

1

 Identifying Recurring Faulty Functions in Field Traces of a Large

Industrial Software System
1
Syed Shariyar Murtaza,

2
Nazim H. Madhavji, Senior Member; IEEE,

3
Mechelle Gittens, Member;

IEEE,
4
Abdelwahab Hamou-Lhadj, Member; IEEE

Abstract—Software maintainers use the traces of field

failures to understand and diagnose faulty functions that

cause the system to fail. Despite their usefulness, traces

from the field can be quite overwhelming, especially for

software systems with a vast client base. In the execution of

realistic applications, many of them being millions of lines

of code, there are just too many traces that are generated.

In addition, traces are known to be extraordinarily large,

which further complicates matters. Fortunately, not all

field failures are caused by new faults. In fact, previous

studies showed that 50% to 90% of field failures are due to

previously known faults. In this paper, we propose a

machine learning approach that automatically detects

recurring faulty functions in the traces of new field

failures. We achieve our goal by training decision trees on

earlier resolved traces of system failures from the current

and prior releases of the system. When applied to a large

industrial system with 20 million lines of code and 200,000

functions, our approach was able to detect recurring faulty

functions in the traces of field failures with an accuracy of

90%, to even 97% in some cases.

Index Terms—Recurrent faults, software maintenance,

crashing failures, non-crashing failures, function call

traces, decision tree.

ACRONYMS AND ABBREVIATIONS

LOC Lines of Code

MDL Minimum Description Length

WPM Windows Performance Monitor

I. INTRODUCTION

Maintainers use failure reporting techniques to collect

information about system failures in the field. System failures

in the field can be of two types: crashing failures, and non-

crashing failures. Examples of failure reporting tools for

crashes include the Windows Error Reporting tool [44], the

Mozilla crash reporting system [28], and Ubuntu’s Apport

crash reporting tool [42] that collect stack traces (function

calls on the stack). Examples of tools for non-crashing failures

include IBM DB2 [26], and IBM WebSphere [16] reporting

systems that collect all of the executed function calls from a

specific time
1
.

Despite their usefulness, field traces of software products

with a large client base can be quite overwhelming to software

developers. There are just too many traces that can be reported

by the users. This problem is further complicated by the fact

that typical traces of failures can be quite large. It is often an

arduous task to analyze their content. Fortunately, not all the

traces of failures yield new faults. In fact, studies have shown

that, when a software product has a large number of instances

(copies of the same software product) in the field,

approximately 50% to 90% of the failures occur due to

previously known faults [51], [19], [3]. We refer to such faults

as recurring faults. Thus, when a new failure trace is reported,

it is most likely due to a fault that was previously reported in

other failure traces. The same fault reappears because users

do not install patches (updates) on time, or vendors do not

provide patches on time [18]. The users do not update systems

on time because an updated software application could cause

other software applications to crash, and result in a loss of

valuable time and money. Similarly, delays from vendors

occur because of the time to diagnose and fix the faults.

During that time, many faults would reappear in different

instances of the deployed software systems.

To aid developers in reducing the time spend analyzing the

traces of field failures, and identifying faults that cause the

field failures, it is therefore important to automatically identify

recurring faults in the traces of field failures. Previous

techniques use clustering algorithms to address this problem

of diagnosing recurrent faults that cause crashing [3], [8], [10],

[19], and non-crashing [33] failures. Usually, these techniques

measure a similarity distance between the function call traces

of failures, and form groups (clusters) of the traces with

minimal distances. Developers then go through the function

call traces of a group to discover the locations of faults.

Ideally, each group should have one failure type (e.g., crash

type), but a group can be associated to more than one failure

types.

In this paper, we propose to use supervised learning; more

specifically, we generate decision trees from historical traces

of field failures with faulty functions already known. We then

use decision trees to identify recurring faulty functions in new

traces of crashing and non-crashing failures. Our historical

collection of failure traces consists of the traces from the

1Non-crashing failures can manifest themselves long after the execution of the
fault, and are difficult to resolve than crashes.

2

current and prior releases. The intuition behind our solution is

that faulty functions persist across releases [20], and a

majority (50 to 90%) of them are recurrent [3], [19], [51].

Unlike clustering based techniques, our approach is capable of

pinpointing recurring faulty functions that cause failures,

instead of a group of similar faults. In addition, clustering

techniques are known to suffer from various limitations

including the selection of the adequate distance measure, the

clustering algorithm, etc.

We evaluated our approach on field traces of a very large

industrial system of 20 million lines of code LOC, 200,000

distinct functions, and a user base of approximately one

million users
2
. Our results show that, on average, 90% of the

recurring faulty functions in failure traces are correctly

identified across the releases. Our results also show that

functions can have different faults, but recurring faulty

functions can still be accurately identified because of the

similarity of traces.

This work is an extension of our previous work where we

presented a technique that aims to identify recurring faults

using only the current release [29]. We applied that earlier

approach to small open source utilities (around 1000 LOC)

with small failure traces generated using test suites. This paper

particularly contributes by showing that recurring faulty

functions, irrespective of the type of faults, can be identified

using field traces of different releases too. It also contributes

by evaluating the approach on a realistic commercial

application with traces collected from the field. It also shows

that different types of events (e.g., exception thrown) present

in failure traces of commercial applications do not contribute

significantly in automatic fault diagnosis, and removal of

unnecessary events can reduce the trace size by approximately

50%. In short, we have made many fine adjustments to the

technique to make it scalable and applicable in the industrial

context.

This paper continues as follows. The next section describes

our technique. Section III shows the case study of a large

commercial application. Section IV explains threats to

validity. Section V describes related techniques. Section VI

concludes, and describes future work.

II. THE APPROACH

We term our technique, F007, the faulty function finder.

The key objective is to discover faulty functions in system

failure traces by using earlier system failure traces of the same

release or previous releases. F007 actually builds decision tree

models from historical system failure traces. Faulty functions

in historical traces are known. F007 then uses the decision

tree models to diagnose faulty functions in newly generated

traces of system failures from the field. This problem should

not be confused with the problem of predicting new faults. As

mentioned earlier, our focus is on helping software

maintainers reduce the number of field failure traces they need

to look at by automatically pinpointing the faults if the failures

are caused by previously reported faults.

Our approach encompasses four main steps. The first one

is to collect function call traces that are generated when the

2System name is anonymous due to proprietary reasons.

system fails. In this paper, we include traces of both crashing

and non-crashing system failures. In the second step, we train

decision trees on the system failure traces of known faulty

functions. We actually train one decision tree for each faulty

function. We will discuss the rationale behind this approach in

the next subsections. The next step is a testing step. Whenever

a new system failure trace arrives from the field, we pass it to

the decision trees. Each decision tree then associates the trace

with its knowledge of earlier traces, and their corresponding

faulty functions. Each decision tree then emits the probability

of its faulty function for the new trace. The suspected faulty

functions from the decision trees are then arranged in a ranked

list in decreasing order of their probabilities. The intuition

behind this ranking is that the function ranked higher is more

likely to be faulty than the function ranked lower. Finally, the

list of suspected faulty functions with their ranking is

presented to software developers for evaluation. These steps

are detailed in the subsequent subsections.

A. Collecting Traces of Failures

In this paper, we focus on traces of function calls because,

in practice, function call traces are the commonly collected

traces from the field (see Section I). Other traces such as

statement-level traces can also be used, but they tend to be not

practical because of the additional overhead they cause during

trace generation.

A typical scenario for failure analysis in the deployed

system is the following [27]. A software service analyst

receives a phone call from a customer reporting software

failure. The analyst has to quickly determine the root cause of

the failure. The analyst tries to determine whether it is a

recurring fault, already known from another customer, or it is

a new fault. If it is a recurrent fault, then the analyst will

quickly provide the customer a fix-patch or another known

solution. If it is a new fault, then the analyst has to notify

developers in the maintenance team to start detailed

investigation about the origin of the new fault. In both cases,

the customer must be quickly provided with a solution; the

faster the solution, the better the customer satisfaction.

 To determine the recurrent fault, the analyst asks the

customer to reproduce the failure by enabling a tracer [16],

[26]. The analyst collects the trace from the customer. An

example of a raw failure trace from the customer is shown in

Fig. 1. The trace contains function entry, function exit,

function probe point, and error codes (exceptions) for each

thread of a process. Additional trace information may also be

collected via logging programs for specific operating systems,

such as the Windows Performance Monitor (WPM). WPM

generates performance counters that monitor characteristics

such as CPU state and disk usage, and configuration

information such as important values in the Windows registry.

Hence, the trace report may also contain separately the

profiling information about the software system; e.g., memory

usage, CPU usage, etc.

3

Fig. 1. An example of a function call trace with entry

events, exit events, probe points, and error codes.

Once the trace is collected from the customer, the analyst

compares it against a library of existing traces collected in the

past, whose fault origins are already known. The analyst

identifies a set of similar traces in the library by filtering

(searching) the library by the names of functions present in the

new faulty trace. The filtered subset of the traces from the

library is then examined manually to identify common

patterns with the new faulty trace. If the analyst finds an

existing trace with common patterns, then it is a recurrent

fault; else it is a newly discovered fault. Once recurrence is

ascertained, then the analyst can determine the fixes from the

fault management database for the selected trace in the library.

A fault management record for the trace may contain the fault

identifier, the problem description, the problem solution, fixes,

the status, the open date, the close date, comments, the

components affected, the version number, the operating

system, and maybe more.

