
A Software Behaviour Analysis Framework Based on the
Human Perception Systems (NIER Track)

Heidar Pirzadeh and Abdelwahab Hamou-Lhadj
Software Behaviour Analysis Lab

Department of Electrical and Computer Engineering
Concordia University

{s_pirzad, abdelw}@ece.concordia.ca

ABSTRACT

Understanding software behaviour can help in a variety of
software engineering tasks if one can develop effective techniques
for analyzing the information generated from a system's run.
These techniques often rely on tracing. Traces, however, can be
considerably large and complex to process.
In this paper, we present an innovative approach for trace analysis
inspired by the way the human brain and perception systems
operate. The idea is to mimic the psychological processes that
have been developed over the years to explain how our perception
system deals with huge volume of visual data. We show how
similar mechanisms can be applied to the abstraction and
simplification of large traces. Some preliminary results are also
presented.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement- Restructuring, reverse engineering, and

reengineering

General Terms

Algorithms, Experimentation, Human Factors, Theory

Keywords

Program Comprehension, Dynamic Analysis, Trace Analysis,
Human Perception, Psychological Processes, Phase Detection.

1. INTRODUCTION
Since the outset of our research we have been looking for ways to
help software engineers understand the behavioural aspects of
software systems through tracing and run-time monitoring
techniques. This can be useful in a number of software
engineering activities including maintenance, performance
analysis, and most recently security.

Understanding software behavior, however, is a difficult task.
Tracing even a small system can generate large amounts of data
that pose a real obstacle to any viable analysis. We (and other
researchers) have been studying, for a long time now, techniques
to reduce the size of large traces while keeping their content. The
common approach has been based on investigating various
heuristics that can guide the trace abstraction and simplification

process. Although significant improvement has been made in the
area, there is a consensus within the trace analysis community that
more needs to be done.

In this paper, we present what we think it is a novel approach to
the problem by drawing parallels between the way software
systems behaviour is analyzed and the way the human brain
operates when dealing with information received through the
visual sense. This is motivated by the following three
observations:

- The amount of visual data received through our sensory is in
general too high to be completely processed in detail [3] so is
the amount of information generated from a system run.

- The inability for the human brain to keep track of all relevant
data in a specific domain of interest in both cases. There is a
limited amount of information that can be handled by the
human memory at any given time. George Miller showed that
short-term memory, or working memory, has a limited
capacity (only 7±2 pieces of information, such as words or
numbers, can be held at any one time) and cannot keep track
of all the information from the visited knowledge domain [2].

- The need to acquire the needed information in a relatively
short time. In the case of trace analysis, time-to-market and
other constraints such as the criticality of the analysis makes
it necessary to obtain the needed information as quickest as
possible. The same holds for human perception; our
perception system works in a way we grasp the essence of a
scene within a small fraction of a second [3]. This
remarkable speed in gaining the information contributes to
low response time and quick reactions.

There are a number of processes that are proposed in psychology
to explain how the human brain and the perception system
automatically (not voluntarily) deal with huge volume of visual
data considering limited short-term memory and necessity of a
short response time. In this research, we aim to learn from these
techniques and to build similar mechanisms that can help process
large traces. The processes in questions are as follows [1, 3, 5, 8,
9, 13]:

1. It appears that our perceptual system segments local elements
against their context and integrates them as objects and
regions (implicit perception).

2. The segmented scene is then quickly scanned with eye
movements so as the brain obtains an overall impression of it
(global perception).

3. The scene is analyzed in more detail by visiting the regions
in a certain order. The pop-out effect is an important factor in
this process (preattentive process).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA.
Copyright 2011 ACM 978-1-4503-0445-0/11/05…$10.00.

In this paper, we introduce a framework for trace analysis that is
inspired by these three processes. This is still an on-going work.
Some preliminary studies have been conducted and reported in
this paper. The long-term goal is to build better trace analysis
tools that, again, can help understand various aspects of a running
system.

2. FRAMEWORK
Our proposed framework is currently composed of three
components (see Figure 1). Each of these components mimics one
of the processes employed by the human perception system to
process visual data. We discuss each of these components in the
following subsections.

2.1 The Trace Segmenter
The first component of our framework, the trace segmenter, aims
to divide a large trace into meaningful segments that represent
what we call execution phases. Examples of execution phases
could be initializing variables, applying a specific algorithm, etc.
These segments can significantly simplify the exploration of large
traces by enabling software engineers to browse traces as a flow of
execution phases instead of mere low-level events.

