 

 

In the above three heuristics, the event function refers to the 

function exit event, except for the function with probe point 

events. This description was also the case in the examples 

shown in Section II. The reason for selecting only function 

exit events lies in our earlier paper [29]. In our earlier paper, 

we discovered that the accuracy of the diagnosis of faulty 

functions using the decision trees is the same for function 

entry events, function exit events, and both the function entry 

and function exit events [29]. That is, we can use function 

entry or function exit events for training the decision trees, but 

both of them are not needed. This section actually extends this 

discovery further by evaluating the use of other events found 

in commercial software applications for fault discovery. 

We employed F007 on the three heuristics in a similar 

manner to the approach described in Section II. The results are 

shown in Table IV. Table IV shows the cumulative accuracy 

on the review of each function from the suspected function list 

of F007. Table IV demonstrates that faulty functions in 

approximately 80% of the failure traces were correctly 

diagnosed using F007 up to the review of the 8
th

 suspected 

function in its list. After that, F007 did not identify any faulty 
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function, and the maintainer has to review all the functions. 

  For Heuristic C, Table IV shows the results for functions 

with standard deviations greater than 10, 100, 200, and 400. 

For heuristic C, we trained F007 on functions with standard 

deviations higher than different threshold values from 10 to 

500 with steps of 10. We show the results in Table IV for 

selected threshold values to avoid cluttering the text. We 

stopped at the threshold of 400 because, beyond this value, all 

the functions in some traces were removed, resulting in the 

removal of those traces from the training dataset. The standard 

deviation of 400 for a function would seem quite high, but it is 

quite a small variation because the largest standard deviation 

of a function was 358945.53 in the traces.  

It can be observed from Table IV that the accuracy remains 

similar between different heuristics. We therefore conducted 

the Wilcoxon signed rank test to determine if there is any 

significant difference between different heuristics. We chose 

alpha to be 0.05. A Wilcoxon signed rank test between 

Heuristic A and Heuristic B resulted in z=0.420, observations 

= 9, and a two-tailed p=0.674 > 0.05. Similarly, a Wilcoxon 

signed rank test with 9 observations between Heuristic B and 

Heuristic C with SD > 400 yielded z=0.630, and p=0.529 

>0.05. In both cases, no significant difference exists among 

the accuracies of heuristics as p > 0.05. However, a significant 

difference does exist between the number of events. The 

number of events extracted using Heuristic A were 17331, 

using Heuristic B were 10481, and using Heuristic C (SD > 

400) were 1892. 

Thus, we conclude in this section that, when function-call 

level execution traces are used, then only function events (i.e., 

function entry events, or function exit events) with a higher 

standard deviation than 400 are adequate for discovering 

faulty functions; even error code events and probe point events 

can be ignored. (However, error codes may not be discarded to 

understand the type of fault.) This reduction in events in 

function call traces can facilitate recording only necessary 

events in large software systems, thereby significantly 

reducing the size of the trace by up to 50%.  For example, in 

some cases, we have traces of about 4GB (44 million function-

calls); and they were reduced to less than 2 GB by removing 

function entry events, function with probe point events, and   

error code events. The savings in trace size is significant, 

especially when it is not possible to store Gigabytes of traces 

for a longer period to perform data analytics. 

Our three heuristics actually reduce the number of attributes 

before the development of a model using the decision tree. A 

variety of attribute selection techniques also exists in the data 

mining literature, such as information gain attribute evaluator, 

subset attribute evaluator, principal component transformation, 

etc. [45]. Some of these techniques (such as subset attribute 

evaluator) resulted in lowering the accuracy, and some in 

exceeding the memory limit (such as principal component 

transformation). The heuristics that we used allowed us to 

reduce the number of attributes (data size) before loading into 

memory without affecting the accuracy. Further research on 

comparing different attribute selection techniques is outside 

the scope of this paper. The results of all the remaining 

sections are based on the reduced number of events as 

identified in this section.  

  

C. Classifying Faulty Functions in Field Failure Traces of a 

Release  

In Fig. 3, we show the results of F007 on three releases by 

using a 33% training set, and a 67% test set. Fig. 3 shows the 

accuracy of F007 when it is trained on a small percentage of 

system failure traces of a release, and identifies faulty 

functions in the remaining traces of the same release. We used 

a small training set to reflect the availability of only limited 

historical traces as is common in industry. The horizontal axis 

represents the percentage of a program that needs to be 

examined by a developer before getting to the faulty function. 

It is measured by the number of functions reviewed by a 

developer up to the faulty functions from the ranked list of 

F007 divided by the total number of functions. It is defined in 

(2).The vertical axis measures the cumulative percentage of 

system failure traces that achieve a score within a segment on 

the horizontal axis. This metric is an effective way of 

assessing the results, also adopted by other fault localization 

techniques [50], [17].  

