
1

Software Feature Location in Practice: Debugging Aircraft

Simulation Systems

Salman Hoseini, Abdelwahab Hamou-Lhadj
Software Behaviour Analysis (SBA) Research Lab

ECE, Concordia University

{sa_hosei, abdelw}@ece.concordia.ca

Patrick Desrosier, Martin Tapp
CAE Inc.

Montreal, QC, Canada

{patrick.desrosiers, martin.tapp}@cae.com

Abstract

In this paper, we report on a study that we have

conducted at CAE, one of the largest civil aircraft

simulation companies in the world, in which we have

developed a feature location approach to help software

engineers debug simulation scenarios. A simulation

scenario consists of a set of software components,

configured in a certain way. A simulation fails when it

does not behave as intended. This is typically a sign of a

configuration problem. To detect configuration errors, we

propose FELODE (Feature Location for Debugging), an

approach that uses a single trace combined with user

queries. When applied to CAE systems, FELODE achieves

in average a precision of 50% and a recall of up to 100%.

Keywords: Feature Location, Trace Analysis, Debugging

of Simulation Systems, Avionic Systems.

1. Introduction

Simulators play a critical role in the aircraft industry.

They are used for many purposes including pilot training,

aircraft design, and quality assurance. To simulate various

features of an airplane, CAE, the company in which this

study is performed, is heavily invested in the development

of aircraft simulation software systems. These systems are

modular and component-based by design. They are

composed of several software subsystems (that we refer to

as modules throughout this paper)–each responsible for a

particular simulation function. Almost every function of

an airplane is simulated through a software module.

Modules are combined to simulate complex scenarios.

An example of a simulation scenario is depicted in Figure

1, where an aircraft is descending at high speed while

flying at low altitude. To avoid a crash, a successful

simulation is the one in which the system generates proper

warnings and alarms to inform the pilot. A simulation is

saved in a configuration file, which contains mainly the

modules and the connections among modules.

At CAE, it is the responsibility of integration

specialists with the help of multi-disciplinary teams (that

we refer to collectively as configuration designers) to

design and execute simulation scenarios. Configuration

designers are software engineers, but not necessarily the

ones involved in the development of the modules. In fact,

they do not have to know much about the modules except

their functionality, as well as what they take as input and

provide as output.

Figure 1. Example of a simulation scenario

The only way for modules to communicate with each

other is through exchange of data stored in a common

database. The motivation behind this design is to enforce

the low coupling, high cohesion principle, hence enabling

reuse of modules for the generation of other simulation

scenarios. It also makes communication among modules

transparent. This is particularly important in the context of

CAE so as to meet the applicable regulations on flight

simulators.

When the simulation does not behave as intended

(e.g., wrong or no warnings are output when needed), it is

an indication of the presence of bugs in the software

modules, or configuration errors. In this paper, we focus

on configuration errors only. Configurations problems are

costly for CAE as they are found late in the integration

process. Having new methods to better find the root causes

helps reduce costs.

2

At the present time, the common approach for

uncovering causes of invalid behaviour at the

configuration level is by browsing configuration files

searching for clues that could point out defects such as

improper connection among modules. Given the large

number of modules involved in a typical simulation

scenario, this process is time-consuming, error-prone, and

requires heavy involvement of domain experts.

To address this issue, we propose FELODE (Feature

Location for Debugging), a semi-automated approach that

combines a single trace and user feedback to locate the

connections among modules that are most relevant to the

observed failure. The paper contributes to the current

literature in the following ways. First, to our knowledge,

this is the first time that feature location is applied to the

flight simulation domain. Also, through our review of the

literature, we have not encountered studies that involve

industrial systems. Existing techniques have been mainly

applied to open source (see [3] for a survey on feature

location).

The second contribution of the paper is the FELODE

approach itself which relies on a two-phase process that

detects only the components that caused the invalid

behaviour. Existing feature location approaches are

designed to identify all the components that are relevant

to the traced feature no matter if they are related to the

failure or not [3]. We believe that these techniques are

most suitable to feature enhancement tasks and general

understanding of the feature implementation. FELODE,

on the other hand, is more focused on debugging tasks.

Finally, by locating features in configurations files, we

demonstrate the applicability of feature location principles

to other software engineering artefacts rather than the

source code.

The rest of the paper is organized as follows: In

Section 2, we discuss simulation scenarios in more detail,

providing the reader with the necessary background to

understand the content of this paper. In Section 3, we

describe our approach for locating simulation scenarios in

configuration files. The evaluation of the approach is the

subject of Section 4. We report on lessons learned in the

same section. We discuss threats to validity in Section 5,

followed by related work. We conclude the paper in

Section 7.