In short, this process is similar to a usage event of an

Internet search engine. A user queries the search engine with

keywords, and the engine’s algorithm returns a list of ranked

web pages. The user then examines the returned pages to

identify the relevant pages. The better the algorithm of the

search engine, the less time the user would spend in examining

the web pages. This model also applies to recurrent fault

diagnosis. When there are thousands of traces present in the

library, then the manual approach becomes daunting. A fault

diagnosis technique, like F007, can facilitate the analyst in

getting the ranked list of the most relevant fault identifiers,

and traces associated with fault identifiers. The analyst then

only needs to review the top few traces in the ranked list to

determine the recurrent fault, and avoid the laborious work

needed for a manual investigation.

Initially, the library of historical failure traces with known

faults can be built using field traces, if available; otherwise,

in-house traces can be generated from failed test cases. Studies

have shown that the origins of in-house and field faults, in

many cases, overlap significantly [15]. This library can

contain traces (as shown in Fig. 1) of both crashing failures

and non-crashing failures (see Section I). F007 trains on these

failure traces of known faults by extracting the events of all

the processes and threads in a trace. The events include

function entry, function probe points, function exit, and error

codes, as shown in Fig. 1. The details of training are explained

in the next section.

B. Training the Decision Trees on System Failure Traces

We train the decision tree on traces of system failures by

transforming the trace information into a dataset, as shown in

Table I. A row in Table I Error! Reference source not

found. represents a trace from a historical collection of failure

traces. The columns represent the decision tree attributes,

which are the distinct events invoked in the traces (see Fig. 1).

For example, Foo1 represents a function, Foo2_P1 represents

a function and associated probe point, and Foo1_Err1

represents a function and associated error code. A cell

represents the probability of the occurrence of an event 𝐸𝑖 in a

trace, calculated using (1). The probability of an event 𝑃(𝐸𝑖)
is calculated as the ratio of the frequency of an event in a trace

|𝐸𝑖| to the sum of the frequencies of all the events in the trace

∑ |𝐸𝑗
𝑛
𝑗=1 |. For example, if an event Foo1 has occurred 50

times in a trace, and a total number of events in a trace is

1000, then the probability of Foo1 is 0.05.

𝑃(𝐸𝑖) =
|𝐸𝑖|

∑ |𝐸𝑗
𝑛
𝑗=1 |

 (1)

The last column in Table IError! Reference source not

found. shows faulty functions for an historical trace. In data

mining terminology, faulty functions in the last column are the

labels, and the events in the other columns form attributes

[45]. In the case of multiple faulty functions, the labels contain

the names of multiple faulty functions, shown as the label

Foo3 & Foo6 in Table IError! Reference source not found..
Foo3 & Foo6 represents that two functions F003 and Foo6 are

faulty simultaneously. In a similar manner, we also represent

more than two faulty functions.
The reason for selecting single events as attributes in Table

I Error! Reference source not found. lies in the empirical

investigation of our earlier paper [29], where we have

empirically investigated that the patterns (sequences) of events

do not yield better results than the single events when used

with the decision tree. For example, if a trace has four events

{E1, E2, E3, E4}, and a decision tree is trained on patterns

{E1E2, E2E3, E3E4, etc.} and on only individual events, then

the decision tree yields the same accuracy, implying that

training on individual events is as efficient as when using

patterns. Similarly, we also observed that, if the decision tree

4

is trained on both single events and patterns (i.e., {E1, E2,

E1E2, etc.}), then the results will be the same as training on

individual events. Thus, we can avoid using patterns as their

extraction causes additional overhead.

Table I

 Dataset of functions of traces of a large software system

to train the decision trees (for confidentiality reasons, the

function names are obfuscated)

 Events in a trace (i.e., Function calls,

Function calls with probe point, and

function calls with error code)

F
o

o
1

F
o

o
2

_
P

1

F
o

o
1

_
E

rr1

F
o

o
5

.......................

F
o

o
N

F
o

o
N

_
P

i

Faulty

Functi-

ons

Trace 1 .040 .030 .005 .010 . .050 .010 Foo1

Trace 2 .020 .010 .003 .010 . .110 .100 Foo5

Trace 3 .001 .005 .010 .003 . .510 .030
Foo3&

Foo6

Trace 4 .023 .001 .002 .040 . .530 .020 Foo1

……… ….. ….. ….. …. . …. … ……

Trace n .004 .032 .111 .003 . .100 .101 Foo5

(a) Original dataset for all categories

Trace 1 .040 .030 .005 .010 . .050 .010 Foo1

Trace 4 .023 .001 .002 .040 . .530 .020 Foo1

Trace 3 .001 .005 .010 .003 . .510 .030 Others

……… …... ….. …... ….. . …... ….. ……..

Trace n .004 .032 .111 .003 . .100 .101 Others

(b) Dataset for function Foo1 against all others

We use the one-against-all approach in training the decision

tree classifier [45]. In this approach, a dataset (of traces) with

M categories of labels (faulty functions) is decomposed into M

new datasets with binary categories. Each new binary dataset

Di has a category Ci (where i = 1 to M) labeled as positive,

and all other categories are labeled as negative. An example

of a dataset of the faulty function Foo1, against all other faulty

functions, is shown in part b of Table I Error! Reference

source not found.. In part b of Table I, all rows are assigned

a label of others except rows having Foo1 as a label.

Similarly, a new dataset is generated for every faulty function

in the original dataset.

On each new dataset Di,, the decision tree algorithm is

trained, resulting in M trees in total. Empirical evidence shows

that training multiple decision trees (one-against-all) on

several binary datasets yields better results than training a

single decision tree on a dataset with many categories of labels

[34].

The decision tree algorithm we used in this paper is C4.5

because of its popularity and tool support [45]. It is also

suitable for a dataset with numerical values of attributes,

unlike other algorithms such as the ID3 decision tree

algorithm which works only with nominal values of attributes

[45]. The details of the C4.5 algorithm can be found in the

standard textbook by Quinlan [37].

There exist several other classification algorithms such as

neural networks, support vector machines, naïve Bayes

classifiers, etc. In one of our earlier papers, we have formally

compared different classification algorithms on function call

traces and system call traces [30]. The classification

algorithms include the C4.5 decision tree, Naïve Bayes,

Bayesian Belief Network, Multilayer Perceptron (Neural

Network), Support Vector Machine, and Hidden Markov

Models. We have conducted a Wilcoxon signed rank

significance test, and an effect size test. According to the

significance test, no significant differences exist among the

classification accuracy of classifiers on the function call

traces. According to the effect size test, the C4.5 decision tree

should be preferred over other classifiers when there are

multiple classes. We have also (informally) observed that the

C4.5 decision tree is faster in processing time, and can

generate rules that can be interpreted by human experts.

Therefore, we have chosen the C4.5 decision tree for

classification. Nonetheless, other classification algorithms can

also be used, and readers are referred to [30] for in-depth

results.

We have used one C4.5 classifier with the one-against-all

approach. The ensemble methods like Random Forrest,

AdaBoost, and Stacking can also be used with the one-against-

all approach, instead of only one C4.5 classifier. However, the

ensemble classifiers still must be adjusted to generate rankings

like our approach does (see Section II.C), and they must be

compared with our current approach for improvement in

accuracy and time. Thus, it remains outside the scope of this

paper which ensemble method is the best for field failure

diagnosis.

Moreover, we used Minimum Description Length (MDL)

correction and a 25% confidence interval to prune the decision

tree. Another alternate would be to use Laplace correction. As

noted by Provost and Domingos [36], Laplace correction can

improve the accuracy of the decision tree while reducing

probability estimation errors. However, we did not find any

difference in our results with and without the use of Laplace

correction. Thus, we generated the decision tree without the

use of Laplace correction.

An excerpt of the C4.5 decision tree when applied to part b

of Table IError! Reference source not found. is shown in

Fig. 2. Each line contains an event, its probability of

occurrence, and the name of the faulty function after a colon

sign, if any. The event names represent the tree nodes, and the

faulty function name after the colon sign represents the leaf of

the tree.

5

Fig. 2. An excerpt of the C4.5 decision tree model for the

function Foo1 of the large software system.

C. Testing the Decision Trees

Whenever a new failure trace arrives, F007 extracts the

same events as the ones used to train the decision trees, and

provides the extracted events to the trained decision tree

models. Each decision tree, which we trained using the one-

against-all approach, predicts its category Ci of the label (i.e.,

faulty functions in our case) along with the probability of

being faulty. The method of generation of the probability from

a decision tree can be found in a standard text [37]. In the one-

against-all approach, a common method is to select the

category Ci with the highest probability as the predicted

category (i.e., faulty function) of the trace [45], [34]. We

employed the one-against-all approach with a little

modification: we ranked the predicted faulty functions in

decreasing order of their predicted probabilities. The function

list is then presented to the developer with the premise that the

higher the function in the list, the more likely it is the faulty

function.

An example of a ranked list of faulty functions, predicted by

F007, for two different traces obtained from the industrial

software system, is shown in Table II. The actual faulty

function in the two traces is Foo2, which is ranked at the first

position for the first failure trace, and ranked at the second

position for the second failure trace.

Table II=

Predicted ranking of functions suspected to be faulty for

for new failure traces. (Foo3 & Foo6 is a label representing

multiple faulty functions that are predicted to be faulty

simultaneously. Foo1, Foo8 are two labels representing two

single faulty functions, ranked at the same position, but

predicted to be faulty separately. Rest of the labels

represent single faulty functions and different rankings.)

 Function Probability

Trace 1

Rank 1 Foo2 0.044

Rank 2 Foo1 0.032

Trace 2

Rank 1 Foo3: Foo6 0.119

Rank 2 Foo2 0.017

Rank 3 Foo1, Foo8 0.010

To accurately evaluate the approach of training and testing

the decision trees on our dataset, we actually divided the

dataset into three different stratified parts [45]. In the

stratification of data, each of the categories of labels (different

faulty functions in our case) is represented in approximately

the same ratio in each new part as it is in the original dataset.