100*

%

functionsTotal

functionfaultytheuptoreviewedFunctions

reviewto

programof










                    (2)                                                                             

We are aware that this metric does not account for the 

complexity of each function, which varies from one function 

to another. We are simply measuring, in percentage, the 

number of functions that a developer needs to look at before 

reaching the actual faulty function, proposed by our ranking. 

For this commercial software, we could not get access to the 

actual source code to count the number of statements of 

functions or components or measure complexity using other 

known metrics. Doing so would have helped in finer-grained 

evaluation in terms of the number of statements reviewed for 

each function or component. However, it is also known that 

maintainers do not review all the statements of every function 

to identify a fault. They review few relevant statements; and 

by using their experience, they can determine whether the 

function is faulty or not.  

There were about 200,000 functions in the software 

application, and on average up to 10,000 distinct functions per 

trace. In the worst case, a developer should review the total 

number of functions in a trace. However, we assume that a 

developer would consider a minimum of at least 1,000 

functions in total to diagnose faulty functions. Therefore, in all 

the graphs shown next, we have used 1,000 total functions 

for(2). In Fig. 3, a point (0.8, 70) means that faulty functions 

in 70% of the failed traces in the test set were correctly 

diagnosed upon reviewing 0.8% of the program’s functions. A 

line (without markers) in Fig. 3 shows that no classification is 

made, and a developer has to use 100% of the program to 

identify faulty functions. This line goes up to the last point 

(100,100) on the chart, but it is not shown up to 100% on the 

chart for better visibility of the markers. Mostly, the line 

represents those traces that have newer faulty functions and 
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are not found in the training set.  

    

  

Fig. 3. F007 on three releases of the large commercial 

application by using 33% of the data for the training set, 

and 67% of the data for the test set. The horizontal axis is 

measured by using (2) with the total number of functions 

being 1,000. 

 

Observe from Fig. 3 that recurring faulty functions in 76% 

(Release 1), 81% (Release 2), and 66% (Release 3) of the 

system failure traces are successfully identified by F007 for 

each of the releases by reviewing less than 0.8% of the 

program (i.e., 8 functions out of 1,000). In the rest of the 

cases, some of the faulty functions occurred only once (one 

trace) in the test set. So these functions were not identified at 

all by F007 for the sample of traces we used; they were not 

recurrent, and are represented by the straight line. Recall from 

Table III that there were 82% recurrent faults in our sample 

dataset, so the accuracy we obtained (i.e. 65% to 80% 

depending on the release) is outside the 82% existing recurrent 

faults. This result is equivalent to an accuracy of 92% (Release 

1), 98% (Release 2), and 80% (Release 3) out of 100% 

recurring faulty functions. The average accuracy is therefore 

90% on the review of 0.8% or less of the code (fewer than 8 

functions). 

We compared our approach against what we call the straw 

man approach, a random method that a developer can use. In 

the straw man approach, we generated a ranking of faulty 

functions from the training set. In this ranking, we ranked the 

faulty function with the largest number of traces in the first 

position, the faulty function with the second largest number of 

traces in the second position, and so on, ending with the faulty 

function with the smallest number of traces on the last 

position. We used this ranking instead of the F007 ranking to 

classify faulty functions in the traces of the test set. The results 

are shown in Fig. 4. See that by using the straw man approach 

a developer has to review more code than the F007 to identify 

faulty functions. The results obtained using F007 are 

significantly better than the straw man approach. This result 

also shows that the decision trees are trained well, and their 

results are better than a random straw man approach.  

 

Fig. 4. Straw man approach on the three releases of the 

large commercial application by using 33% of the data for 

the training set, and 67% of the data for the test set. The 

horizontal axis is measured by using (2) with the total 

number of functions being 1,000. 

D. Classifying Faulty Functions in Field Failure Traces 

across Releases  

In this subsection, we show the results of our approach 

when we train F007 using traces from one release and attempt 

to diagnose recurring functions in traces from other releases. 

This ability would be useful in cases where software engineers 

want to diagnose recurring faulty functions from a release 

from which they do not have an established set of traces (e.g., 

a recently deployed release). In such a case, they can use 

previous releases to build the training models. 

In Fig. 5, we show the results of the identification of 

recurring faulty functions in traces of release 2 by training 

F007 on release 1. There were about 15 common faulty 

functions in both release 1 and release 2.  These 15 faulty 

functions were found faulty in 111 traces in release 2, and 33 

traces in release 1. We trained F007 on 33 traces of release 1 

to identify recurring faulty functions in 111 traces of release 2. 

Fig. 5 shows that faulty functions in 100 traces were 

discovered correctly out of 111 traces in release 2 (90% 

accuracy). This result required the review of less than 3% of 

the program functions. Similarly, in Fig. 5, we have also used 

the traces of both release 1 and release 2 to identify the faulty 

functions in the traces of release 3. There were about 15 

common faulty functions in release 1, release 2, and release 3.  

The 15 faulty functions were found in 48 failure traces in 
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release 3, and 155 failure traces of release 1 and release 2.  