2. Simulation Scenarios

In designing a simulation scenario, the main steps are

(1) determine the list of required modules, (2) enable

communication among modules, and (3) execute and test

the simulation.

Examples of modules involved in the scenario of

Figure 1 include TAWS (Terrain Awareness and Warning

System) and NAV (Navigation System). TAWS is a

subsystem of a larger (and perhaps most important)

system, called FSS (Flight Surveillance System). TAWS

generates alarms and warnings to inform the pilot of the

terrain conditions (e.g., an audio sound when the terrain is

too low). NAV is responsible for keeping track of the

aircraft‟s positions using latitude, longitude, altitude, and

angle in horizon.

Modules communicate by exchanging labels (one can

think of labels as messages exchanged among processes in

a distributed architecture). CAE keeps a database of

predefined labels used for different purposes. Each

module receives labels through variables and transfers

them to the routines that execute the required code.

Once the design of the simulation scenario is

completed, the execution starts. For this, a different set of

tools is used, among which the ones related to this study

are the scheduler and the monitor. The role of the

scheduler is to invoke the modules in a certain order

depending on the objective of the simulation. Each

module has an entry point that is used by the scheduler.

The scheduler uses proprietary algorithms to synchronize

the modules to meet the requirements of a given scenario.

These algorithms are out of the scope of this paper.

Figure 2. Generalized System Architecture

The monitor is used by configuration designers to test

the simulation. It exhibits the status of each module

during execution of the scenario. It also displays

notification messages such as warnings and alarms. For

example, monitoring the behaviour of the system under

the condition shown in the dark gray area in Figure 1 will

trigger the monitor to output an alarm indicating that the

plane is flying at high speed and low altitude, meaning

that there is a risk of a crash.

Simulation errors occur when the monitor omits to

display important warnings or displays the wrong

information. Many of these failures are due to

configuration errors such as assigning labels to the wrong

variables or even the wrong modules. One of the main

reasons behind these failures is due to the way modules

are connected. To debug these errors, configuration

designers need to find places in the configuration files

where the connections are improperly set.

Typical simulations contain hundreds if not thousands

of labels; not all of them are, however, relevant to the

observed failure. A technique that can automatically point

out these connections will save time and effort spent on

3

debugging complex simulations. Configuration designers

can then focus on simulating new and interesting

scenarios instead of fixing existing ones.

3. FELODE Approach for Locating Simulation

Scenarios in Configuration Files

Figure 3 shows the steps of our approach. First, we

generate an execution trace by exercising the scenario of

interest. We focus on traces of routine calls since labels

are associated with specific routines of the modules.

Therefore, detecting the right routines will ultimately lead

to the most relevant labels. To this end, we turn to

configuration designers (users of this approach) for

guidance. We ask them to formulate keywords (in the

form of queries) that can help us detect the routines, most

relevant to the observed failure. We rank the routines

based on how similar their names are to terms in the query

text. Once we identify the most relevant routines, we map

their return values (if there are any) to the labels described

in the configuration files. These labels are then added to

the list of candidate labels. The last step is to present the

list to configuration designers for validation. We elaborate

on each of this step in more detail in the following

subsections.

A. Scenario Selection and Trace Generation

To be aligned with the literature on feature location,

we can think of a feature, in the context of CAE, as an

abstract simulation that defines a particular functionality

of an aircraft, whereas a simulation scenario is an instance

of a feature with specific input data (modules and

connections).

To exercise various simulation scenarios, we needed to

work very closely with configuration designers at CAE.

Many scenarios require special settings; most of them

entail extensive knowledge of the aircraft simulation

domain. The first author of the paper spent several months

at CAE on a full-time basis interacting with configuration

designers in order to understand the CAE software

landscape and to become familiar with the aircraft

simulation domain.

There are various ways to collect trace information.

Code instrumentation is perhaps the most popular

approach. It consists of inserting probes into the source

code and executing the recompiled version. The problem

with this approach is that it requires modifying the source

code. In the context of CAE, this turned out to be a

challenging task to perform. First, we would need to have

access to all the modules involved in a simulation. Many

of these modules are developed by diverse development

teams. In addition, the modules are written in different

programming languages, which would necessitate the use

of many instrumentation tools. Also, because this study

targets configuration designers who do not necessarily

have access to the source code, it is important to propose

an instrumentation approach that is code-independent. To

achieve this, we turn to binary instrumentation. This way,

all what we need are executables.