To achieve this ambitious goal, we turn to Gestalt laws of
perception, which describe how people group similar items
visually based on their perception [13]. Gestalt psychology is an
application of physics to essential parts of brain physiology that
help determine the type of processes that occur in the brain when
we see a scene, and how our perceptual systems follow certain
grouping principles (e.g., good continuation, proximity, and
similarity properties of the elements) [13] to integrate the scene
elements (i.e. objects and regions) as a whole and not just as
points and lines. These laws explain how our perceptual system
segments local elements against their context and integrates them
as objects.

In our previous work [16], we have developed two gravitational
schemes (more precisely the similarity and continuity schemes)
based on Gestalt laws that are used as gravitational forces that
yield the formation of dense groups of trace elements, which
indicate the candidate execution phases. When dense groups are
formed, we automatically identify the beginning and end of each
phase using K-means clustering with BIC (Bayesian Information
Criterion) support. When applied to a trace T (see Figure 1), the
output consists of a trace T’ where the execution phases are
identified.

The effect of applying each of the two gravitational schemes we
have developed (i.e. similarity and continuity schemes) is as
follows:

Similarity scheme: By applying this scheme the elements in the
trace are repositioned in a way that the distance between the
similar elements is reduced (Figure 2 (a)).

Continuity scheme: The application of this scheme results in the
repositioning of the elements in a way that the elements that are
continuously invoked (and not returned as much) are made closer
one to another to emphasize a trend in the execution of the
program (Figure 2 (b)).

The two gravitational schemes that we have developed are also
aligned with the fact that a phase change in an execution trace
corresponds to a significant change in the pattern of some
attributes of the elements in the trace over time. Therefore, our
strategy can be seen as reducing the distances between the
elements for which the characteristics can form a pattern
specifying a phase. Again, this is similar to the way a human brain
automatically processes points and lines to form objects and
regions.

2.2 Gist of Traces
When we first look at a scene, we have the impression to see the
entire scene, and rarely focus on the details. This representative
image of the scene is provided through quick eye movements over
different parts of the scene. This scanning provides us with the
gist of the scene by performing a single short sampling that lasts
in the order of 0.1 sec. Boothe explains that the sampling
mechanism cannot be a dumb process, as “it would seriously limit
our ability to maintain a high-fidelity perceptual database” [5]: A
‘smart’ guided sampling must be performed. This smart guided
sampling is suggested to be evolutionarily advantageous because
it can speed up information processing. Uchida et al. [1] suggest
that processing limited low-level information from short chunks
could facilitate rapid construction of global percept of scenes. A
smart process could be one that performs sampling on each
segment of the scene rather than on mere unstructured details of
the scene.

Similarly, in the domain of trace analysis, regular and random
sampling techniques have often been used to reduce the size of
execution traces (e.g., [10, 14]). In general, sampling techniques
are concerned with selecting a sample of a trace for analysis
instead of analyzing the entire trace. However, finding the right
sampling parameters can be a difficult task and even if some
parameters work well for one trace, they might not work for
another trace (even if generated from the same system) [14]. Also,
since trace sampling is often not based on information about the
trace (e.g., distribution of the trace elements, its homogeneous
subsequence, outliers, etc.) it may result in a sample that is not
representative of the original trace. In general, when the
population on which we perform sampling is not homogeneous
(i.e., it is made up of elements that are different than each other in
sub-populations, and that each sub-population represents a group
of similar elements), then random sampling might result in an
unrepresentative sample [15]. It is a common situation for
execution traces not to be homogeneous. The reason is that a trace
is composed of a sequence of events where each subsequence

Application of

Gravitational

Schemes

Trace

with dense

groups of

methods

BIC-supported

K-means

Clustering

Trace Segmenter Gist Builder

Content Prioritizer
T

T’

T’

Smart Guided Sampling

Unit

Application of a weighting metric

(Element frequency

Inverse Phase frequency)

T’’

T’’’

Figure 1. Our proposed framework and its components mimic the processes of human perception system

represents a specific task performed by the program. The events in
one particular set of events can be completely different than the
ones of another subsequence.

Inspired by the process of obtaining global percept in the human
perception system, we propose a smart guided sampling process
that makes use of proportional stratified sampling extensively
studied in Information Theory [7]. In stratified sampling, first, the
original trace needs to be separated into a desired number of non-
overlapping and exhaustive subsets (called stratum) and then trace
elements that would be part of the sample are selected within each
stratum. The size of a sample of each stratum is in proportion with
the population size of the stratum. By doing this, we guarantee
that the final sample contains elements that are representative of
every part of the trace.