We randomly selected one part (approximately 33% of the

dataset) for training the C4.5 decision tree algorithm (using

the one-against-all approach), and used the remaining parts

(approximately 67%) for testing. The literature recommends

selecting more than 50% of the data (more than one part) for

training, and the remaining part for testing [45]. However, we

used a small proportion of data for training the decision tree

because only a limited number of traces are usually available

in industry. The training of F007 on a smaller proportion

shows that, even by using a limited number of traces, F007

can diagnose faulty functions with good accuracy. Moreover,

in the case of the identification of faulty functions across

releases, we tested F007 by training it on the traces of earlier

releases, and testing it on the latest releases.

III. CASE STUDY ON A LARGE PROPRIETARY COMMERCIAL

APPLICATION

In this section, we show the validation of our approach on a

large-scale industrial software product (of size over 20 million

lines of code (LOC)) deployed in the field for more than 20

years. The system is written mainly in C and C++. It is

developed by several thousands of software engineers over

many years, and had many field faults across many functions

and components. A component can span many files, and files

can encompass many functions. The system has a large user

base of millions of users, which makes it a good candidate for

the problem of identifying recurring faults in field traces.

A. Collecting System Failure Traces and Executing F007

Table III, first, shows the characteristics of this large

industrial application including the number of traces generated

from system failures, faulty components, and faulty functions

for three releases. The last row in Table III shows the total

distinct faulty functions and components across all three

releases.

The average size of a trace in Table III is 50 MB, and often

the size of a trace reaches few GBs. Due to their large sizes,

the traces were not kept in the data repository for a long time,

and were purged soon after the resolution of the problem. This

purging inhibited us from collecting traces for all the faults.

Thus, we collected system failure traces present in the

repository for three releases during a period of two years.

For this large industrial application, no explicit records of

faulty functions are kept for traces. Instead, a fault identifier is

assigned to each failure trace. We have selected all those

functions

as faulty that were modified by developers due to the

fault identifiers. We extracted faulty functions with their scope

6

(e.g., namespace, file) because two functions in different

namespaces can have the same name. We also grouped

together all the selected faulty functions of different fault

identifiers under one name, if they matched one or more faulty

functions of another fault identifier. In Table , the Faulty

Functions column shows the number of faulty functions after

forming the groups. Similarly, we followed the same

procedure for faulty components.

Table III

Characteristics of three releases of the large commercial

application

20+ million LOC, 300+ components, approx. 200 K+

functions, average trace size is 50 MB, average number

of unique events (function calls, probe points, and error

codes) are 10,000 per trace, and 82% recurring faults in

failure traces

 # Failed

Traces

Faulty

Components

Faulty

Functions

Release 1 269 52 65

Release 2 337 35 47

Release 3 99 30 31

Total Distinct Faults

(Union)

65 103

We implemented F007 using Java, MySQL, and Weka. We

executed F007 on a system with 3GB RAM, and a dual core

CPU. F007 extracted functions from the traces, and stored

them in a MySQL database. The time to parse a trace and store

it into the database took up to 10 minutes. This time to process

traces was due mostly to MySQL. We used bulk processing

techniques to store the trace quickly into MySQL; however,

we believe that this time can be further reduced.

Once the traces were stored in the MySQL database, we

generated decision trees from them. The time to build

multiple decision tree models using the one-against-all

approach was approximately 15 minutes. The time to build a

single decision tree model without using the one-against-all

approach was approximately 8 minutes. The difference in

training time between a single model and multiple models is

not big. In addition, multiple decision trees using the one-

against-all approach yield better classification accuracy [34].

Finally, the new field trace was also processed and stored into

the database, and the classification of faulty functions in a new

field trace was done instantaneously by the decision trees.

B. Using Different Events for the Identification Faulty

Functions

The traces of this large software consist of many events,

such as function entry, function exit, function probe points,

and error codes (exceptions thrown). Traces are known to be

difficult to examine because of their large sizes [13], [14]. A

wise classification approach would be to only use the right set

of events for the discovery of faulty functions. A large number

of events can increase the training time, noise, and memory

consumption of the classification model. However, removing

necessary events can decrease the accuracy of the

classification model. Therefore, we decided to train F007 on

three heuristics to identify the right set of events for function

call traces.

 Heuristic A: Train F007 on all the events, which

includes function event, function with probe point event,

and function with error code event. The intuition is to

use all the events in the function call traces to identify

faulty functions.

 Heuristic B: Train F007 on only function events. The

intuition is that we can identify faulty functions by only

using the functions in traces without error codes and

probe points.

 Heuristic C: Train F007 on functions with higher

variations in traces. The intuition is that functions with

smaller variances do not contribute much in the

classification using the decision trees, and we can

identify faulty functions without them.

Table IV

Results of F007 using different heuristics of events

selection (SD represents the standard deviation of

functions)

of

Funcs

Reviewed

Heur

A

Heur

B

Heuristic C

SD

> 10

SD

> 100

SD

> 200

SD

> 400

1 52.0 52.4 52.8 56.0 54.6 54.6

2 55.1 52.8 53.3 56.8 56.0 55.5

3 56.8 57.7 58.2 61.3 60.4 59.1

4 62.7 58.6 58.6 62.2 61.3 60.4

5 64 64.8 64.8 64.4 63.5 62.6

6 73.7 67.1 67.1 68.4 68.4 68.0

7 74.6 75.1 75.1 78.6 78.6 78.2

8 74.6 75.5 75.5 79.1 79.1 78.6

All 100 100 100 100 100 100

In the above three heuristics, the event function refers to the

function exit event, except for the function with probe point

events. This description was also the case in the examples

shown in Section II. The reason for selecting only function

exit events lies in our earlier paper [29]. In our earlier paper,

we discovered that the accuracy of the diagnosis of faulty

functions using the decision trees is the same for function

entry events, function exit events, and both the function entry

and function exit events [29]. That is, we can use function

entry or function exit events for training the decision trees, but

both of them are not needed. This section actually extends this

discovery further by evaluating the use of other events found

in commercial software applications for fault discovery.

We employed F007 on the three heuristics in a similar

manner to the approach described in Section II. The results are

shown in Table IV. Table IV shows the cumulative accuracy

on the review of each function from the suspected function list

of F007. Table IV demonstrates that faulty functions in

approximately 80% of the failure traces were correctly

diagnosed using F007 up to the review of the 8
th

 suspected

function in its list. After that, F007 did not identify any faulty

7

function, and the maintainer has to review all the functions.

 For Heuristic C, Table IV shows the results for functions

with standard deviations greater than 10, 100, 200, and 400.

For heuristic C, we trained F007 on functions with standard

deviations higher than different threshold values from 10 to

500 with steps of 10. We show the results in Table IV for

selected threshold values to avoid cluttering the text. We

stopped at the threshold of 400 because, beyond this value, all

the functions in some traces were removed, resulting in the

removal of those traces from the training dataset. The standard

deviation of 400 for a function would seem quite high, but it is

quite a small variation because the largest standard deviation

of a function was 358945.53 in the traces.

It can be observed from Table IV that the accuracy remains

similar between different heuristics. We therefore conducted

the Wilcoxon signed rank test to determine if there is any

significant difference between different heuristics. We chose

alpha to be 0.05. A Wilcoxon signed rank test between

Heuristic A and Heuristic B resulted in z=0.420, observations

= 9, and a two-tailed p=0.674 > 0.05. Similarly, a Wilcoxon

signed rank test with 9 observations between Heuristic B and

Heuristic C with SD > 400 yielded z=0.630, and p=0.529

>0.05. In both cases, no significant difference exists among

the accuracies of heuristics as p > 0.05. However, a significant

difference does exist between the number of events. The

number of events extracted using Heuristic A were 17331,

using Heuristic B were 10481, and using Heuristic C (SD >

400) were 1892.

Thus, we conclude in this section that, when function-call

level execution traces are used, then only function events (i.e.,

function entry events, or function exit events) with a higher

standard deviation than 400 are adequate for discovering

faulty functions; even error code events and probe point events

can be ignored. (However, error codes may not be discarded to

understand the type of fault.) This reduction in events in

function call traces can facilitate recording only necessary

events in large software systems, thereby significantly

reducing the size of the trace by up to 50%. For example, in

some cases, we have traces of about 4GB (44 million function-

calls); and they were reduced to less than 2 GB by removing

function entry events, function with probe point events, and

error code events. The savings in trace size is significant,

especially when it is not possible to store Gigabytes of traces

for a longer period to perform data analytics.

Our three heuristics actually reduce the number of attributes

before the development of a model using the decision tree. A

variety of attribute selection techniques also exists in the data

mining literature, such as information gain attribute evaluator,

subset attribute evaluator, principal component transformation,

etc. [45]. Some of these techniques (such as subset attribute

evaluator) resulted in lowering the accuracy, and some in

exceeding the memory limit (such as principal component

transformation). The heuristics that we used allowed us to

reduce the number of attributes (data size) before loading into

memory without affecting the accuracy. Further research on

comparing different attribute selection techniques is outside

the scope of this paper. The results of all the remaining

sections are based on the reduced number of events as

identified in this section.

C. Classifying Faulty Functions in Field Failure Traces of a

Release

In Fig. 3, we show the results of F007 on three releases by

using a 33% training set, and a 67% test set. Fig. 3 shows the

accuracy of F007 when it is trained on a small percentage of

system failure traces of a release, and identifies faulty

functions in the remaining traces of the same release. We used

a small training set to reflect the availability of only limited

historical traces as is common in industry. The horizontal axis

represents the percentage of a program that needs to be

examined by a developer before getting to the faulty function.