We generate traces of routine calls. By routine, we

mean function, procedure, or method. We also keep track

of the arguments and return variables of the routines (if

there are any). These variables are needed to associate

labels in the configuration file to the routines that handle

them.

4

B. Extracting Candidate Routines

In this step, we search in the trace for the routines that

are most relevant to the failure. To achieve this goal, we

propose a two-phase process. First, we detect the routines

that caused the monitor to issue the wrong warnings. We

refer to these routines as seed routines, and will use them

as a start point of the search process. The next phase is to

detect the remaining routines that led to the failure. This

process reflects the fact that a configuration error may

appear way before the failure. It is therefore important to

analyze all the interactions among modules until the

detection of the failure.

B.1. Detection of seed routines

To locate seed routines, we ask configuration

designers for directions, by asking them to formulate

queries that can guide the search process. This is not the

first time that queries are used in feature location research

(see [9, 10] for examples). Other researchers used source

code information (such as comments) combined with user

input to obtain informative queries. We deliberately

excluded the source code for the reasons we discussed in

the trace generation subsection.

To minimize user intervention, configuration designers

at CAE suggested to use the warning messages output by

the monitor to formulate queries, as they contain

keywords that can help identify the corresponding

routines. These warnings are triggered by specific routines

in the corresponding modules. For example, in the case of

the scenario described in the previous section, TAWS

outputs a warning that reads “TAWS Mode1 Warning

Sound”, when we searched the trace, we found that the

name of the corresponding routine, in the TAWS module,

carries similar keywords.

The problem is that not all observed failures are

described using textual messages. The monitor uses also

sound effects, lights, and graphical illustrations, just like

in a real airplane. For such cases, we rely on the user‟s

knowledge of the scenarios to formulate adequate queries.

Once a query is formulated, we compare the query

keywords with terms extracted from the names of the

routines invoked in the trace. By routine name, we also

include the name of the class where the routine is defined.

CAE follows strict naming conventions. The camel

case style is used for all identifiers, which facilitates term

extraction from routines. It should be noted that by term

we also include abbreviations. That is to say, we do not

attempt to replace them with their original forms. This is

because most abbreviations have specific meanings in the

context of CAE that describe concepts in the aircraft

simulation domain. We assume that configuration

designers would use the same abbreviations when

formulating queries. We believe that this is a reasonable

assumption given the involvement of configuration

designers in the process of drafting queries. At any time,

they can change the query to enter abbreviations or long

forms, if needed. We suggest as a future direction to build

a dictionary that maps abbreviations to their long form to

further aid the term extraction process.

To measure similarity, we propose to use tf-idf (term

frequency/inverse document frequency) [8]. tf–idf is a

measure that reflects how important a word in a query is

to a document in a corpus. For our purpose, we treat each

distinct routine of the trace as a document. A corpus is

then a set of distinct routines in the trace. The similarity

between the query and each routine increases with the

number of occurrences of the query terms within a routine.

However, terms that are repeated frequently across the

whole corpus (i.e., all the routines) are given less priority.

For example, if there is a routine ri that contains many

terms of the query and that these terms are not in other

routines then ri should be given a higher rank because it is

likely to be specific to the query.

The use of tf-idf is particularly suitable when

measuring the similarity between a query and routine

names. For example, we may have the situation where a

term in the query corresponds to a class name. In such a

case, all the routines (invoked in the trace) of that class

will be given the same importance when only counting this

term. tf-idf offsets that by using the frequency of the term

in the corpus (i.e., set of routines). This reflects the fact

that some terms (e.g., class names) are more common than

others such as specific terms in routine names.

More formally:

 tft,r: Document frequency of term t in the query in

routine r.

 idft - Inverse document frequency of term t in the

corpus. N represents the number of distinct routines in

the trace.

t

t
df

N
idf log

 tf-idft,d is a combined weight for term t in routine r

trtrt idftftfidf  ,,

The similarity between the query q and the routine r is

measured by taking into account the frequency and inverse

document frequency of all the query terms with respect to

the routine r:





qt

trt idftfrqsim ,),(

We need to select among the highly ranked routines

the ones that are most relevant to the failure. One way to

proceed is to define a threshold and take the routines with

a rank higher than the threshold. The problem with this

technique is that it is almost always challenging to find an

adequate threshold that would apply to all scenarios.