As shown in Figure 1, we use the trace segments (execution
phases) to serve as strata in the sampling process. In other words,
once the phases have been detected (i.e. the trace T’ is obtained –
Figure 1), we start the stratified sampling process, which is
implemented in our framework, as part of the smart guided
sampling unit. This unit receives a phased execution trace T’ as its
input and outputs a sample of the execution trace using stratified
sampling. Since the elements within each stratum are
homogeneous, we perform the selection of trace elements from
each stratum using random sampling. The size of a sample of each
phase is in relative to the size of the phase. The result of this
phase in a sampled trace T’’ which is smaller trace than T’ and yet
representative of the content of T’.

It might sound contradictory that we are using random sampling,
which was criticized earlier, to detect sample in each stratum.
However, it should be noted that random sampling usually
performs well on homogenous data (in this case the content of a
stratum). As mentioned earlier, it does not return representative
samples when applied to large non-homogenous data spaces such
as an entire trace.

2.3 Prioritizing Content
The third process by which a human brain processes visual data is
through analyzing the scene in more detail by visiting the regions
in a certain order. The order could be selected by a preattentive
process [8]. Pop-out effect is one of the important factors in this
process that leads to rapid detection of elements that differ greatly
from surrounding elements usually in single dimension such as
color or orientation [9, 3]. In general, a high frequency of an

element in one region shows the importance of that element while
if one element is scattered between different regions is considered
less important – an apple among oranges pops out. The elements
that pop out exhibit relative importance as they have a unique
perceptual feature. The basic assumption is that important
elements should appear more times in one region and not in many
other regions of a scene.

The question is therefore: what pops out in a trace? The idea of
weighting trace elements based on their frequency has been
proposed in many studies (e.g., [10, 11]) to detect trace elements
that do not follow the same frequency distribution (they are
invoked considerably more than the other elements). But simply
relying on mere frequency, we do not think that it is sufficient to
detect important elements of a trace. In fact, Durgerdil et al. [10]
showed that elements that appear frequently all over the trace,
called temporal omnipresent elements, are the least important
elements.

We suggest a new technique similar to the preattentive prioritizing
process in our perception system that takes into account both
frequency of elements and their appearance in behavioral
segments (execution phases) of the trace. In our technique, a
weight is assigned to each trace element that represents the
relative importance of that element in the whole trace. As shown
in Figure 1, this is the role of the content prioritizer component,
which receives a phased trace T’ as input. The basic idea is that
trace elements that appear often in a particular phase, but appear
relatively infrequently in all the phases should receive the highest
weight, meaning that it is doing something important in this
particular phase. The unit generates a trace T’’’ containing only
the important elements. The output of the content prioritizer is a
set of the most relevant components that implement the traced
feature. The important elements can also be used to create
summaries from large traces. Because of the fact that our approach
is similar, in principle, to the TFIDF (Term Frequency - Inverse
Document Frequency) weighting approach in information
retrieval [6], we call our approach the Element Frequency Inverse
Phase Frequency weighting (EFIPF). We are also aware that
thresholds and other parameter settings need to be investigated,
not only for the content prioritzer component but for the entire
framework. But again, this work is recent and further studies are
needed.

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Phase 3.1 Phase 3.2 Phase 3.3 Phase 3.4

Phase 3: add a class diagram

Create a node
To the UML model

subsystem

A
d
d

a

re
p
re
se
n
ta
ti
o
n

to
 t
h
e
 s
cr
e
e
n

Check the
well-formedness
and show the
property panel

Select the
added
element

Figure 2. Left Top: The effect of similarity scheme on a sample trace, Left Bottom: effect of continuity scheme on a sample method

call trace, Right Top: Major phases in adding a class diagram in ArgoUML, Right Bottom: sub-phases of Phase 3.

Terminate
≈ 2500

calls

Refresh
≈ 2500
calls

Adding
a class

≈ 5000 calls

Loading modules
From input stream

≈ 10000 calls

Initialization of the
system behind the

splash screen
≈ 15000 calls

3. PERLIMINARY RESULTS
At the moment, we are evaluating our techniques in a number of
ongoing experiments. In [16], we applied our phase detection
algorithm to large traces generated from two object-oriented
systems: JHotDraw 5.2 and ArgoUML 0.27.