It is measured by the number of functions reviewed by a

developer up to the faulty functions from the ranked list of

F007 divided by the total number of functions. It is defined in

(2).The vertical axis measures the cumulative percentage of

system failure traces that achieve a score within a segment on

the horizontal axis. This metric is an effective way of

assessing the results, also adopted by other fault localization

techniques [50], [17].

100*

%

functionsTotal

functionfaultytheuptoreviewedFunctions

reviewto

programof

 (2)

We are aware that this metric does not account for the

complexity of each function, which varies from one function

to another. We are simply measuring, in percentage, the

number of functions that a developer needs to look at before

reaching the actual faulty function, proposed by our ranking.

For this commercial software, we could not get access to the

actual source code to count the number of statements of

functions or components or measure complexity using other

known metrics. Doing so would have helped in finer-grained

evaluation in terms of the number of statements reviewed for

each function or component. However, it is also known that

maintainers do not review all the statements of every function

to identify a fault. They review few relevant statements; and

by using their experience, they can determine whether the

function is faulty or not.

There were about 200,000 functions in the software

application, and on average up to 10,000 distinct functions per

trace. In the worst case, a developer should review the total

number of functions in a trace. However, we assume that a

developer would consider a minimum of at least 1,000

functions in total to diagnose faulty functions. Therefore, in all

the graphs shown next, we have used 1,000 total functions

for(2). In Fig. 3, a point (0.8, 70) means that faulty functions

in 70% of the failed traces in the test set were correctly

diagnosed upon reviewing 0.8% of the program’s functions. A

line (without markers) in Fig. 3 shows that no classification is

made, and a developer has to use 100% of the program to

identify faulty functions. This line goes up to the last point

(100,100) on the chart, but it is not shown up to 100% on the

chart for better visibility of the markers. Mostly, the line

represents those traces that have newer faulty functions and

8

are not found in the training set.

Fig. 3. F007 on three releases of the large commercial

application by using 33% of the data for the training set,

and 67% of the data for the test set. The horizontal axis is

measured by using (2) with the total number of functions

being 1,000.

Observe from Fig. 3 that recurring faulty functions in 76%

(Release 1), 81% (Release 2), and 66% (Release 3) of the

system failure traces are successfully identified by F007 for

each of the releases by reviewing less than 0.8% of the

program (i.e., 8 functions out of 1,000). In the rest of the

cases, some of the faulty functions occurred only once (one

trace) in the test set. So these functions were not identified at

all by F007 for the sample of traces we used; they were not

recurrent, and are represented by the straight line. Recall from

Table III that there were 82% recurrent faults in our sample

dataset, so the accuracy we obtained (i.e. 65% to 80%

depending on the release) is outside the 82% existing recurrent

faults. This result is equivalent to an accuracy of 92% (Release

1), 98% (Release 2), and 80% (Release 3) out of 100%

recurring faulty functions. The average accuracy is therefore

90% on the review of 0.8% or less of the code (fewer than 8

functions).

We compared our approach against what we call the straw

man approach, a random method that a developer can use. In

the straw man approach, we generated a ranking of faulty

functions from the training set. In this ranking, we ranked the

faulty function with the largest number of traces in the first

position, the faulty function with the second largest number of

traces in the second position, and so on, ending with the faulty

function with the smallest number of traces on the last

position. We used this ranking instead of the F007 ranking to

classify faulty functions in the traces of the test set. The results

are shown in Fig. 4. See that by using the straw man approach

a developer has to review more code than the F007 to identify

faulty functions. The results obtained using F007 are

significantly better than the straw man approach. This result

also shows that the decision trees are trained well, and their

results are better than a random straw man approach.

Fig. 4. Straw man approach on the three releases of the

large commercial application by using 33% of the data for

the training set, and 67% of the data for the test set. The

horizontal axis is measured by using (2) with the total

number of functions being 1,000.

D. Classifying Faulty Functions in Field Failure Traces

across Releases

In this subsection, we show the results of our approach

when we train F007 using traces from one release and attempt

to diagnose recurring functions in traces from other releases.

This ability would be useful in cases where software engineers

want to diagnose recurring faulty functions from a release

from which they do not have an established set of traces (e.g.,

a recently deployed release). In such a case, they can use

previous releases to build the training models.

In Fig. 5, we show the results of the identification of

recurring faulty functions in traces of release 2 by training

F007 on release 1. There were about 15 common faulty

functions in both release 1 and release 2. These 15 faulty

functions were found faulty in 111 traces in release 2, and 33

traces in release 1. We trained F007 on 33 traces of release 1

to identify recurring faulty functions in 111 traces of release 2.

Fig. 5 shows that faulty functions in 100 traces were

discovered correctly out of 111 traces in release 2 (90%

accuracy). This result required the review of less than 3% of

the program functions. Similarly, in Fig. 5, we have also used

the traces of both release 1 and release 2 to identify the faulty

functions in the traces of release 3. There were about 15

common faulty functions in release 1, release 2, and release 3.

The 15 faulty functions were found in 48 failure traces in

9

release 3, and 155 failure traces of release 1 and release 2.

Fig. 5 shows that faulty functions in 47 traces in release 3 out

of 48 traces (97% accuracy) were diagnosed by reviewing 4%

of the program. In short, Fig. 5 shows that faulty functions

across releases are identified accurately, especially when the

number of traces is large (as in the case of release 3).

Fig. 5. Identifying the faulty functions across releases by

using traces of earlier releases as the training set, and

following releases as the test set.

Fig. 5 also provides a comparison of the straw man

approach with F007. The results of the straw man approach

were generated in the same way as mentioned earlier, except

the traces of prior releases were used for ranking. Again the

straw man approach requires much more code review, and

faulty functions in fewer traces were identified. Fig. 5 also

shows that, when there are more data for training, as in the

case of release 1 and release 2 combined, then the accuracy of

identifying faulty functions in failed traces with F007 is very

high. For example, faulty functions in 67% of the failed traces

were identified by reviewing only the first function (0.1% of

the code) in the case of release 1 and release 2 in Fig. 5.

 In reality, it is hard to know in advance whether a new

trace is faulty due to known or unknown functions. There may

exist traces of earlier releases, with some traces from the

current releases. It is therefore important to also assess our

approach in situations where we do not have a large set of

traces from the current release. In Fig. 6, we show the results

of training F007 on traces of earlier releases, and only 25% of

traces from the current release. The 25% traces of the current

release are sampled using the same stratification process

mentioned in Section II.C. Fig. 6 shows that faulty functions

in 72% to 82% of the system failure traces are again correctly

diagnosed on the review of less than 1.6% of the program

functions, which clearly demonstrates the effectiveness of our

approach. We note that the accuracy of the identification of

faulty functions is slightly lower in Fig. 6 compared to Fig. 3

when F007 was trained only on the current release. The reason

is that F007 was trained on more traces (33%) from the current

release in Fig. 3 compared to 25% of the traces from the

current release in Fig. 6. We use different sets of traces to

show different settings, and situations with few traces.

Fig. 6. Identifying faulty functions across releases using

F007.

As a conclusion in this section, we showed that the

functions that remain faulty across releases can be identified in

new traces by using the traces of earlier releases of a software

application with up to 97% accuracy. We also conclude that

recurring faulty functions in field traces can be classified with

approximately 90% accuracy by using system failure traces

from all releases.

E. Comparing F007 to a clustering based approach

The closest techniques to our work are the clustering based

approaches for field traces [3], [8], [10], [19], [33]. The

majority of these techniques focus on clustering traces of

crashing failures [3], [8], [10], [19]. They usually form

clusters by measuring the similarity in function call sequences

of top frames of stacks (functions that executed last). In our

case, the traces were a combination of crashing and non-

crashing failures, with the majority of them belonging to the

non-crashing category. We mentioned in Section I that non-

crashing failures are difficult to diagnose in function call

traces. Faults causing crashing failures usually manifest

themselves in functions that execute at the end of a function

call trace. However, a fault causing a non-crashing failure can

occur long before the manifestation of the fault as a failure.

Dang et al. [8] report that, if a faulty function is in the middle

of a trace, then their approach for clustering crashes results in

misclassification. This problem makes clustering according to

functions executed last not applicable for comparison with our

10

approach. Podgurski et al. [33] propose a technique of k-

medoid clustering for non-crashing failures. Their intuition

was that traces in each cluster would belong to the same faulty

file. However, their clusters mostly represented multiple faulty

files with some clusters containing up to eight files.

Nonetheless, the work of Podgurski et al. [33] is the closest to

our technique we have found.

For the sake of comparison with the clustering based

approaches, we compared our approach against a clustering

method. We applied k-medoid clustering to the traces by

forming as many groups as there were classes (faulty

functions) in the trace dataset. We employed Manhattan

distance as the median based distance measure by using Weka

[45]. The idea was that each group (cluster) would represent

one class (i.e., faulty functions). We found that many clusters

contained traces of more than one faulty function. To compare

exactly with the F007 approach, a ranking method is required

such that closely related clusters for a new trace in the test set

can be predicted in an ordered list. No such ranking method

exists in the literature. Therefore, we created a ranking

approach based on clustering for the direct comparison of

F007 against the clustering techniques.