Besides, even if we succeed to do this, it might not be the

same threshold when applied to other systems. To address

5

this, we simply present the ranked routines to the users

and ask them to select the ones they think are most related

to the query. A similar approach was used by Liu et al. in

[9].

B.2. Detection of remaining routines

We use seed routines to find the remaining connections

among modules that led to the failure. One intuitive way to

achieve this is to collect the distinct routines that appear

from the root of the trace all the way to the seed routines.

In the general case, this would probably be the only way to

proceed. However, in the CAE context, each module has

an update function that is called periodically by the

scheduler to update the module‟s data. A new execution

cycle of the module starts by a call to its update function.

We use the update routine to slice the trace by keeping

only the routines that appear on the call path between the

update routine and the seed routines. This way we

eliminate routines that are not relevant to the observed

behaviour. Because a seed function can appear multiple

times in the trace, we need to examine each path from the

update function to the seed function occurrence. The

resulting routines form a set which is the union of the

distinct routines that appear on each path.

C. Extracting labels from configuration files

In this step, we search for labels in a configuration file

that are connected to return variables of the routines from

the previous step. This is done automatically by simply

parsing the configuration file. The final list of labels is

then constructed.

D. Validation

We verify the accuracy of the detected labels with the

configuration designers. If the labels are not correct then

we examine the causes by further exploring the trace.

Sometimes, the cause might be due to a poor query. If so,

we ask configuration designers to reformulate another

(and richer) query. Another objective of this step is to

learn about ways to improve the approach for future

studies.

4. Case Study

We show the effectiveness of our approach, FELODE,

by applying it to various simulation scenarios at CAE.

The case study aims to answer the following question:

Can we use trace information combined with user queries

to detect labels (module connections) that are most

relevant to an observed simulation failure at CAE? The

answer to this question also provides insight into the

application of feature location research to industrial

systems.

We chose simulation scenarios that deal with flight

surveillance and simulation (FSS). These are the most

interesting ones because they show alarms and warnings

when the aircraft is exposed to serious danger such as the

possibility of a crash. A buggy scenario that goes

undetected can have devastating effects.

FSS is composed of three main subsystems. The first

one, introduced in the previous section, TAWS, alerts the

pilot about the terrain conditions below and above the

aircraft. The second one is for detecting the traffic in the

flight path and alerting the pilot when there is another

aircraft in the way. This subsystem is called Traffic

Collision Awareness System (TCAS). The third

subsystem is for implementing the weather radar (WXR)

which allows the pilot to monitor weather conditions.

The size of FSS subsystems are of the order of

hundreds of thousands lines of code. It is worth

mentioning that FSS relies on a framework that handles

communications through the shared database.

Understanding how FSS works necessitates also the

understanding of the framework.

A. Simulation Scenarios

For this case study, we selected three features of the

TAWS subsystem and two scenarios involving TCAS.

The scenarios are described in Table 1.

TABLE 1. SIMULATION SCENARIOS USED IN THE STUDY

Subsystem Scenario

S1
TAWS

Mode1

Aircraft is descending at high speed

while flying at low altitude.

S2
TAWS

Mode4A

The aircraft is close to the ground

and is prepared for landing, but the

gears are still up.

S3
TAWS

Mode4B

Aircraft is in landing mode but the

flaps are in a flight position.

S4 TCAS

Simulate the presence of an intruder

with the intention to locate its

altitude.

S4 TCAS

Simulate the presence of an intruder

with the intention to locate its

speed.

The first scenario is TAWS Mode1 which we used as

a running example in the previous sections. The other two

TAWS scenarios are: TAWS Mode 4A and Mode 4B.

TAWS Mode 4A is activated when the aircraft is close to

the ground and is prepared for landing, but the gears are

on the up position. TAWS Mode 4B is activated when the

aircraft is in landing mode but the flaps are in a flight

position.

For TCAS, we created two scenarios that simulate the

presence of an intruder in the flight zone of the airplane.

An intruder could be another plane or any object that can

disturb the normal operation of the plane. It is mostly the

intruder‟s specification that causes TCAS to activate. In

the first scenario, we exercised a scenario with the

intention to locate the intruder by measuring its altitude.

For the second TCAS scenario, we were interested in

6

detecting the intruder by measuring its relative speed

(speed as a function of the aircraft‟s speed). Altitude and

speed are both important measures to assess whether the

presence of the intruder is considered dangerous.

B. Trace Generation

To generate traces, we used the PIN framework [11], a

platform independent tracing tool. PIN supports both

binary and code instrumentation. We favoured binary

instrumentation in this case to avoid modifying the code.