Fig. 5 shows that faulty functions in 47 traces in release 3 out 

of 48 traces (97% accuracy) were diagnosed by reviewing 4% 

of the program. In short, Fig. 5 shows that faulty functions 

across releases are identified accurately, especially when the 

number of traces is large (as in the case of release 3). 

 

 

Fig. 5. Identifying the faulty functions across releases by 

using traces of earlier releases as the training set, and 

following releases as the test set. 

Fig. 5 also provides a comparison of the straw man 

approach with F007. The results of the straw man approach 

were generated in the same way as mentioned earlier, except 

the traces of prior releases were used for ranking. Again the 

straw man approach requires much more code review, and 

faulty functions in fewer traces were identified. Fig. 5 also 

shows that, when there are more data for training, as in the 

case of release 1 and release 2 combined, then the accuracy of 

identifying faulty functions in failed traces with F007 is very 

high. For example, faulty functions in 67% of the failed traces 

were identified by reviewing only the first function (0.1% of 

the code) in the case of release 1 and release 2 in Fig. 5. 

 In reality, it is hard to know in advance whether a new 

trace is faulty due to known or unknown functions. There may 

exist traces of earlier releases, with some traces from the 

current releases. It is therefore important to also assess our 

approach in situations where we do not have a large set of 

traces from the current release. In Fig. 6, we show the results 

of training F007 on traces of earlier releases, and only 25% of 

traces from the current release. The 25% traces of the current 

release are sampled using the same stratification process 

mentioned in Section II.C. Fig. 6 shows that faulty functions 

in 72% to 82% of the system failure traces are again correctly 

diagnosed on the review of less than 1.6% of the program 

functions, which clearly demonstrates the effectiveness of our 

approach. We note that the accuracy of the identification of 

faulty functions is slightly lower in Fig. 6 compared to Fig. 3 

when F007 was trained only on the current release. The reason 

is that F007 was trained on more traces (33%) from the current 

release in Fig. 3 compared to 25% of the traces from the 

current release in Fig. 6. We use different sets of traces to 

show different settings, and situations with few traces. 

 

Fig. 6. Identifying faulty functions across releases using 

F007. 

As a conclusion in this section, we showed that the 

functions that remain faulty across releases can be identified in 

new traces by using the traces of earlier releases of a software 

application with up to 97% accuracy. We also conclude that 

recurring faulty functions in field traces can be classified with 

approximately 90% accuracy by using system failure traces 

from all releases.  

 

E. Comparing F007 to a clustering based approach 

The closest techniques to our work are the clustering based 

approaches for field traces [3], [8], [10], [19], [33]. The 

majority of these techniques focus on clustering traces of 

crashing failures [3], [8], [10], [19]. They usually form 

clusters by measuring the similarity in function call sequences 

of top frames of stacks (functions that executed last). In our 

case, the traces were a combination of crashing and non-

crashing failures, with the majority of them belonging to the 

non-crashing category. We mentioned in Section I that non-

crashing failures are difficult to diagnose in function call 

traces. Faults causing crashing failures usually manifest 

themselves in functions that execute at the end of a function 

call trace. However, a fault causing a non-crashing failure can 

occur long before the manifestation of the fault as a failure. 

Dang et al. [8] report that, if a faulty function is in the middle 

of a trace, then their approach for clustering crashes results in 

misclassification. This problem makes clustering according to 

functions executed last not applicable for comparison with our 
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approach. Podgurski et al. [33] propose a technique of k-

medoid clustering for non-crashing failures. Their intuition 

was that traces in each cluster would belong to the same faulty 

file. However, their clusters mostly represented multiple faulty 

files with some clusters containing up to eight files. 

Nonetheless, the work of Podgurski et al. [33] is the closest to 

our technique we have found. 

For the sake of comparison with the clustering based 

approaches, we compared our approach against a clustering 

method. We applied k-medoid clustering to the traces by 

forming as many groups as there were classes (faulty 

functions) in the trace dataset. We employed Manhattan 

distance as the median based distance measure by using Weka 

[45]. The idea was that each group (cluster) would represent 

one class (i.e., faulty functions). We found that many clusters 

contained traces of more than one faulty function. To compare 

exactly with the F007 approach, a ranking method is required 

such that closely related clusters for a new trace in the test set 

can be predicted in an ordered list. No such ranking method 

exists in the literature. Therefore, we created a ranking 

approach based on clustering for the direct comparison of 

F007 against the clustering techniques.  

We created a clustering based ranking on the basis of 

simple intuition. First, we clustered traces in the training set 

using k-medoid clustering with as many clusters (groups) as 

there were faulty functions. Second, we measured the 

Manhattan distance of a trace in the test set to all the formed 

clusters, and assigned the trace to a cluster with a minimum 

Manhattan distance. Third, we matched the faulty function of 

the test trace with one of the m faulty functions of the cluster 

that the trace was assigned to. If a match was found, then we 

considered that m functions were reviewed by a developer to 

discover the faulty function. Fourth, in the case of no match, 

we matched the faulty function of the trace with the faulty 

functions of other clusters one by one in decreasing order of 

the number of traces in the clusters.  The intuition is that the 

developer would consider one of the faulty functions of the 

cluster with the largest number of traces as the suspected 

faulty function for the trace. When the match is not found, the 

developer would review faulty functions of the cluster with the 

second largest number of traces, and so on, to the last cluster. 