We created a clustering based ranking on the basis of

simple intuition. First, we clustered traces in the training set

using k-medoid clustering with as many clusters (groups) as

there were faulty functions. Second, we measured the

Manhattan distance of a trace in the test set to all the formed

clusters, and assigned the trace to a cluster with a minimum

Manhattan distance. Third, we matched the faulty function of

the test trace with one of the m faulty functions of the cluster

that the trace was assigned to. If a match was found, then we

considered that m functions were reviewed by a developer to

discover the faulty function. Fourth, in the case of no match,

we matched the faulty function of the trace with the faulty

functions of other clusters one by one in decreasing order of

the number of traces in the clusters. The intuition is that the

developer would consider one of the faulty functions of the

cluster with the largest number of traces as the suspected

faulty function for the trace. When the match is not found, the

developer would review faulty functions of the cluster with the

second largest number of traces, and so on, to the last cluster.

Fifth, the effort of the developer was measured by (2), the

number of functions reviewed up to the diagnosis of the actual

faulty function of the trace. In a similar manner to F007, we

considered the total number of functions as 1,000 for (2). Fig.

7 shows the results of clustering based ranking on release 1 of

the subject program. Fig. 7 also shows the results of F007 on

the same release.

Observe from Fig. 7 that F007 can diagnose faulty functions

in a trace with a smaller code review than clustering; only a

few functions were required to be reviewed when F007 was

used. We also observed similar results in the case of other

releases of our large application with the clustering based

ranking requiring review of more functions for the

identification of the actual faulty function. It is possible that

different clustering methods with different ranking heuristics

can generate better or worst accuracy than the decision trees in

F007. It is currently outside the scope of this paper to develop

and test such intuitions as they don’t exist in the literature. In

future work, we expect to employ different clustering

heuristics in F007 against the decision trees.

Fig. 7. F007 against an approach using ranking based on

k-medoid clustering.

A limitation of F007 is that it does not diagnose the new

faulty functions. The newer faulty functions can get masked as

the older faulty functions. This limitation also exists in the

clustering based approaches. A trace with a newer fault can be

classified into already known clusters. Dang et al. report that

traces with newer failures are put into new clusters based on

the distance between new traces and traces in clusters.

However, traces of newer crashes are still masked as the older

crash type due to the similarity of function calls between the

new traces and the traces in clusters. A workaround is to re-

perform clustering or re-train F007 on the traces when there

are a significant number of new traces. Another solution is to

train a one-class classifier on all the failing traces, and use it to

determine whether the fault is in a newer faulty function or

older faulty function, and then apply F007 or clustering. The

line without markers in Fig. 3 through Fig. 7 shows those

traces which required reviewing all functions by a developer

for fault diagnosis. This line without marker goes up to the last

point (100,100) on the chart, but due to better visibility of the

markers in the initial part of the chart we do not show the

complete chart till the point (100,100). This line without

markers actually shows those traces whose faulty functions

did not exist in the training traces, and they were found faulty

in the test traces. Thus, they required the engineer to review all

the functions. Observe that these traces are few, and a majority

of the traces have recurrent faulty functions.

F. Comparing F007 to a Manual Keyword Matching

Approach

In industry, maintainers rely on historical databases to

determine recurrent faults. When a new failure trace arrives,

the maintainers search their historical database for symptoms

common to the new failure trace. Maintainers search their

11

historical database with different keywords to find common

symptoms. For example, the top (or first) function and the

error codes in the new failure trace are the most commonly

used keywords. In addition, maintainers may compare data

patterns, rarely occurring functions with error codes, or any

other symptoms that are unique to the new failure trace. If the

symptoms match, the maintainers extract the fault identifier,

and conclude that the fault is recurrent. The maintainers then

extract fixes and necessary information using the fault

identifier, and provide the information to the user reporting the

failure. During this process, the maintainers may not have

access to the source code, and it may be desirable to identify

the recurrent fault without the source code. Also, it could be

tedious to review the faulty function when the fault identifier

and associated information are already available.

We therefore evaluated F007 by using fault identifiers as a

label. We assigned each trace a label of fault identifier instead

of a faulty function (see Error! Reference source not

found.), and executed F007 on the dataset in a similar manner

as described earlier. The results are shown in Fig. 8. The

horizontal axis in Fig. 8 shows the percentage of fault

identifiers required to be examined to diagnose the correct

fault identifier. The Y-axis shows the cumulative percentage

of failure traces used for testing. For example, the point (1, 52)

shows that 52% of the failure traces were diagnosed correctly

by reviewing 1% of the fault identifiers, which is the first fault

identifier from F007’s ranked list. The results of Fig. 8 are for

release 1 of the subject program, and there were a total of 57

fault identifiers for this release.

Fig. 8. F007 against the manual keyword based search.

In addition to F007, Fig. 8 also shows the results for a

keyword based approach. In this case, we used the first

function in the traces of the test set as the keyword to search

the database of failure traces of the training set. We

determined the fault identifiers when the keyword matched the

first function of training traces. We then counted the number

of fault identifiers and divided them by the total number of

fault identifiers to determine the percentage of the fault

identifiers reviewed to determine the correct fault identifier. If

the keyword did not match in the training database, then we

considered that the failure was not diagnosed.

It can be seen from Fig. 8 that F007 can diagnose fault

identifiers with a higher accuracy than the manual keyword

search approach. However, F007 diagnosed fewer failure

traces than the keyword based approach. This result occurred

because in some cases there was only one trace for training for

a particular fault identifier, and F007 did not predict those

fault identifiers. The keyword based approach was able to

match the top function in those cases, and still was able to list

the fault identifier for a search. However, the keyword based

approach required reviewing a lot of fault identifiers to

diagnose failures, whereas F007 allowed diagnosing the

failure traces on the review of first few fault identifiers.

G. Discussion, and Lessons Learned

Our results on this large scale industrial software system

show that different faults in a group of functions occur with

similar function call traces. This result happens because we

were able to identify the majority of recurring faulty functions

with the same or a different fault by reviewing a small

percentage of functions (e.g., 0.5% = 5 functions). The fact

that few functions were required to be reviewed shows that

traces of some faulty functions overlapped, but the traces were

also distinct from the traces of some other faulty functions. If

the traces had not overlapped, we would have had 100%

accuracy on the review of the first suspected function. This

result also shows that traces are not completely separable. In

the case of multiple faulty functions, traces in the training set

were labeled with multiple faulty functions, and classified in

the test set with the label of multiple faulty functions. The

traces of multiple faulty functions also overlapped with other

traces, but at the same time they had enough distinguishability

for identification. Therefore, only a few functions had to be

considered for review before finding actual faulty functions.

 During our experiments, we also observed that faulty

functions persist across releases. This finding is consistent

with another study in the literature [20]. Recurring faulty

functions in the latest releases can be identified when a

suitable number of traces of faulty functions in earlier releases

are present.

Our experience with this large system shows that industrial

traces can easily reach many Gigabytes, and are not trivial to

parse. Data collection requires going through rigorous logistic

checks, and the required data may not exist. Different sources

have to be consulted to collect missing information. We have

also found that sometimes the diagnosis of fault location in a

failure trace can take several days to weeks. Often a developer

may go through thousands of functions to find the root cause

of a fault. F007 can be really helpful in such situations.

12

 We have also found that many failure traces were related to

configuration problems, such as the wrong network security

protocol. The information about functions causing such faults

was not kept in the database, and many traces were also

purged. However, faulty components’ names and fault

identifiers were present for such faults. F007 could not be

trained on faulty functions, but we evaluated F007 on fault

identifiers and faulty components. F007 yields higher

accuracy for fault identifiers and faulty components than for

faulty functions because there are fewer fault identifiers or

components than functions. Senior developers of this system

suggest that the root cause of (configuration or in code) faults

is mostly only a function. If F007 is trained with such

information, then it can even facilitate users in solving

recurring configuration problems themselves.

H. Limitations and Improvements

F007’s effectiveness could be affected by large variations in

the number of traces in the training set for different faulty

functions. If the majority (e.g., 99%) of the training traces

belongs to one or two faulty functions, and the remaining

traces (e.g., less than 1%) belong to other faulty functions,

then the decision tree would mostly predict the faulty

functions associated with the majority (99%) of traces. This

biased prediction is due to an imbalanced set of training traces.

In machine learning, this condition is known as the imbalance

class problem[45]. In such a case, a workaround would be to

reduce the imbalance in traces of two faulty functions when

training using the one-against-all approach. This workaround

can be done by reducing the traces of the majority faulty

functions in such a way that the percentage of traces of the

minority faulty function increases to approximately 10%. This

workaround can also be done by duplicating the number of

traces of the minority faulty function such that they increase to

approximately 10%.

F007’s training could be constrained by the size of memory

when there are hundreds of thousands of traces in the

repository. In such cases, we must use parallel machine

learning and computational techniques, such as Mahout
3
 over

Map Reduce [9], to train the decision tree algorithms on a

large dataset of traces. In addition, we have also shown in

Section III.B that the number of features can be significantly

reduced without affecting the accuracy. This reduction also

facilitates accommodating a large number of traces in memory

during the training of the decision trees.

The software systems evolve over a period of time. Some of

the functionalities that exist today may not be present in the

future. An automated learning algorithm should be able to

evolve over time with the software system. F007 can be

improved by using an online or incremental learning

algorithm. An incremental learning algorithm allows updating

the learnt model on a new trace without having to use all the

prior traces. The algorithm can also avoid additional memory

overhead during training on many large size traces.

Incremental learning is a separate research issue, and we

3https://mahout.apache.org/

consider it as future work for F007.

IV. THREATS TO VALIDITY

In this section, we describe certain threats to the validity of

the research results. We classify threats into four groups:

conclusion validity, internal validity, construct validity, and

external validity [46].