Table 2 shows the size of the generated traces. We saved

each scenario in a configuration file. The number of labels

for each scenario is also shown in Table 2. For example,

for Scenario 1 (S1), there are 720 labels. We were told by

configuration designers that complex scenarios will result

in more labels, but running such scenarios would require

advanced settings and access to lab facilities within CAE

for which extensive training is needed.

TABEL 2. TRACE STATISTICS

Scenario File Size Number of

Routine Calls

Number of

Labels in

Configuration File

S1 310 MB 7,734,123 720

S2 359 MB 8,126,237 720

S3 250 MB 4, 533,630 720

S4 267 MB 4, 844,231 620

S5 269 MB 4,879,325 620

C. Applying the approach

We asked an expert configuration designer to create

queries for each scenario. For TAWS scenarios, he drafted

queries that contained keywords using the monitor‟s

warning messages. However, for TCAS scenarios, the

monitor does not display explicit textual warnings. It uses

sound effects, lights, and illustrations to warn the pilot.

For example, it activates an alarm for relative altitude

informing the pilot that an obstacle is in close range. It

shows the altitude of the aircraft itself and a flashing red

light indicating “traffic ahead”. The configuration

designer drafted queries based on his experience with

TCAS scenarios. Queries are not shown in this study

because of the proprietary nature of CAE systems.

To evaluate the result of our approach, we needed to

have the valid labels for each scenario, something to

compare our results against. We asked the same expert to

provide us with the most relevant labels. We used

precision and recall to measure the accuracy of our

approach. We define precision and recall as follows:

Number of valid labels detected

Total number of all detected labels
Precision =

Number of valid labels detected

Total number of valid labels for the scenario

Recall =

Table 3 shows the results. We can observe that the

approach has good recall but relatively low precision. For

all scenarios (except Scenario S1), the recall is 100%.

This means that we detected all valid labels. The

precision, on the other hand, indicates that we detected

also labels (though not too many) that were irrelevant to

the failure.

For Scenario S1, we detected two labels but only one

of them is valid. The valid label holds the descending

speed of the plane. In this scenario, the plane was going at

-3000 feet a minute. The approach missed a label that is

used to store the plane‟s altitude. After analysis of the

trace content, we found that the corresponding function

did not appear in the trace path. This was caused by the

fact that the query only referred to the TAWS warning

without specifying the factors that might have caused

these warnings (i.e., altitude and speed). A richer query

would have given better recall with the risk of further

reducing precision.

TABLE 3. PRECISION AND RECALL

N1: Number of labels detected by the approach; N2: Number of valid

labels detected by the approach; N3: Number of valid labels for each

scenario, provided by the expert.

Scenario N1 N2 N3
Precision:

(N2/N1)

Recall:

(N2/N3)

S1 2 1 2 50% 50%

S2 6 3 3 50% 100%

S3 6 3 3 50% 100%

S4 8 3 3 38% 100%

S5 7 4 4 57% 100%

For Scenario S2, the query resulted in two seed

functions with the same rank. As a result, we had to

include routines from two different execution paths. We

detected six relevant routines. Only three of them return

variables that map to the correct labels. These functions

return altitude, airspeed, and flaps position. For Scenario

S3, the result was similar. We detected three valid labels

that represent the altitude of the aircraft, the positioning of

the gears, and the caution message to the pilot about the

status of the gears.

In both cases, we detected labels that were not on the

list of valid labels provided by the expert. The first label

represents the altitude above sea (Mode4 is concerned

with the altitude above ground only). This label would

7

have been eliminated if the query had the keyword

„ground‟ in it. The next two labels are used for

consistency checks (for example, making sure that the

altitude is returned only when it is available). They might

not be relevant to the failure but are needed internally to

ensure that the modules are functioning properly.

For TCAS Scenario S3, we detected the altitude above

sea, the relative altitude of the intruder, and the intruder's

vertical speed. And for the second scenario (S5), we

detected all valid labels which represent speed properties

were vertical, horizontal and relative speed as well as the

intruder‟s airspeed. But again, for both TCAS scenarios,

the precision was relatively low. The additional labels that

were detected return information about the intruders in the

area (e.g., number of intruders on the ground, intruder

transporter type, etc.).

D. Discussion

We showed the results to two configuration designers

at CAE. In their opinion, there are two main factors that

contributed to the significance of the study. The first one

is the fact that the approach detects (in most cases) all

valid labels (i.e., it has good recall). For example, using

this approach, for Scenario S4 (which has the lowest

precision 38%), configuration designers will need to

examine, in the worst case scenario, only eight labels

instead of going through the entire configuration file

which contains 620 labels (see Table 2). The relatively

low precision did not seem to be a concern because the

number of detected labels was considerably smaller than

the number of labels in the configuration files (in our

cases, we detected at most eight labels).