Fifth, the effort of the developer was measured by (2), the 

number of functions reviewed up to the diagnosis of the actual 

faulty function of the trace. In a similar manner to F007, we 

considered the total number of functions as 1,000 for (2). Fig. 

7 shows the results of clustering based ranking on release 1 of 

the subject program. Fig. 7 also shows the results of F007 on 

the same release. 

Observe from Fig. 7 that F007 can diagnose faulty functions 

in a trace with a smaller code review than clustering; only a 

few functions were required to be reviewed when F007 was 

used.  We also observed similar results in the case of other 

releases of our large application with the clustering based 

ranking requiring review of more functions for the 

identification of the actual faulty function. It is possible that 

different clustering methods with different ranking heuristics 

can generate better or worst accuracy than the decision trees in 

F007. It is currently outside the scope of this paper to develop 

and test such intuitions as they don’t exist in the literature. In 

future work, we expect to employ different clustering 

heuristics in F007 against the decision trees. 

 

Fig. 7. F007 against an approach using ranking based on 

k-medoid clustering. 

A limitation of F007 is that it does not diagnose the new 

faulty functions. The newer faulty functions can get masked as 

the older faulty functions. This limitation also exists in the 

clustering based approaches. A trace with a newer fault can be 

classified into already known clusters. Dang et al. report that 

traces with newer failures  are put into new clusters based on 

the distance between new traces and traces in clusters. 

However, traces of newer crashes are still masked as the older 

crash type due to the similarity of function calls between the 

new traces and the traces in clusters. A workaround is to re-

perform clustering or re-train F007 on the traces when there 

are a significant number of new traces. Another solution is to 

train a one-class classifier on all the failing traces, and use it to 

determine whether the fault is in a newer faulty function or 

older faulty function, and then apply F007 or clustering. The  

line without markers in Fig. 3 through Fig. 7 shows those 

traces which required reviewing all functions by a developer 

for fault diagnosis. This line without marker goes up to the last 

point (100,100) on the chart, but due to better visibility of the 

markers in the initial part of the chart we do not show the 

complete chart till the point (100,100). This line without 

markers actually shows those traces whose faulty functions 

did not exist in the training traces, and they were found faulty 

in the test traces. Thus, they required the engineer to review all 

the functions. Observe that these traces are few, and a majority 

of the traces have recurrent faulty functions. 

F. Comparing F007 to a Manual Keyword Matching 

Approach 

In industry, maintainers rely on historical databases to 

determine recurrent faults. When a new failure trace arrives, 

the maintainers search their historical database for symptoms 

common to the new failure trace. Maintainers search their 
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historical database with different keywords to find common 

symptoms. For example, the top (or first) function and the 

error codes in the new failure trace  are the most commonly 

used keywords. In addition, maintainers may compare data 

patterns, rarely occurring functions with error codes, or any 

other symptoms that are unique to the new failure trace. If the 

symptoms match, the maintainers extract the fault identifier, 

and conclude that the fault is recurrent. The maintainers then 

extract fixes and necessary information using the fault 

identifier, and provide the information to the user reporting the 

failure. During this process, the maintainers may not have 

access to the source code, and it may be desirable to identify 

the recurrent fault without the source code. Also, it could be 

tedious to review the faulty function when the fault identifier 

and associated information are already available. 

We therefore evaluated F007 by using fault identifiers as a 

label.  We assigned each trace a label of fault identifier instead 

of a faulty function (see Error! Reference source not 

found.), and executed F007 on the dataset in a similar manner 

as described earlier. The results are shown in Fig. 8.  The 

horizontal axis in Fig. 8 shows the percentage of fault 

identifiers required to be examined to diagnose the correct 

fault identifier. The Y-axis shows the cumulative percentage 

of failure traces used for testing. For example, the point (1, 52) 

shows that 52% of the failure traces were diagnosed correctly 

by reviewing 1% of the fault identifiers, which is the first fault 

identifier from F007’s ranked list. The results of Fig. 8 are for 

release 1 of the subject program, and there were a total of 57 

fault identifiers for this release. 

 

 

Fig. 8. F007 against the manual keyword based search. 

 

In addition to F007, Fig. 8 also shows the results for a 

keyword based approach. In this case, we used the first 

function in the traces of the test set as the keyword to search 

the database of failure traces of the training set. We 

determined the fault identifiers when the keyword matched the 

first function of training traces. We then counted the number 

of fault identifiers and divided them by the total number of 

fault identifiers to determine the percentage of the fault 

identifiers reviewed to determine the correct fault identifier. If 

the keyword did not match in the training database, then we 

considered that the failure was not diagnosed.  