A. Conclusion Validity

A threat to conclusion validity exists with traces of the

number of faults we used to infer the conclusion. In the large

software application, in Table III, we observed 82% recurring

faults in the database, but we were able to collect traces of

only some of the faults. The sample of system failure traces

that we collected did not represent all the faults that occurred

in the releases of the software application. In fact, the

accuracy across releases would be higher if the failed traces of

all the faults were used. This result happens because the

decision tree would have had sufficient knowledge of faulty

functions for which only one or two traces were present.

B. Internal Validity

A threat to internal validity exists in the implementation of

this technique because it involved quite a lot of programming.

We have mitigated this threat, and made our implementation

reliable, by manually investigating the outputs.

C. Construct Validity

A threat exists in measuring the programmer’s effort in

discovering faulty functions. Recall, from Section II, that F007

generates a list of faulty functions for a new trace, and the

programmer’s effort is measured by counting the functions (or

statements) examined. In a ranking based technique, such as

F007, it is possible that two or more functions can be listed at

the same rank. In such cases, the best case is the first function

to be examined is faulty, and the worst case is the last function

to be examined is faulty. This ordering implies that an

incompetent technique will have a high best case accuracy

(e.g., 90-100% accuracy on examining 1-10% of the program),

and low worst case accuracy (e.g., 90-100% accuracy on

examining 90-100% of the program), because it will list all the

functions as faulty at the same rank. In our approach, the worst

and the best case resulted in approximately the same accuracy.

In a few results, there were measurable differences between

the worst and the best case, but the difference was

inconsequential. Thus, in all our results, we have shown the

best case accuracies because the worst case was similar.

D. External Validity

We evaluated F007 on a commercial database application,

mostly written in C and C++. F007 is still to be evaluated on

other kinds of software applications before it can be

generalized in all contexts.

V. RELATED WORK

Scientific literature describes a number of fault discovery

techniques. We classify the fault discovery techniques into

two groups. Fault discovery techniques focusing on field

failures, and fault discovery techniques focusing on in-house

13

failures. In the following sub-sections, we elaborate on each of

these techniques.

A. Fault Discovery Techniques Focusing on Field Failures

Podgurski et al. [33] form clusters of execution traces of the

field failures based on common faulty source files. The

granularity in the Podgurski et al. approach is a faulty file,

whereas a majority of the clusters contained failed traces with

multiple files (fault origin), making it not suitable for the

manual investigation of the correct faulty file (and the

investigation of a finer-grain origin of a fault than just the

faulty file gets even more difficult). In contrast, F007

discovers faults automatically at the finer-grained function-

level; and the faults in the majority of traces can be discovered

correctly by reviewing the first few suspected functions.

Podgurski et al. experimented on GCC, Javac, and Jike;

whereas, we experimented on a large industrial system of 20

million LOC. We have shown a comparison of F007 to a

similar approach as Podgurski et al. in Section III.E.

Dang et al. [8] proposed a method to improve the grouping

method of duplicate (recurrent) crash reports in a Windows

error reporting system. Dang et al. measured the similarities of

call stack traces by applying hierarchical clustering, and put

the similar call traces in one group. Dhaliwal et al. [10]

propose a two level grouping mechanism for Firefox based

crash traces. The groups were formed on the basis of crash

types by determining the similarities of top 10 functions in

stacks using the Levenshtein distance. Brodie et al. [3] use

string matching to group one function call trace of a crash with

other groups of function-call traces for different crashes. The

groups of crashes were formed by exactly matching the

function call paths of different crashes. They claim that every

group, formed on the basis of the same trace matches, has the

same crashing reason. However, traces due to the same

crashing reason (or the same fault) are not exactly the same,

and they can take different approaches. Lee and Iyer [19]

propose a technique to classify the recurrent crashing failures

by literal matching of its function call trace with already

known failure traces. They consider several heuristics to

match several function call paths followed by the same fault.

In F007, we model several paths leading to the same faulty

function by the decision tree algorithm. These techniques

focus on grouping function call traces of recurrent faults based

on a similar crashing reason. F007 focuses on a finer grain

identification of recurrent faulty functions from the system

failure traces of crashes and non-crashes. F007 actually

addresses a more difficult problem, like Podgurski et al. [33],

of non-crashing failure classification. Non-crashing failures

are more difficult to diagnose because a user may notice a

failure well after the execution of the faulty code [33].

Examining the functions executed right before the system

crashes may not be sufficient to diagnose a non-crashing fault.

Liu and Han [22] cluster failing runs according to a ranked

list of assertions (i.e., check points) obtained using the

statistical debugging tool SOBER [23]. They propose to

collect passing and failing traces from the field to predict fault

locations (assertions). They insert light weight assertions into

code, collect traces, and if a fault is not found they insert new

assertions. Collecting many passing and failing traces from the

field can be detrimental to business operations due to the

overhead of tracing. F007 focuses on a different problem of

only recurrent faults from function call traces. These traces are

commonly collected from the field. However, Liu and Han

[22] use assertion based traces, which are not common.

However, this technique [22] complements F007 by

identifying new fault locations, and using F007 to instantly

identify recurrent faults.

Xia et al. [52] combine genetic algorithm with multi-label

classification algorithms to classify a failure trace into

multiple fault types (i.e., multiple labels). In general, the basis

of multi-label algorithms is to divide the multi-label dataset of

traces into multiple datasets such that classification algorithms

(e.g., SVM) can be trained in a normal manner on single

labels. The predictions of individual classifiers are then

combined using certain criterion by multi-label classification

algorithms to get the final prediction. F007 also divides the

dataset into multiple datasets but using the one-against-all

approach. F007 treats multiple labels as one label during

training (see Table I and Table II). F007 generates a ranking

of the predictions, and evaluates the ranking by measuring the

developers’ effort; whereas Xin et al. [52] use the F-measure

(which is similar to clustering techniques), and do not measure

the developers’ effort. It is unknown how much effort would

be spent by developers in locating the correct label (faulty

type) for a failure using the approach by Xin et al. In addition,

Xin et al. [52] have been evaluated on smaller (approx. 1000

LOC) programs to medium size (approx. 10,000 LOC)

programs; whereas, we have evaluated our approach on a large

(approx. 20 million LOC) commercial program. The work by

Xin et al. is related to our work, but it is not directly

comparable.

Another statistical debugging tool, HOLMES [5], uses path

profiles to classify faults for deployed software. Their

technique can only be applied to the server side applications

[5] because they have to redeploy software components with

instrumentation of selected functions to collect the passing

traces and the failing traces pertaining to one fault from the

field. In some cases, this task may not be feasible for running

servers as well due to the runtime redeployment of

instrumented software components. F007, as mentioned

earlier, focuses on a different problem of recurrent faults, and

HOLMES can complement F007.

 In [29], we proposed a technique to diagnose faulty

functions from function call traces of crashing and non-

crashing failures by using prior traces. We trained the C4.5

decision tree algorithm on function calls extracted from a

collection of field traces to identify faulty functions in new

traces. The study only focused on identifying recurrent faulty

functions in the same release, and we evaluated it on small

systems of 1000 LOC with traces collected using test suites. In

this paper, we improve our previous work by empirically

determining whether the same faulty functions across releases

can be identified using prior traces. This improvement is

important because faulty components persist across releases

[20]. We also addressed the issue of the scalability of F007 by

evaluating it on actual field traces of a very large industrial

system of 20 million LOC, 200,000 functions, and traces of

several Gigabytes (see Section III.B). We also discovered that

the contribution of additional events (e.g., error codes, probe

points, etc.) in function call traces of commercial software

14

applications other than function entry and exit events in

diagnosis of faulty functions is not significant. In our earlier

paper, the traces only contained function entry and exit events.

In addition, we also showed that functions with smaller

variations can be discarded without affecting the accuracy of

fault diagnosis. This removal of error codes, probe points,

function entry, and functions with small variations

significantly reduces trace size and tracing overhead. It also

facilitates efficient, scalable model generation (see Section

III.B). Thus, significant improvements have been made from

our earlier work [29].

Yuan et al. [53] employ support vector machines on system

call traces to determine the root causes of configuration

problems (e.g., network cable unplugged). Chen et al. [4]

describe a technique based on the decision tree and association

rule to diagnose configuration problems in large distributed

systems (e.g., a faulty web server). Ding et al. [12] also

propose a technique to identify faults occurring due to

misconfiguration of a software system. In short, these

techniques also complement our work in that they focus on the

identification of faults in application interactions, or at a

system level; whereas F007 focuses on the faults within an

application.

Techniques for duplicate (recurrent) bug reports

identification are also related to our work [31], [41]. Duplicate

bug report identification techniques apply natural language

processing techniques to comments from developers and users

in bug reports to identify duplicate (recurrent) bug reports.

F007 focuses on the identification of recurrent field traces, and

the location of faults from field traces. In the automated

collection of field traces, the reports may only contain

function call executions without detailed information. Also, in

contemporary bug report management systems (e.g., Firefox

Socorro
4
 and Bugzilla

5
), a bug report can be associated with

many different crash traces, and a crash trace can be

associated with many different bug reports. Therefore, related

techniques focus separately on execution trace classification

[8], [10], [33], [52], and bug report classification [31], [41].

F007 also focuses on execution trace classification, and does

not assume that the detailed bug description is available.

Program comprehension techniques from software traces

can be considered related [24]. Lo et al. [24] actually propose

a close iterative pattern mining technique on software

execution traces to facilitate developers’ program

comprehension. F007 however focuses on fault localization

from software execution traces.