The second factor has to do with the fact that our

FELODE does not require static analysis of the source

code or access to any other system artefacts except trace

information. This is an important enabler for the adoption

of this method because it fits well with the actual work

environment of configuration designers. It is particularly

well suited in an environment with heterogeneous

software systems relying solely on software binaries. The

approach is also simple to use.

Precision can be improved in two ways. First, by

having configuration designers continuously refine the

queries and re-execute the approach until a satisfactory set

of labels is identified. The challenge with this method is to

know when to stop. Another approach is to build a model

that associates the behaviour exhibited by the monitor

with labels in the shared database. The model can be

improved overtime as new failures occur. This learning-

based approach can be further combined with a query-

based model for full detection power.

Finally, during this study, our ultimate objective was

to detect key labels that are most relevant to the observed

failure. However, after examining the results of the case

study, we realized that there are also other labels that

might not be the most important ones but can still

contribute (perhaps at a lesser degree) to understanding

the cause of the failure. For example, knowing the

intruder‟s information for Scenario S4 and S5 might be

useful to debug similar scenarios. Adding the

corresponding labels to the detected labels would increase

significantly precision.

E. Lessons Learned

We demonstrated that feature location techniques can

help in debugging tasks in an industrial setting. However,

each environment will likely necessitate a tailor-made

approach. We could not directly apply existing techniques

because they required either multiple traces for each

scenario [1, 2, 4, 5, 16, 17], or access to the source code

[6, 7, 8, 9, 12, 14]. Both solutions were quickly rejected

and found impractical in the context of CAE. Generating

multiple traces means exercising many simulation

scenarios. We discussed the limitations of using source

code analysis in the previous sections. It was important to

design a light-weight solution that is simple to use and

implement. But most importantly, a solution that does not

require significant changes to the work habits of the

configuration designers.

In the beginning of the study, we investigated fully

automated solutions. However, after conducting the

experiments, we realized that the user input was critical to

reducing the complexity of finding the most relevant

routines in the trace. We believe that any future work

should integrate user feedback as a key element.

Furthermore, the approach should be tailored to varying

levels of experience and domain knowledge of the users.

To reduce user intervention, we can invest in building

models that capture essential knowledge needed for the

approach. For example, there should be a way to save

queries and enrich them overtime for further use. We

believe that the effort spent on managing this knowledge

will pay off in the future by increasing the detection

accuracy of the approach.

Finally, we found that input from CAE software

engineers was critical to the design choices we made. For

example, the two-phase approach for extracting routines

from a trace was suggested by a CAE configuration

designer. Also, guidance from CAE engineers greatly

facilitated our efforts to relate terms in the query to terms

in routine names.

5. Threats to Validity

We describe threats to validity in three categories:

internal validity, construct validity, and external validity

[18].

A threat to internal validity exists in the

implementation of our approach. We have mitigated this

threat by manually verifying the outputs. We have also

used smaller simulation scenarios when testing the

approach. We worked closely with configuration designers

at CAE to verify our results.

A threat to construct validity exists in the use of user

queries. It is possible to have queries that do not quite

8

reflect the invalid behaviour. This is most likely when the

monitor does not display explicit warning messages. We

have mitigated this threat by working with experienced

users. We acknowledge, however, that we need to work

towards defining a set of representative queries that can

also benefit novices. This could be one direction for future

work.

A threat to external validity exists in generalizing the

results of this study to other systems, perhaps from another

domain. We believe that the two-phase method of

FELODE can be reused in other contexts. For example,

one can use messages displayed on a GUI during a crash to

locate seed routines.

6. Related Work

Feature location techniques can be grouped based on

whether they use dynamic analysis, static analysis, or a

combination of both. Despite the noticeable increase of

attention to feature location research, we have not

encountered any study that applies to industrial systems.

Existing techniques have been mainly applied to open

source systems.

Wilde et al. proposed to use multiple traces to locate

the components that are most relevant to the traced feature

[16, 17]. They used a set of feature-relevant and a set of

non-feature relevant traces and compared them. The

components that appeared in the first set and not in the

other one were considered the most relevant ones [16, 17].

