
 

 

Mining Telecom System Logs to Facilitate Debugging Tasks 

Alf Larsson 
PLF System management  

Ericsson, Research & Development 

Stockholm, Sweden 

Alf.Larsson@ericsson.com 

Abdelwahab Hamou-Lhadj 
SBA Research Lab 

ECE, Concordia University 

Montreal, Canada 

abdelw@ece.concordia.ca 
 

Abstract. Telecommunication systems are monitored 

continuously to ensure quality and continuity of service. When 

an error or an abnormal behaviour occurs, software engineers 

resort to the analysis of the generated logs for troubleshooting. 

The problem is that, even for a small system, the log data 

generated after running the system for a period of time can be 

considerably large. There is a need to automatically mine 

important information from this data. There exist studies that 

aim to do just that, but their focus has been mainly on software 

applications, paying little attention to network information 

used by telecom systems. In this paper, we show how data 

mining techniques, more particularly the ones based on mining 

frequent itemsets, can be used to extract patterns that 

characterize the main behaviour of the traced scenarios. We 

show the effectiveness of our approach through a 

representative study conducted in an industrial setting.  

Keywords— System logs, event correlation, troubleshooting of 

telecom systems, mining algorithms.  

I. INTRODUCTION  

Ericsson is one of the largest telecom companies in the 

world. It has a much diversified product portfolio comprising 

of various network components. These components work 

together and are usually distributed in nature. When errors or 

abnormal behaviours occur, software engineers turn to the 

analysis of logs, generated by monitoring and tracing the 

system‟s activities. Logs, however, tend to be overwhelmingly 

large, which hinders any viable analysis unless adequate (and 

practical) tool support is provided [5, 6].  

Log analysis is a broad topic and varies in scope depending 

on the application domain. In this paper, we focus on the 

problem of extracting meaningful patterns from system logs to 

help software engineers understand the main behaviour of the 

traced scenario. The ultimate goal is to facilitate debugging and 

other maintenance tasks. Consider, for example, the simple 

scenario of transferring a file over FTP (File Transfer Protocol) 

between two network sites. The generated log file is bound to 

noise and network interferences (as it is almost always the case 

in industrial systems). Knowing which events are most relevant 

to the file transfer itself is a challenging task. But when 

performed properly, it can reduce significantly the time and 

effort it takes to software engineers to understand and 

troubleshoot the system in case the transfer fails.  

At Ericsson, a common approach is to look at the 

occurrence of events and relate them using timestamp 

information. Due to noise and interference in the data, this type 

of analysis has limited ability to uncover correct and complete 

behaviour. Hence, the process often requires heavy 

involvement of domain experts.  

In this paper, we investigate the use of data mining 

techniques for identifying and analyzing important events and 

patterns in large system logs with minimum intervention of the 

users. 

II. APPROACH  

Our approach is shown in Figure 1. It encompasses two main 

phases: Pattern Generation and Validation, and Pattern 

Matching. The first phase is a learning phase in which we apply 

data mining techniques to extract behavioural patterns from 

large logs. The extracted patterns are presented to domain 

experts for validation. Domain experts can choose to assign a 

context (a description and any other relevant information) to 

the valid patterns. The patterns with their description are then 

saved in a database.  

During the pattern matching phase (the second step), we use 

the pattern database to correlate events in a random set of logs 

generated from systems in operation using pattern matching 

techniques. We also support the possibility to correlate these 

patterns. This is particularly useful if the traced feature 

involves several scenarios. Software engineers can see how 

these scenarios are interrelated. These phases are explained in 

more details in the subsequent sections, preceded with a 

subsection on log generation. 
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Figure 1.Overview of the approach 

A. Collection of System Logs 

We generate logs by exercising the system with a usage 

scenario of interest. Our strategy is to run the scenario several 

times with different background noise and feed the resulting 

log files to a data mining algorithm to automatically extract the 



 

 

common sequences of events. Our hypothesis is that the events 

that are common to the generated log files are the ones that are 

also the most relevant. This approach is similar to Software 

Reconnaissance introduced by Wilde et al. in [12] and further 

improved by many researchers (see [4] for a survey). The 

authors compared traces generated from routine call traces to 

identify the components that implement a particular scenario. 

This contributes to solving a problem known as feature location 

in code; identifying the most relevant components that 

implement a specific feature.  