It can be seen from Fig. 8 that F007 can diagnose fault 

identifiers with a higher accuracy than the manual keyword 

search approach. However, F007 diagnosed fewer failure 

traces than the keyword based approach. This result occurred 

because in some cases there was only one trace for training for 

a particular fault identifier, and F007 did not predict those 

fault identifiers. The keyword based approach was able to 

match the top function in those cases, and still was able to list 

the fault identifier for a search. However, the keyword based 

approach required reviewing a lot of fault identifiers to 

diagnose failures, whereas F007 allowed diagnosing the 

failure traces on the review of first few fault identifiers. 

G. Discussion, and Lessons Learned 

Our results on this large scale industrial software system 

show that different faults in a group of functions occur with 

similar function call traces. This result happens because we 

were able to identify the majority of recurring faulty functions 

with the same or a different fault by reviewing a small 

percentage of functions (e.g., 0.5% = 5 functions).  The fact 

that few functions were required to be reviewed shows that 

traces of some faulty functions overlapped, but the traces were 

also distinct from the traces of some other faulty functions. If 

the traces had not overlapped, we would have had 100% 

accuracy on the review of the first suspected function. This 

result also shows that traces are not completely separable. In 

the case of multiple faulty functions, traces in the training set 

were labeled with multiple faulty functions, and classified in 

the test set with the label of multiple faulty functions. The 

traces of multiple faulty functions also overlapped with other 

traces, but at the same time they had enough distinguishability 

for identification. Therefore, only a few functions had to be 

considered for review before finding actual faulty functions. 

 During our experiments, we also observed that faulty 

functions persist across releases. This finding is consistent 

with another study in the literature [20]. Recurring faulty 

functions in the latest releases can be identified when a 

suitable number of traces of faulty functions in earlier releases 

are present.  

Our experience with this large system shows that industrial 

traces can easily reach many Gigabytes, and are not trivial to 

parse.  Data collection requires going through rigorous logistic 

checks, and the required data may not exist. Different sources 

have to be consulted to collect missing information.  We have 

also found that sometimes the diagnosis of fault location in a 

failure trace can take several days to weeks. Often a developer 

may go through thousands of functions to find the root cause 

of a fault. F007 can be really helpful in such situations. 
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 We have also found that many failure traces were related to 

configuration problems, such as the wrong network security 

protocol. The information about functions causing such faults 

was not kept in the database, and many traces were also 

purged. However, faulty components’ names and fault 

identifiers were present for such faults. F007 could not be 

trained on faulty functions, but we evaluated F007 on fault 

identifiers and faulty components. F007 yields higher 

accuracy for fault identifiers and faulty components than for 

faulty functions because there are fewer fault identifiers or 

components than functions. Senior developers of this system 

suggest that the root cause of (configuration or in code) faults 

is mostly only a function. If F007 is trained with such 

information, then it can even facilitate users in solving 

recurring configuration problems themselves. 

H. Limitations and Improvements 

F007’s effectiveness could be affected by large variations in 

the number of traces in the training set for different faulty 

functions. If the majority (e.g., 99%) of the training traces 

belongs to one or two faulty functions, and the remaining 

traces (e.g., less than 1%) belong to other faulty functions, 

then the decision tree would mostly predict the faulty 

functions associated with the majority (99%) of traces. This 

biased prediction is due to an imbalanced set of training traces. 

In machine learning, this condition is known as the imbalance 

class problem[45]. In such a case, a workaround would be to 

reduce the imbalance in traces of two faulty functions when 

training using the one-against-all approach. This workaround 

can be done by reducing the traces of the majority  faulty 

functions in such a way that the percentage of traces of the 

minority faulty function increases to approximately 10%. This 

workaround can also be done by duplicating the number of 

traces of the minority faulty function such that they increase to 

approximately 10%.     

F007’s training could be constrained by the size of memory 

when there are hundreds of thousands of traces in the 

repository. In such cases, we must use parallel machine 

learning and computational techniques, such as Mahout
3
 over 

Map Reduce [9], to train the decision tree algorithms on a 

large dataset of traces. In addition, we have also shown in 

Section III.B that the number of features can be significantly 

reduced without affecting the accuracy. This reduction also 

facilitates accommodating a large number of traces in memory 

during the training of the decision trees.  

The software systems evolve over a period of time. Some of 

the functionalities that exist today may not be present in the 

future. An automated learning algorithm should be able to 

evolve over time with the software system. F007 can be 

improved by using an online or incremental learning 

algorithm. An incremental learning algorithm allows updating 

the learnt model on a new trace without having to use all the 

prior traces. The algorithm can also avoid additional memory 

overhead during training on many large size traces. 

Incremental learning is a separate research issue, and we 

 
3https://mahout.apache.org/ 

consider it as future work for F007. 