Eisenberg et al. [4] and Eisenbarth et al. [5] also used

multiple traces but instead of comparing them, they used

concept analysis to detect feature-related components by

exploring the concept lattice. Antoniol et al. [1, 2]

proposed a method where the number of traces was

reduced to two (one exercising the feature and the other

one irrelevant to the feature). They argued that two traces

should be sufficient for feature location. Although these

studies have been shown to provide good results, they

require more than one trace. In the context of CAE, this

means setting up more than one simulation scenario. This

is simply impractical given the amount of work required.

Rohatgi et al. [14, 15] proposed to combine dynamic

and static analyses. They used a single feature-trace and

the component dependency graph as the sources of

information for their feature location approach. First the

distinct classes are extracted from the trace and then an

impact score is assigned to each class. The impact score is

calculated using the component dependency graph. The

idea is that feature-specific classes are the ones that are

called less by difference components of the system. Thus

the classes with the least impact are likely to be relevant

to the feature under study.

Single Trace and Information Retrieval (SITIR) is a

feature location approach proposed by Liu et al. [9].

SITIR starts with a feature-trace. It then applies

Information Retrieval techniques to trace components. It

collects a corpus of textual information using the trace

routines. Users can then insert a query and based on the

similarity between the terms used in the query and the

corresponding texts in the corpus, it ranks the results to

extract the semantically most similar elements to the

feature.

 Hayashi et al. [7] used the combination of dynamic and

static techniques. Their approach takes as input, a test case

(in order to extract the execution information), the source

code, and a user query. The approach starts with the user

formulating a query. Then a score is assigned to each

routine based on the similarity of the terms in the query

and the terms in the routine, the user is asked to verify the

highest ranked routines and using the static dependencies,

the dependent routines will obtain higher scores. The

feedback process helps the user detect relevant routines

which might have obtained a low score using the

similarity measure. The idea of this iterative approach is

that in the process of detecting the elements related to the

feature under study, the user understands more about the

feature implementation and can detect dependent

elements.

 Hill et al. introduced, Dora [8], an approach which uses

static and textual analysis to find feature-relevant

elements. The first input of the approach is a query

formulated by the user. Dora measures similarity between

the query and the methods of the source code using term

frequency - inverse document frequency metric (which we

used in this study as well). The methods with the highest

tf-idf score are marked in the program‟s call graph. Dora

then explores the neighbors of the marked methods and

assigns a relevance score to the neighbors and in the

process detecting the feature relevant methods. Dora

scores all the methods in the source code and then refers

to only few of them as feature relevant.

There are two main differences between FELODE and

the approaches presented in the above studies. First, we do

not use source code information in formulating queries.

This is particularly important in a heterogeneous

environment such as CAE. The second difference is that

FELODE uses a two-phase mechanism by first locating

seed routines based on observed failures and then

collecting the remaining routines. We believe that this

approach is more suitable to debugging tasks. The above

studies attempt to locate all the routines in one step. This

would result in more routines than needed to find the

cause of defects. These approaches are more useful for

feature enhancement, where a general understanding of

the feature implementation is necessary.

7. Conclusion and Future Work

In this study, we presented a feature location approach,

called, FELODE, for locating simulation scenarios in

configuration files. The study was performed at CAE.

When applied to five simulation scenarios, we achieved in

average 50% precision and 90% recall. We argued that

the precision can be further improved by (a) having richer

queries, and (b) considering labels that are not most

relevant but still contribute to the understanding of the

9

failure. One key finding of this study is that feature

location techniques, once customized depending on the

context, are applicable to solving real industrial problems.

To build on this work, we need to gain more

comprehensive knowledge of (a) the variables defining a

simulation scenario failure, and (b) relationship among

modules. This would help configuration designers to draft

richer queries which will ultimately lead to better trace

slicing techniques. We also need to build a knowledge

base where queries are saved and improved over time.

This knowledge-directed approach can further enhance

the detection accuracy.

Acknowledgment:

This work is supported partially by CRIAQ (Consortium

de recherche et d'innovation en aérospatiale du Québec),

NSERC (Natural Science and Engineering Council of

Canada), CAE Inc., and Opal-RT inc.

We would like to thank configuration designers at CAE

for their input, active participation in the study, and

valuable feedback.

8. References

[1]. Antoniol, G. and Guéhéneuc, Y., (2005), "Feature

Identification: A Novel Approach and a Case

Study," In Proc. of the 21st IEEE International

Conference on Software Maintenance (ICSM'05),

Budapest, Hungary, pp. 357-366, 2005.