The main difference is that we use a data mining algorithm 

instead of correlating traces using graph theory. Also, to our 

knowledge, software reconnaissance and other feature location 

techniques have not been applied to network logs. This type of 

run-time information differs greatly from traces of control flow. 

Network logs tend to be more fine-grained and the information 

cannot be easily mapped to the source code. Many feature 

locations techniques heavily rely on the source code to find 

relevant information.  

B. Learning Phase: Pattern Generation 

There exist several data mining algorithms that extract 

patterns from large data. Examples include Apriori [1], 

Frequent Pattern tree (FP-tree) [2], FP-Growth [10, 11], etc. 

The one we chose to use in this paper is MAFIA [3]. MAFIA 

stands for Mining Maximal Frequent Itemsets Algorithm. We 

selected MAFIA because of its time efficiency for extracting 

long patterns compared to its counterparts [3].  

MAFIA starts by building a lattice tree that represents the 

lexicographic ordering of the items in an itemset. We will detail 

this process in the subsequent paragraphs. The algorithm then 

applies a depth-first search algorithm with pruning techniques 

to detect maximal frequent itemsets that have a support greater 

or equal than a certain threshold. The support of an itemset 

represents the number of times it appears in the itemset 

database. To illustrate how MAFIA works, let us revisit the 

example provided in [3]. In this example, I, the item set, 

contains four items I = {1, 2, 3, 4}. A database of itemsets, T, is 

a multiset of subsets of I. The objective of the algorithm is to 

find the maximal frequent itemsets in T. For example, the result 

of applying MAFIA to T = {{1234}, {123}, {134}, {234}} is 

{123} (with minimum support = 2). 

The algorithm starts by building a lattice in such a way that 

the top itemset is the empty set and each lower level k contains 

all itemsets of length k. The itemsets are ordered according to 

the lexicographic ordering relationship. The lexicographic 

subset lattice generated from I is shown in Figure 2. The first 

level (k = 0) is the empty set. The next level contains itemsets 

of length 1, ordered in the lexicographic way {1} < {2}, etc. 

The next level (where the effect of ordering is more noticeable) 

contains items of length 2. In this level, Itemsets {12}, {13}, 

{14}, generated from extending {1}, are also ordered in the 

lexicographic manner, etc.  
One simple way to find maximal frequent itemsets is to 

apply a naïve depth-first algorithm and count the number of 

occurrences of each itemset. An itemset with a support greater 

or equal to the minimum support is added to the maximal 

itemset database (the output of the algorithm), given that a 

superset has not already been discovered. The problem with a 

simple depth-first algorithm is that it tends to be unnecessarily 

slow. This is because it counts the frequency of all itemsets in 

the tree despite the fact that some subtrees can be quickly 

filtered out earlier in the process if a different reordering is 

used. For example, given the subtree rooted at P = {1}, 

counting the support of {12}, {13}, {14}, P‟s children, first 

will reveal that only {12} is frequent (it appears twice in the 

database). Items 3 and 4 can then be filtered out so no new 

itemsets need to be counted in the subtree rooted at P. In other 

words, {123}, {124}, and {234} do not need to be counted 

which will save time.  Based on this, the MAFIA authors [3] 

present various pruning and reordering algorithms to increase 

the performance of the algorithm by reducing the search space. 

An implementation of MAFIA is made publicly available by 

the authors on http://himalaya-tools.sourceforge.net/Mafia/. 

 

Figure 2. Lexicographic ordering lattice (from [3]) 

To apply MAFIA to log events, we introduce the following 

definitions. We call an instance of a given scenario a „window’. 

We distinguish each instance with a unique window identifier 

(window_id). We save the generated logs in a database table. 

Each column consists of a specific attribute of a log event. We 

assign a unique integer transaction id to each distinct attribute. 

The idea is to use the ids for lexicographic ordering. While 

assigning transaction ids, window limit is not taken into 

consideration. Even if a log entry is found across multiple 

windows, it is assigned the same transaction id. Figure 3 shows 

an example of two scenarios, represented as windows, with 

their events (depicted using A, B, C…). The event attributes are 

assigned transactions ids. In this example, I = {1, 2, 3, 4, 5, 6, 

7} and T = {{121234}, {1251267}}. The result of the 

algorithm (with minimum support = 2), is Itemset {12} which 

corresponds to the pattern AB. 