IV. THREATS TO VALIDITY 

In this section, we describe certain threats to the validity of 

the research results. We classify threats into four groups: 

conclusion validity, internal validity, construct validity, and 

external validity [46].  

A. Conclusion Validity 

A threat to conclusion validity exists with traces of the 

number of faults we used to infer the conclusion. In the large 

software application, in Table III, we observed 82% recurring 

faults in the database, but we were able to collect traces of 

only some of the faults. The sample of system failure traces 

that we collected did not represent all the faults that occurred 

in the releases of the software application. In fact, the 

accuracy across releases would be higher if the failed traces of 

all the faults were used. This result happens because the 

decision tree would have had sufficient knowledge of faulty 

functions for which only one or two traces were present. 

B. Internal Validity 

A threat to internal validity exists in the implementation of 

this technique because it involved quite a lot of programming. 

We have mitigated this threat, and made our implementation 

reliable, by manually investigating the outputs.  

C. Construct Validity 

A threat exists in measuring the programmer’s effort in 

discovering faulty functions. Recall, from Section II, that F007 

generates a list of faulty functions for a new trace, and the 

programmer’s effort is measured by counting the functions (or 

statements) examined. In a ranking based technique, such as 

F007, it is possible that two or more functions can be listed at 

the same rank. In such cases, the best case is the first function 

to be examined is faulty, and the worst case is the last function 

to be examined is faulty. This ordering implies that an 

incompetent technique will have a high best case accuracy 

(e.g., 90-100% accuracy on examining 1-10% of the program), 

and low worst case accuracy (e.g., 90-100% accuracy on 

examining 90-100% of the program), because it will list all the 

functions as faulty at the same rank. In our approach, the worst 

and the best case resulted in approximately the same accuracy. 

In a few results, there were measurable differences between 

the worst and the best case, but the difference was 

inconsequential. Thus, in all our results, we have shown the 

best case accuracies because the worst case was similar. 

D. External Validity 

We evaluated F007 on a commercial database application, 

mostly written in C and C++. F007 is still to be evaluated on 

other kinds of software applications before it can be 

generalized in all contexts.   

V. RELATED WORK 

Scientific literature describes a number of fault discovery 

techniques. We classify the fault discovery techniques into 

two groups. Fault discovery techniques focusing on field 

failures, and fault discovery techniques focusing on in-house 
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failures. In the following sub-sections, we elaborate on each of 

these techniques. 

A. Fault Discovery Techniques Focusing on Field Failures 

Podgurski et al. [33] form clusters of execution traces of the 

field failures based on common faulty source files. The 

granularity in the Podgurski et al. approach is a faulty file, 

whereas a majority of the clusters contained failed traces with 

multiple files (fault origin), making it not suitable for the 

manual investigation of the correct faulty file (and the 

investigation of a finer-grain origin of a fault than just the 

faulty file gets even more difficult). In contrast, F007 

discovers faults automatically at the finer-grained function-

level; and the faults in the majority of traces can be discovered 

correctly by reviewing the first few suspected functions. 

Podgurski et al. experimented on GCC, Javac, and Jike; 

whereas, we experimented on a large industrial system of 20 

million LOC. We have shown a comparison of F007 to a 

similar approach as Podgurski et al. in Section III.E. 

Dang et al. [8] proposed a method to improve the grouping 

method of duplicate (recurrent) crash reports in a Windows 

error reporting system. Dang et al. measured the similarities of 

call stack traces by applying hierarchical clustering, and put 

the similar call traces in one group. Dhaliwal et al. [10] 

propose a two level grouping mechanism for Firefox based 

crash traces. The groups were formed on the basis of crash 

types by determining the similarities of top 10 functions in 

stacks using the Levenshtein distance. Brodie et al. [3] use 

string matching to group one function call trace of a crash with 

other groups of function-call traces for different crashes. The 

groups of crashes were formed by exactly matching the 

function call paths of different crashes. They claim that every 

group, formed on the basis of the same trace matches, has the 

same crashing reason. However, traces due to the same 

crashing reason (or the same fault) are not exactly the same, 

and they can take different approaches. Lee and Iyer [19] 

propose a technique to classify the recurrent crashing failures 

by literal matching of its function call trace with already 

known failure traces. They consider several heuristics to 

match several function call paths followed by the same fault. 

In F007, we model several paths leading to the same faulty 

function by the decision tree algorithm. These techniques 

focus on grouping function call traces of recurrent faults based 

on a similar crashing reason. F007 focuses on a finer grain 

identification of recurrent faulty functions from the system 

failure traces of crashes and non-crashes.  F007 actually 

addresses a more difficult problem, like Podgurski et al. [33], 

of non-crashing failure classification. Non-crashing failures 

are more difficult to diagnose because a user may notice a 

failure well after the execution of the faulty code [33]. 

Examining the functions executed right before the system 

crashes may not be sufficient to diagnose a non-crashing fault.  