B. Fault Localization Techniques focusing on In-house

Failures

Techniques for diagnosing fault locations by using the

difference between passing traces and failing traces have also

been a focus of many researchers. There are many examples of

such techniques. Our first example is the execution slicing

techniques that repeatedly compare pairs of passing and

failing traces until the fault is found [1], [39], [47]. Our second

example includes those techniques that present a ranked list of

artifacts (e.g., statements, branches, etc.) to developers by

4https://bugzilla.mozilla.org
5https://crash-stats.mozilla.com/

contrasting passing and failing test case executions [17], [50],

[40], [55], [6], [38]. Our third example is statistical debugging

based techniques that present a ranked list of predicates (check

points) by contrasting passing and failing runs of predicates

[21], [23], [54], [56]. Our fourth example includes the use of

neural networks [50] and chi-square based methods [48] on

passing and failing statement level traces to generate a ranked

list of faulty statements. Our fifth example includes those

techniques that use passing and failing function call traces to

generate a ranked list of faulty functions [11], and faulty

classes for a fault [7]. Our sixth example includes the

technique by Wang et al. [43] that combines existing fault

localization measures (e.g., Tarantula [17] and Ochiai [38])

using genetic algorithm to improve the accuracy of fault

localization. Our seventh example is about the technique by

Lucia et al. [25] that investigates the 40 association measures,

already found in the data mining literature, along with the

measures by Tarantula and Ochiai on the localization of faults

during software testing. Lucia et al. found that 50% of the

association measures were able to find all the faults on the

review of 25% to 27% of the program elements

 To operate, these techniques require passing and failing

traces. Collecting passing and failing traces from the field is

not feasible due to tracing overhead, space requirements, and

bandwidth consumption. In the case of multiple faults, these

techniques usually require grouping traces due to the same

faults (e.g., by clustering) to reduce a multiple faults problem

to a set of single fault problems [49]. These techniques can be

applied on field traces by reproducing the same faults on test

machines. However, reproducing hundreds of failure reports

with multiple faults can be time consuming. As we already

know that 50% to 90% of field failures are due to previously

known faults, then a wise approach to the fault localization of

field failures is to use a technique like F007 to instantaneously

identify recurring field faults, and use these techniques to

identify new fault locations.

VI. CONCLUSIONS, AND FUTURE WORK

Discovering the origin of a fault from field-failure reports is

an arduous task, and can consume 30% to 40% of the time

required to fix faults [35]. Despite knowing that 50% to 90%

of field failures are due to the same faults [3], [19], [51], and

80% of the faults originate from 20% of the code [15], [32],

the time and effort spent in identifying recurrent faults is still

the same. Prior techniques in the literature focus on clustering

stack traces of field crashes according to the similarity of

faults [3], [19], [8], clustering crashing and non-crashing

function call traces of field failures according to files [33], and

using statistical debugging [5] on passing-failing traces to

discover field faults (see Section V).

We propose a technique, F007, to identify recurring faulty

functions in the traces of field failures. F007 trains the C4.5

decision tree algorithm on historical failure traces of current

and prior releases. The trained decision trees are then used to

identify faulty functions in new failure traces (see Section II).

We evaluated F007 on a large industrial system of 20 million

LOC and 200K functions (see Section III). Our results show

that recurring faulty functions across releases and within the

same release can be diagnosed with 90% accuracy on average

15

(see Section III.C). Our results also show that different faults

in related functions occur with similar function call traces, due

to which recurring faulty functions can be easily identified

(see Section III.E). The results also demonstrate that events

like probe points, exceptions thrown, and functions with

smaller variations do not contribute significantly to the

automatic discovery of faulty functions. In fact, the size of

traces can be reduced to approximately 50% by removing such

events.

These results contribute to the body of knowledge by

identifying recurring faulty functions in field failure traces

across different releases. This approach is novel, and reduces

the time spent in fault diagnosis during maintenance. This

paper also contributes to the state of the art by demonstrating

results on a large scale commercial application of 20 million

LOC.

 F007 has a limitation in that it cannot identify new faulty

functions in field failure traces, and it only focuses on

recurrent faulty functions. For future work, we are planning

studies to overcome this limitation by integrating existing

complementary techniques for in-house fault localization (see

Section V.B).

REFERENCES

[1] H. Agrawal, J. R. Horgan, S. London, W. E. Wong, “Fault

Localization using Execution Slices and Dataflow Tests,”

in Proc. of International Software Symposium on

Reliability Engineering, France, Oct. 1995, pp.143-151.

[2] J.F. Bowring, J.M. Rehg, and M.J. Harrold, “Active

Learning for Automatic Classification of Software

Behavior,” ACM SIGSOFT Software Engineering Notes,

vol. 29, no. 4, pp. 195-204, Jul. 2004.

[3] M. Brodie, Sheng Ma, G. Lohman, L. Mignet, N. Modani,

M. Wilding, J. Champlin, and P. Sohn, “Quickly Finding

Known Software Problems via Automated Symptom

Matching,” in Proc. of 2nd International Conference on

Autonomic Computing, Seattle, WA, June 2005, pp. 101-

110.

[4] M. Chen, A. Accardi, E. Kiciman, A. Fox,, “Path-based

Failure and Evolution Management,” in Proc. of

International Symposium on Networked Systems Design

and Implementation, San Francisco, CA, March 2004, pp.

309-322.

[5] T. M. Chilimbi, B. Liblit, K. Mehra, A.V. Nori, and K.

Vaswani, “HOLMES: Effective Statistical Debugging via

Efficient Path Profiling,” in Proc. of 31
st
 IEEE

International Conference on Software Engineering,

Canada, May, 2009, pp. 34-44.

[6] H. Cleve and A. Zeller, “Locating Causes of Program

Failures,” in Proc. of the 27th International Conference

on Software Engineering, St. Louis, MO, 2005, pp. 342-

351.

[7] V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight

Defect Localization for Java,” in Proc. of 19th European

Conference on Object-Oriented Programming, Glasgow,

UK, Aug. 2005, pp. 528-550.

[8] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel ,

“ReBucket: A Method for Clustering Duplicate Crash

Reports Based on Call Stack Similarity,” in Proc. of the

34
th

 International Conference on Software Engineering ,

Zurich, Switzerland, 2012, pp. 1084-1093.

[9] J. Dean, and S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters,” Communications of . ACM

, vol. 51, no. 1, pp. 107-113, Jan. 2008.

[10] T. Dhaliwal, F. Khomh, and Y. Zou, “Classifying Field

Crash Reports for Fixing Bugs: A Case Study of Mozilla

Firefox,” in Proc. of 27th IEEE International Conference

on Software Maintenance (ICSM), 2011, pp. 333-342.

[11] G. Di Fatta, S. Leue, and E. Stegantova, “Discriminative

Pattern Mining in Software Fault Detection.” in Proc. of

3rd International Workshop on Software Quality

Assurance, Oregon,, Nov. 2006, pp. 62-69.

[12] X. Ding, H. Huang, Y. Ruan, A. Shaikh, and X. Zhang,

“Automatic Software Fault Diagnosis by Exploiting

Application Signatures,” in Proc. of 22nd Conference on

Large Installation System Administration, San Diego, CA,

Nov. 2008, pp. 23-39.

[13] A. Hamou-Lhadj, "Techniques to Simplify the Analysis

of Execution Traces for Program Comprehension," Ph.D.

Dissertation, School of Information Technology and

Engineering (SITE), University of Ottawa, 2003

[14] A. Hamou-Lhadj, and T. C. Lethbridge, "Techniques for

Reducing the Complexity of Object-Oriented Execution

Traces," in Proc. of the 1th IEEE International Workshop

on Visualizing Software for Understanding and Analysis

(VISSOFT), Amsterdam, Netherlands, 2003, pp. 35-40.

[15] M. Gittens, Y. Kim, and D. Godwin, “The Vital Few

Versus the Trivial Many: Examining the Pareto Principle

for Software,” in Proc. of 29th International Conference

on Computer Software and Applications, Edinburgh,

Scotland, July 2005, pp. 179-185.

[16] D. Hare, and D. Julin. (2007, April). “The Support

Authority: Interpreting a WebSphere Application Server

trace file,” IBM WebSphere Developer Technical

Journal. [Online].

Available:http://www.ibm.com/developerworks/webspher

e/techjournal/0704_supauth/0704_supauth.html

[17] J. A Jones, and M. J. Harrold, "Empirical Evaluation of

the Tarantula Automatic Fault-Localization Technique,"

in Proc. of 20th International Conference on Automated

Software Engineering., CA, USA, 2005, pp.273-282.

[18] S. Kulkarni, “Software Defect Rediscoveries: Causes,

Taxonomy and Significance,” MS thesis, Department of

Computer Science, The University of Western Ontario,

2008.

[19] I. Lee, and R. Iyer, “Diagnosing Rediscovered Problems

Using Symptoms,” IEEE Transactions on Software

Engineering., vol. 26, no. 2, pp.113-127, Feb. 2000.

[20] Z. Li, N. H. Madhavji, S.S. Murtaza, M. Gittens .,

"Characteristics of Multiple-Component Defects and

Architectural Hotspots: A Large System Case Study,"

16

Empirical Software Engineering (ESE), vol. 16, no. 5,

pp. 667-702, Oct. 2011.

[21] B. Liblit, A. Aiken, A.X. Zheng, and M. I. Jordan, "Bug

Isolation via Remote Program Sampling," in Proc.of ACM

SIGPLAN 2003 Conference on Prog. Language Design

and Implementation (PLDI '03), May 2003, pp. 141-154.

[22] C. Liu, and J. Han, “Failure Proximity: A Fault

Localization-based Approach,” in Proc. of the 14th

SIGSOFT Symposium on Foundations of Software

Engineering, Portland, OR, Nov. 2006, pp. 45-56.