 Window ID Window 1 Window 2 

 Sample logs for each window A B A B C D A B E A B D F G 

 Transaction ID 1  2 1 2 3 4 1 2 5 1 2 6 7 

Figure 3. Example of scenarios represented as windows 

 We want to note that, in order to obtain a pattern 

representing a specific behaviour, we do not consider all 

attributes of a log event during the mining process. For 

example, a typical log event generated from file transfer 

operation will involve the timestamp, protocol, sender‟s IP, 

receiver‟s IP, and other information. Considering the timestamp 

will end up eliminating the very possibility of obtaining a 

pattern by making each event unique because timestamp varies 

from one event to another. The decision on which attributes to 

select is left to the user. It is always recommended to use 

attributes that represent a generalized behaviour. The more 

attributes we use, the more restrictive the pattern detection 

approach is.  

C. Pattern Validation and Context Assignment 

Once we extract the patterns, we present them to domain 

experts at Ericsson for validation. This is usually done in a 

semi-automatic way using a tool we have developed for this 



 

 

research (see the case study for snapshots). A typical task of the 

domain expert is to go through the pattern, assess its quality, 

and remove unnecessary data if need be. There might be 

situations where the domain expert considers the quality of the 

pattern to be poor (e.g., it lacks key events). In this case, he or 

she can request either to re-run the pattern mining process by 

adjusting its input (adding other attributes) or run the scenario 

again with additional background noise to clearly distinguish 

the behavioural pattern events from other events.  

Once the domain expert deems the pattern to be valid, he or 

she assigns a context, which is a high-level description 

comprised of the pattern name, the context in which the pattern 

appeared (e.g., the network topology, the type of 

communication used, the communication protocol, etc.). The 

pattern is then saved in the pattern library.  

D. Testing Phase: Pattern Matching 

We have developed a simple pattern matching algorithm to 

identify the event patterns in logs generated from a system in 

operation.  The algorithm simply matches the log events to the 

patterns in the database. Our matching algorithm operates as 

follows: Given a sequence of events s1 and a pattern p1 (in the 

pattern database), s1 and p1 are considered similar if all events 

in p1 appear in s1. In other words, it is enough for s1 to contain 

the events that appear in a pattern to be considered as a 

candidate pattern. An alternative solution will be to consider 

exact matching but this would turn out to be too restrictive 

because of noise in the data. Future studies should focus on 

measuring similarity based on a certain threshold.  

E. Testing Phase: Pattern Correlation 

We define pattern correlation as the process of identifying a 

relation between the extracted patterns in a given scenario or a 

set of scenarios. This task is important for debugging and 

performance analysis since it can help software engineers 

identify what is happening in the system when multiple 

operations occur (e.g., sending an FTP file while at the same 

time using HTTP).  

Patterns are correlated using two methods: attribute-based 

correlation and time-based correlation. In the attribute-based 

correlation method, the event attributes are used to find relation 

among patterns. For example, if a user wants to know which 

events happened in two patterns on a particular IP address, an 

attribute-based filtering mechanism can be employed to 

identify those events. The resulting output will contain only 

those logs from both patterns which belong to the selected IP. 

The time-based correlation (the second method) allows users to 

see which patterns appear within a particular timeframe.  

III. EVALUATION 

A. Target System 

We chose CPP (Connectivity Packet Platform) as the target 

system, which is a proprietary carrier-class technology 

developed by Ericsson [9].  It has been positioned for access 

and transport products in mobile and fixed networks. Typical 

applications on current versions of CPP include third-

generation nodes RBSs (Radio Base Stations), RNCs (Radio 

Network Controllers), media gateways, and packet-data service 

nodes/home agents. CPP was first developed for ATM 

(Asynchronous Transfer Mode) and TDM (Time Division 

Multiplexing) transport.  

A CPP node contains two parts, an application part and a 

platform part. The application part handles the software and 

application-specific hardware. The platform part handles 

common functions such as internal communication, 

supervision, synchronization, and processor structure. 

B. Usage Scenarios and Log Generation 

We experimented with various scenarios. Due to the 

proprietary nature of the system, we choose, in this paper, to 

present two scenarios: inter-frequency handover (IFHO) and 

the setup of the radio access bearer (RAB). The results are 

representative of our findings. Each of these scenarios was 

performed across various RBSs, where each RBS was working 

on a set of cells available giving a wide variety of logs. 