Liu and Han [22] cluster failing runs according to a ranked 

list of assertions (i.e., check points) obtained using the 

statistical debugging tool SOBER [23]. They propose to 

collect passing and failing traces from the field to predict fault 

locations (assertions). They insert light weight assertions into 

code, collect traces, and if a fault is not found they insert new 

assertions. Collecting many passing and failing traces from the 

field can be detrimental to business operations due to the 

overhead of tracing. F007 focuses on a different problem of 

only recurrent faults from function call traces. These traces are 

commonly collected from the field. However, Liu and Han 

[22] use assertion based traces, which are not common. 

However, this technique [22] complements F007 by 

identifying new fault locations, and using F007 to instantly 

identify recurrent faults. 

Xia et al. [52] combine genetic algorithm with multi-label 

classification algorithms to classify a failure trace into 

multiple fault types (i.e., multiple labels). In general, the basis 

of multi-label algorithms is to divide the multi-label dataset of 

traces into multiple datasets such that classification algorithms 

(e.g., SVM) can be trained in a normal manner on single 

labels. The predictions of individual classifiers are then 

combined using certain criterion by multi-label classification 

algorithms to get the final prediction. F007 also divides the 

dataset into multiple datasets but using the one-against-all 

approach. F007 treats multiple labels as one label during 

training (see Table I and Table II). F007 generates a ranking 

of the predictions, and evaluates the ranking by measuring the 

developers’ effort; whereas Xin et al. [52] use the F-measure 

(which is similar to clustering techniques), and do not measure 

the developers’ effort. It is unknown how much effort would 

be spent by developers in locating the correct label (faulty 

type) for a failure using the approach by Xin et al. In addition, 

Xin et al. [52] have been evaluated on smaller (approx. 1000 

LOC) programs to medium size (approx. 10,000 LOC) 

programs; whereas, we have evaluated our approach on a large 

(approx. 20 million LOC) commercial program. The work by 

Xin et al. is related to our work, but it is not directly 

comparable. 

Another statistical debugging tool, HOLMES [5], uses path 

profiles to classify faults for deployed software. Their 

technique can only be applied to the server side applications 

[5] because they have to redeploy software components with 

instrumentation of selected functions to collect the passing 

traces and the failing traces pertaining to one fault from the 

field. In some cases, this task may not be feasible for running 

servers as well due to the runtime redeployment of 

instrumented software components. F007, as mentioned 

earlier, focuses on a different problem of recurrent faults, and 

HOLMES can complement F007. 

   In [29], we proposed a technique to diagnose faulty 

functions from function call traces of crashing and non-

crashing failures by using prior traces. We trained the C4.5 

decision tree algorithm on function calls extracted from a 

collection of field traces to identify faulty functions in new 

traces. The study only focused on identifying recurrent faulty 

functions in the same release, and we evaluated it on small 

systems of 1000 LOC with traces collected using test suites. In 

this paper, we improve our previous work by  empirically 

determining whether the same faulty functions across releases 

can be identified using prior traces. This improvement is 

important because faulty components persist across releases 

[20]. We also addressed the issue of the scalability of F007 by 

evaluating it on actual field traces of a very large industrial 

system of 20 million LOC, 200,000 functions, and traces of 

several Gigabytes (see Section III.B). We also discovered that 

the contribution of additional events (e.g., error codes, probe 

points, etc.) in function call traces of commercial software 
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applications other than function entry and exit events in 

diagnosis of faulty functions is not significant. In our earlier 

paper, the traces only contained function entry and exit events. 

In addition, we also showed that functions with smaller 

variations can be discarded without affecting the accuracy of 

fault diagnosis. This removal of error codes, probe points, 

function entry, and functions with small variations 

significantly reduces trace size and tracing overhead. It also 

facilitates efficient, scalable model generation (see Section 

III.B). Thus, significant improvements have been made from 

our earlier work [29].  

Yuan et al. [53] employ support vector machines on system 

call traces to determine the root causes of configuration 

problems (e.g., network cable unplugged). Chen et al. [4] 

describe a technique based on the decision tree and association 

rule to diagnose configuration problems in large distributed 

systems (e.g., a faulty web server). Ding et al. [12] also 

propose a technique to identify faults occurring due to 

misconfiguration of a software system. In short, these 

techniques also complement our work in that they focus on the 

identification of faults in application interactions, or at a 

system level; whereas F007 focuses on the faults within an 

application.  

Techniques for duplicate (recurrent) bug reports 

identification are also related to our work [31], [41]. Duplicate 

bug report identification techniques apply natural language 

processing techniques to comments from developers and users 

in bug reports to identify duplicate (recurrent) bug reports. 

F007 focuses on the identification of recurrent field traces, and 

the location of faults from field traces. In the automated 

collection of field traces, the reports may only contain 

function call executions without detailed information. Also, in 

contemporary bug report management systems (e.g., Firefox 

Socorro
4
 and Bugzilla

5
), a bug report can be associated with 

many different crash traces, and a crash trace can be 

associated with many different bug reports. Therefore, related 

techniques focus separately on execution trace classification 

[8], [10], [33], [52], and bug report classification [31], [41]. 