[23] C. Liu, X. Yan, L. Fei, J. Han, S. P. Midkiff, “SOBER:

Statistical Model-Based Bug Localization,” SIGSOFT

Software Engineering Notes, vol. 30, no.5, , pp. 286-295,

Sep. 2005.

[24] D. Lo, S. Khoo, and C. Liu, “Efficient Mining of Iterative

Patterns for Software Specification Discovery.” in Proc.

of the 13th International Conference on Knowledge

Discovery and Data Mining (KDD). 2007, pp. 460-469.

[25] Lucia, D. Lo, A. Jiang, F. Thung, A. Budi, “Extended

Comprehensive Study of Association Measures for Fault

Localization.” Journal of Software: Evolution and

Process, vol. 26, no. 2, pp. 172-219, Feb. 2014.

[26] R. B. Melnyk. (2004, Sep.). “DB2 Basics: An

introduction to the DB2 UDB trace facility,” DB2

Information Development, IBM Canada Ltd. [Online].

Available: http://www.ibm.com/developerworks/

data/library/techarticle/dm-0409melnyk/index.html

[27] A.,V. Miranskyy, M. Davison, M. Reesor, and S. S.

Murtaza, “Using Entropy Measures for Comparison of

Software Traces,” Journal of Information Sciences, vol.

203, pp. 59-72, Oct. 2012.

[28] Mozilla Crash Statistics, [Online]. Available :

http://crash-stats.mozilla.com

[29] S.S. Murtaza, M. Gittens, Z. Li, and N. H. Madhavji,

“F007: Finding Rediscovered Faults from the Field using

Function-level Failed Traces of Software in the Field,” in

Proc. of Conf. of the Center for Advanced Studies on

Collaborative Research: Meeting of Minds, Toronto,

Canada, Nov. 2010, pp. 61-75.

[30] S.S. Murtaza, A. Rehman, A. Hamou-Lhadj, and M.

Couture, "On the Comparison of User-space and Kernel-

space Traces in Identification of Software Anomalies," in

Proc. of 16th Conference on Software Maintenance and

Reengineering, Hungary, 2012, pp. 127-136.

[31] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C.

Sun, “Duplicate Bug Report Detection with a

Combination of Information Retrieval and Topic

Modeling,” in Proc. of the 27th IEEE/ACM International

Conference on Automated Software Engineering (ASE),

2012. pp. 70-79.

[32] T. J. Ostrand, E. Weyuker, and R.M. Bell, “Predicting the

Location and Number of Faults in Large Software

Systems,” IEEE Transactions on Software Engineering,

vol. 31, no. 4, pp. 340-355, April 2005.

[33] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch,

and J. Sun, “Automated Support for Classifying Software

Failure Reports,” in Proc. of International Conference on

Software Engineering (ICSE)., Portland, OR, 2003, pp.

465-475.

[34] K. Polat, and S. Güneş, “A Novel Hybrid Intelligent

Method Based on C4.5 Decision Tree Classifier and One-

Against-All Approach for Multi-class Classification

Problems,” Journal of Expert Systems with Applications.,

vol. 36, no.2, Pergamon Press, pp.1587-1592, Mar. 2009.

[35] Proprietary Workshop on Large Commercial Software,

London, Canada: The University of Western Ontario, Sep.

2008.

[36] F. Provost, and P. Domingos, “Tree Induction for

Probability-based Ranking,” Machine Learning, vol. 52,

no. 3, pp. 199-215, Sep. 2003.

[37] J. R. Quinlan, C4.5: Programs for Machine Learning, San

Francisco, CA: Morgan Kaufmann Publishers, 1993.

[38] R. Abreu, P. Zoeteweij, R. Golsteijn, and A.V. Gemund, ,

“A Practical Evaluation of Spectrum-based Fault

Localization,” Journal of Systems and Software, vol. 82,

no. 11, pp. 1780-1792, Nov. 2009.

[39] M. Renieres, and S.P. Reiss, “Fault Localization with

Nearest Neighbor Queries,” in Proc. of the 18th

International Conference on Automated Software

Engineering, Montreal, Canada, 2003, pp. 30-39.

[40] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold ,

“Lightweight Fault-localization Using Multiple Coverage

Types,” in Proc. of the 31st International Conference on

Software Engineering., Vancouver, Canada, 2009, pp. 56-

66.

[41] Y. Tian, C. Sun, and D. Lo, "Improved Duplicate Bug

Report Identification," in Proc. of 16th European

Conference on Software Maintenance and Reengineering

(CSMR), March 2012, pp.385-390.

[42] Ubuntu Apport Crash Reporting, [Online]. Available:

https://wiki.ubuntu.com/Apport

[43] S. Wang, D. Lo, L. Jiang, Lucia, H.C. Lau, "Search-based

Fault Localization," in Proc. of 26th IEEE/ACM

International Conference on Automated Software

Engineering, 2011, pp.556-559.

[44] WER, Windows Error Reporting, [Online]. Available:

http://msdn.microsoft.com/en-

us/library/windows/hardware/gg487440.aspx

[45] I.H. Witten and E. Frank, Data Mining: Practical

Machine Learning Tools and Techniques, San Francisco,

CA: Morgan Kaufmann, 2005.

[46] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B.

Regnell, and A. Wesslén , Experimentation in Software

Engineering: An Introduction, Norwell, MA: Kluwer

Academic Publishers, 2000.

[47] W. E. Wong, and Y. Qi, “Effective Program Debugging

Based on Execution Slices and Inter-Block Data

Dependency,” Journal of System and Software, vol.79,

no. 7, pp. 891-903, July 2006.

[48] W.E. Wong, T. Wei, Y. Qi, and L. Zhao, “A Crosstab-

based Statistical Method for Effective Fault

Localization,” in Proc. of 1st International Conference

17

on Software Testing, Verification and Validation,

Norway,2008, pp. 42-51.

[49] W.E. Wong, V. Debroy, R. Golden, Xu. Xiaofeng, B.

Thuraisingham, “Effective Software Fault Localization

Using an RBF Neural Network,” IEEE Transactions on

Reliability, vol. 61, no. 1, pp. 149-169, March 2012.

[50] W.E. Wong, Y. Qi, L. Zhao, Kai-Yuan Cai , "Effective

Fault Localization using Code Coverage," in Proc. 31
st

IEEE Int’l Conf. on Computer Software. & Application.,

China, July 2007, pp.449-456.

[51] A. Wood, “Software Reliability from the Customer

View,” Computer, vol. 36, no. 8, pp.37-42, Aug. 2003.

[52] X. Xia, Y. Feng, D. Lo, Z. Chen, and X. Wang ,

"Towards more accurate Multi-label Software Behavior

Learning," in Proc. of IEEE International Conference on

Software Maintenance, Reengineering and Reverse

Engineering (CSMR-WCRE), Feb. 2014, pp.134,143.

[53] C. Yuan, N. Lao, J. Wen, J. Li, Z. hang, Y. Wang, and W.

Ma, “Automated Known Problem Diagnosis with Event

Traces,” SIGOPS, OS. Syst. Rev., vol. 40, no. 4, pp.

375-388, Aug. 2006.

[54] Z. Zhang, W. K. Chan, T. H. Tse, Y. T. Yu, and P. Hu,

“Non-parametric Statistical Fault Localization”. Journal

of Systems and Software, vol. 84, no. 6 , pp. 885-905,

June 2011.

[55] Z. Zhang, B. Jiang, and X. Wang, "Capturing Propagation

of Infected Program States," in Proc. of International

Conference on Foundations of Software Engineering.,

Netherlands, 2009, pp. 43-52.

[56] A.X. Zheng, M.I. Jordan, B. Liblit, and A. Aiken,

“Statistical Debugging of Sampled Programs,” Advances

in Neural Information Processing Systems, , pp. 9-18,

2004.

ACKNOWLEDGMENT

We are thankful to Mark Wilding, Andriy Miranskyy and

Dave Godwin of IBM for their technical support and intuitive

insights during this study.

Syed Shariyar Murtaza received his Ph.D. from the

University of Western Ontario in 2011. He received his

MS in Computer Engineering from Kyung Hee University

in 2006 and BS from the University of Karachi in 2004. He

has been working as a researcher and a software engineer

with Concordia University and Defence Research and

Development Canada since 2011. He specializes in the

applications of machine learning in software engineering,

data analytics, and information management

Nazim H. Madhavji is a Professor in the Department of

Computer Science at the University of Western Ontario,

Canada. He is particularly known for his contributions to

the knowledge on interactions between system

requirements and architectures, and for his work on the

impediments to regulatory compliance in large projects,

execution trace analysis, defect analysis, the evolution of

systems, software quality, the congruence between

software products and processes, and empirical studies.

Mechelle Gittens has worked and carried out research in

software engineering since 1995. She is currently a

Lecturer at the University of the West Indies – Cave Hill

Campus where she teaches and does research in Computer

Science. Mechelle has a Master’s and Doctorate from the

University of Western Ontario (UWO), where she is now a

Research Adjunct Professor. Her work is in software

quality, quality of life technologies, software testing,

empirical software engineering, software reliability, and

project management. She has published at several

international forums in these areas, and jointly holds a US

patent in software testing.

Abdelwahab Hamou-Lhadj is a tenured associate

professor in ECE, Concordia University. His research

interests include software modeling, software behavior

analysis, software maintenance and evolution, anomaly

detection systems. He holds a Ph.D. degree in Computer

Science from the University of Ottawa (2005). He is a

Licensed Professional Engineer in Quebec, and a long-

lasting member of IEEE and ACM.