[2]. Antoniol, G. and Guéhéneuc, Y. G., (2006), "Feature

Identification: An Epidemiological Metaphor," IEEE

Transactions on Software Engineering, 32(9), pp.

627-641, 2006.

[3]. Dit, B., Revelle, M., Gethers, M. and Poshyvanyk,

D. (2013), “Feature location in source code: a

taxonomy and survey,” Wiley Journal on Software

Evolution and Practice, 25(1), pp 53-95, 2013.

[4]. Eisenberg, A. D. and De Volder, K., (2005),

"Dynamic Feature Traces: Finding Features in

Unfamiliar Code," In Proc. of the 21st IEEE

International Conference on Software Maintenance

(ICSM'05), Budapest, Hungary, pp. 337-346, 2005.

[5]. Eisenbarth, T., Koschke, R., and Simon, D.,

(2001b), "Derivation of Feature Component Maps

by means of Concept Analysis," In Proc. of

European Conference on Software Maintenance and

Reengineering (CSMR'01), pp. 176-179, 2001.

[6]. Chen, K. and Rajlich, V., (2000), "Case Study of

Feature Location Using Dependence Graph," In

Proceedings of 8th IEEE International Workshop on

Program Comprehension (IWPC'00), Limerick,

Ireland, pp. 241-249, 2000.

[7]. Hayashi, S., Sekine, K., and Saeki, M., (2010a),

"iFL: An interactive environment for understanding

feature implementations," In Proc. of the 26th IEEE

International Conference on Software Maintenance

(ICSM'10), Timisoara, Romania, pp. 1-5, 2010.

[8]. Hill, E., Pollock, L., and Vijay-Shanker, K., (2007),

"Exploring the Neighborhood with Dora to Expedite

Software Maintenance," In Proc. of the 22nd

IEEE/ACM International Conference on Automated

Software Engineering (ASE'07), pp. 14-23, 2007.

[9]. Liu, D., Marcus, A., Poshyvanyk, D., and Rajlich,

V., (2007), "Feature Location via Information

Retrieval based Filtering of a Single Scenario

Execution Trace," In Proc. of the 22nd IEEE/ACM

International Conference on Automated Software

Engineering (ASE'07), Atlanta, Georgia, USA, pp.

234-243, 2007.

[10]. Marcus, A., Sergeyev, A., Rajlich, V., and Maletic,

J., (2004), "An Information Retrieval Approach to

Concept Location in Source Code," In Proc. of 11th

IEEE Working Conference on Reverse Engineering

(WCRE'04), Delft, The Netherlands, pp. 214-223,

2004.

[11]. PIN - "Pin - A Dynamic Binary Instrumentation

Tool." Intel Corporation, URL:

http://software.intel.com/en-us/articles/pin-a-

dynamic-binary-instrumentation-tool, Retrieved on

July 12, 2012.

[12]. Rajlich, V. and Gosavi, P., (2004), "Incremental

Change in Object-Oriented Programming," In IEEE

Software, pp. 2-9, 2004.

[13]. Robillard, M., (2005a), "Automatic Generation of

Suggestions for Program Investigation," In Proc. of

the Joint European Software Engineering

Conference and ACM SIGSOFT Symposium on the

Foundations of Software Engineering, Lisbon,

Portugal, pp. 11 – 20, 2005.

[14]. Rohatgi, A., Hamou-Lhadj, A., and Rilling, J.,

(2008), "An Approach for Mapping Features to

Code Based on Static and Dynamic Analysis," In

Proc. of the 16th IEEE International Conference on

Program Comprehension (ICPC'08), Amsterdam,

The Netherlands, pp. 236-241, 2008.

[15]. Rohatgi, A., Hamou-Lhadj, A., and Rilling, J.,

(2009), "An Approach for Solving the Feature

Location Problem by Measuring the Component

Modification Impact," IET Software, 3(4), pp. 292-

311, 2009.

[16]. Wilde, N., Gomez, J. A., Gust, T., and Strasburg, D.,

(1992), "Locating User Functionality in Old Code,"

In Proc. of IEEE International Conference on

Software Maintenance (ICSM'92), Orlando, FL,

USA, pp. 200-205, 1992.

[17]. Wilde, N. and Scully, M., (1995), "Software

Reconnaissance: Mapping Program Features to

Code," In Proc. of the Wiley Journal of Software

Maintenance: Research and Practice, 7(1), pp. 49-

62, 1995.

[18]. Wohlin C., et al., Experimentation in Software

Engineering: An Introduction. Norwell, USA:

Kluwer Academic Publisher, 2000.