F007 also focuses on execution trace classification, and does 

not assume that the detailed bug description is available. 

Program comprehension techniques from software traces 

can be considered related [24]. Lo et al. [24] actually propose 

a close iterative pattern mining technique on software 

execution traces to facilitate developers’ program 

comprehension. F007 however focuses on fault localization 

from software execution traces. 

B. Fault Localization Techniques focusing on In-house 

Failures 

Techniques for diagnosing fault locations by using the 

difference between passing traces and failing traces have also 

been a focus of many researchers. There are many examples of 

such techniques.  Our first example is the execution slicing 

techniques that repeatedly compare pairs of passing and 

failing traces until the fault is found [1], [39], [47]. Our second 

example includes those techniques that present a ranked list of 

artifacts (e.g., statements, branches, etc.) to developers by 

 
4https://bugzilla.mozilla.org 
5https://crash-stats.mozilla.com/ 

contrasting passing and failing test case executions [17], [50], 

[40], [55], [6], [38]. Our third example is statistical debugging 

based techniques that present a ranked list of predicates (check 

points) by contrasting passing and failing runs of predicates 

[21], [23], [54], [56]. Our fourth example includes the use of 

neural networks [50] and chi-square based methods [48] on 

passing and failing statement level traces to generate a ranked 

list of faulty statements. Our fifth example includes those 

techniques that use passing and failing function call traces to 

generate a ranked list of faulty functions [11], and faulty 

classes for a fault [7]. Our sixth example includes the 

technique by Wang et al. [43] that combines existing fault 

localization measures (e.g., Tarantula [17] and Ochiai [38]) 

using genetic algorithm to improve the accuracy of fault 

localization. Our seventh example is about the technique by 

Lucia et al. [25] that investigates the 40 association measures, 

already found in the data mining literature, along with the 

measures by Tarantula and Ochiai on the localization of faults 

during software testing. Lucia et al. found that 50% of the 

association measures were able to find all the faults on the 

review of 25% to 27% of the program elements 

 To operate, these techniques require passing and failing 

traces. Collecting passing and failing traces from the field is 

not feasible due to tracing overhead, space requirements, and 

bandwidth consumption. In the case of multiple faults, these 

techniques usually require grouping traces due to the same 

faults (e.g., by clustering) to reduce a multiple faults problem 

to a set of single fault problems [49]. These techniques can be 

applied on field traces by reproducing the same faults on test 

machines. However, reproducing hundreds of failure reports 

with multiple faults can be time consuming. As we already 

know that 50% to 90% of field failures are due to previously 

known faults, then a wise approach to the fault localization of 

field failures is to use a technique like F007 to instantaneously 

identify recurring field faults, and use these techniques to 

identify new fault locations. 

VI. CONCLUSIONS, AND FUTURE WORK 

Discovering the origin of a fault from field-failure reports is 

an arduous task, and can consume 30% to 40% of the time 

required to fix faults [35]. Despite knowing that 50% to 90% 

of field failures are due to the same faults [3], [19], [51], and 

80% of the faults originate from 20% of the code [15], [32],  

the time and effort spent in identifying recurrent faults is still 

the same. Prior techniques in the literature focus on clustering 

stack traces of field crashes according to the similarity of 

faults [3], [19], [8], clustering crashing and non-crashing 

function call traces of field failures according to files [33], and 

using statistical debugging [5] on passing-failing traces to 

discover field faults (see Section V).  

We propose a technique, F007, to identify recurring faulty 

functions in the traces of field failures. F007 trains the C4.5 

decision tree algorithm on historical failure traces of current 

and prior releases.  The trained decision trees are then used to 

identify faulty functions in new failure traces (see Section II). 

We evaluated F007 on a large industrial system of 20 million 

LOC and 200K functions (see Section III). Our results show 

that recurring faulty functions across releases and within the 

same release can be diagnosed with  90% accuracy on average 
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(see Section III.C). Our results also show that different faults 

in related functions occur with similar function call traces, due 

to which recurring faulty functions can be easily identified 

(see Section III.E). The results also demonstrate that events 

like probe points, exceptions thrown, and functions with 

smaller variations do not contribute significantly to the 

automatic discovery of faulty functions. In fact, the size of 

traces can be reduced to approximately 50% by removing such 

events.  

These results contribute to the body of knowledge by 

identifying recurring faulty functions in field failure traces 

across different releases. This approach is novel, and reduces 

the time spent in fault diagnosis during maintenance. This 

paper also contributes to the state of the art by demonstrating 

results on a large scale commercial application of 20 million 

LOC. 

 F007 has a limitation in that it cannot identify new faulty 

functions in field failure traces, and it only focuses on 

recurrent faulty functions. For future work, we are planning 

studies to overcome this limitation by integrating existing 

complementary techniques for in-house fault localization (see 

Section V.B).  
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