The log generation tool we used in this paper is the Trace 

and Error (T & E) package, which is a built-in capability in 

CPP, used often by software engineers to integrate, verify, and 

troubleshoot CPP applications [9]. T&E supports two 

functionalities:  the tracing functionality and the error handling 

functionality. The tracing functionality helps the system and 

functional behaviors to be traced and reported at software 

development. The error functionality helps to log fault 

conditions. The T & E log shows a history of recorded trace 

and error events on the system.  

C. Learning Phase: Pattern Generation and Validation 

Scenario 1: IFHO 

To generate pattern for IFHO, we run the scenario several 

times with different background noise. We generated a log file 

for each run. The size of log files varies from 3 to 7 GB. An 

IFHO event has many attributes including the event ID, 

DeviceFrom, DeviceTo, LoadModule, Message, MessageType, 

MessageText, and Parameters. We fed the log files to the 

pattern generation component of our approach. We selected the 

attributes “MessageType” and “MessageText” as the main 

attributes for the pattern generation process.    

 

Figure 4. The IFHO extracted pattern 

A domain expert at Ericsson analyzed the resulting pattern 

and removed some events including repeated signals and 

heartbeat type messages.  These events are considered as noise 

and can occur at any instant. It took around one hour for the 

domain expert to clean up the automatically extracted pattern. 

We believe that this step could be automated (at least at a 

certain extent) in the future by studying what constitute noise in 

such systems and build a predefined list of events that can be 

removed before applying the mining algorithm. We do not 

expect, however, to completely discard the domain expert from 

the process. In fact, we believe that domain expert feedback is 

very useful during the whole process. The final pattern for 

IFHO consists of 15 events as shown in Figure 4 (note that we 

do not show some of the event attributes to save space). The 



 

 

pattern is then saved in the pattern database under the name 

IFHO pattern. 

Scenario 2: Radio Access Bearer (RAB) Setup 

We followed the same process as for the previous scenario. 

We run RAB several times with various background noises. 

The size of the log files varies from 4 GB to 7 GB. The pattern 

mining algorithm generated a pattern. We gave this pattern to a 

domain expert who (as before) removed additional data 

(considered as noise). The resulting pattern contains 31 events 

and it is partially shown in Figure 5. The pattern is then saved 

under the contextual name: RAB set-up. 

 

Figure 5. The RAB set-up pattern 

D. Testing Phase: Pattern Identification and Correlation 

Once we identified the patterns, we used them to find 

patterns in the system during operation. For this purpose, we 

started by correlating patterns based on their attributes. To do 

that, we needed a log file which had a combination of 

scenarios. We chose a scenario that combines a set of different 

telecommunication sub-scenarios including IFHO, soft 

handover, softer handover, RAB set-up, etc. We run the 

scenario as it would be in real world (i.e. with background 

noise). The generated log file was fed to the pattern matching 

and correlation component of the framework. We were able to 

automatically identify the IFHP and RAB patterns using the 

pattern database built during the learning process.  

Once we had the pattern highlighted, we were able to use 

attribute and time based correlation techniques to gain insight 

into what is happening in the scenario. For example, we were 

able to identify the most frequent destination site for IFHO 

messages. We conducted similar experiments using time 

correlation by identifying the patterns that occur within a 

specific timeframe. We needed for this task to do some 

preprocessing steps to align the time generated from parallel 

systems. The correlation, in this case, showed all complete 

patterns obtained for IFHO and RAB between these time 

intervals. This was helpful for following the flow of messages 

exchanged between different network sites. 

We have shown the results to Ericsson software engineers 

working on troubleshooting tasks. The feedback we received 

shows that the approach holds real promise in simplifying the 

analysis of telecommunication logs, and reducing the time and 

effort spent on understanding their content.  

IV. CONCLUSIONS 

In this paper, we demonstrated the potential of using data 

mining techniques, more particularly the MAFIA approach, to 

extract useful information from telecom logs. The objective is 

to help software engineers analyze these logs more efficiently 

and precisely. Based on the feedback we received from 

software engineers at Ericsson, the approach is helpful and 

promising. In particular, they report that this technique (1) 

reduces the manual effort put into indentifying relevant events 

required for debugging, and (2) increases the precision of 

relevant event identification. As future work, we intend to 

continue exploring the application of data mining approaches to 

alternative types of log analysis. We will also investigate what 

constitute noise in this type of data to further reduce the time 

spent by domain experts to identify patterns. Some techniques 

that can be useful to explore in this context are the ones 

presented in [7], in which the authors discuss the impact of 

utilities (noise) on the size of traces. 
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