Our phase detection technique was applied to a method call trace
generated from ArgoUML by exercising the following scenario:
Starting up ArgoUML, drawing a class on the class diagram, and
quitting ArgoUML). The resulting trace contained 35754 method
calls (to 2331 different methods). Note that a method invocation
requires at least two events to be collected, the entry and exit of a
method. The trace size in terms of events is therefore about 71508
events, which is considered a relatively large trace. Figure 2 (right
upper diagram) shows the result. A clear division of the execution
trace into five major phases was also supported by the BIC score
with K = 5 as the best fit. As expected, the first phase indicates the
initialization of ArgoUML. The second detected phase is
concerned with loading auxiliary modules from the input stream
and adding them to the Post Load Actions list, which contains
actions that are run after ArgoUML has started. The third phase is
the phase where the actual class element is drawn. This phase is
followed with two other small phases. The first of these phases
(i.e., Phase 4) refreshes and updates the models and the last phase
(Phase 5) terminates the application. We further applied our
technique, with a lower threshold to Phase 3 (drawing a class) to
understand how this is accomplished (Figure 2 right bottom). We
also applied our content prioritizing technique to find important
tasks performed in the trace to summarize it and assign
description to each phase. Table 1 shows a task summary for sub-
phases of phase 3. The work on prioritizing trace content and
generating high-level summaries has not been evaluated yet.

We also applied our smart guided sampling technique to traces of
JHotDraw, we found that our approach gave better results in more

than 80% of the cases and in all these cases it leads to a more
representative sample trace (after manually analyzing each
sample). Furthermore, as the size of the sample decreases (to up to
1% of original size) our technique maintains its representativeness
while random sampling leads to cases that are significantly
unrepresentative of the original trace.

4. CONCLUSION
In this paper, we drew parallels between trace analysis and the
human perception system. We have developed a trace analysis
framework inspired by the way the human brain perceives regions
and shapes.

The studies presented in this paper are preliminary. Some
experimentation has been conducted as proof of concepts. The
results are promising.

5. REFERENCES
[1] Uchida, N. et al. 2006. Seeing at a glance, smelling in a

whiff: rapid forms of perceptual decision making. Nature.

Rev. Neurosci. 7, 485–49.

[2] Miller, G. A. 1956. The magical number seven or minus two:
Some limits on our capacity of processing information,”
Psychol. Rev., vol. 63, 81–97.

[3] Frintrop, S., Rome, E., Christensen, H. 2010. Computational
visual attention systems and their cognitive foundation: a
survey, ACM Trans. on Applied Perception. 7.

[4] Wolfe, J.M., Cave, K.R. 1999. The psychophysical evidence
for a binding problem in human vision. Neuron 24, 11–17.

[5] Boothe, R. G. 2002. Perception of the Visual Environment.
Springer-Verlag, New York, 13.

[6] Salton G., Buckley C. 1988. Term-weighting approaches in
automatic text retrieval. Inform. Process. Manag., 24(5).

[7] Cochran, W. G. 1977. Sampling Techniques. John Wiley &

Sons, Inc., New York, NY.

[8] Grabowecky, et al. 1993. Preattentive processes guide visual
search. Journal of Cognitive Neuroscience, 5, 288-302.

[9] Treisman A.M., Gelade, G. 1980 “A Feature-Integration
Theory of Attention,” Cognitive Psychology, 12, 97–136.

[10] Dugerdil Ph. 2007. Using trace sampling techniques to
identify dynamic clusters of classes. Proc. of CASCON.

[11] Ball T. 1999. The Concept of Dynamic Analysis. Proc. 7th

European Software Engineering Conference (ESEC’99).

[12] Reiss, S. P. 2007. Visual representations of executing
programs, Jour. of Visual Languages and Computing, 18, 2

[13] Smith-Gratto, K., and Fisher, M. 1999. Gestalt theory: A
foundation for instructional screen design, Journal of

Instructional Technology Systems, 27(4), 361–371

[14] Chan A., Holmes R., Murphy G.C., Ying A.T.T.l. 2003.
Scaling an Object-oriented System Execution Visualizer
through Sampling, in Proc. of the IWPC03, 237-244.

[15] Brunk, H.D. 1960. An introduction to mathematical
statistics, Ginn and Company, Boston.

[16] Pirzadeh, H., Hamou-Lhadj, A. 2011. A Novel Approach
Based on Gestalt Psychology for Abstracting the Content of
Large Execution Traces for Program Comprehension, to

appear in Proceedings of ICECCS '11.

Table 1. Summary of the tasks performed in Phase 3

� Phase 3: Adding a class:
o Sub-phase 3.1:

⇒ Command to create nodes with the appropriate modelelement:

Delegate creation of the node to the uml model subsystem and
return an object which represents a UML class diagram.

⇒ Define a renderer object for UML Class Diagrams: Return a Fig that
can be used to represent the given node.

o Sub-phase 3.2:

⇒ Prepare the box coordinates to display graphics for a UML Class in
a diagram.

⇒ Determine whether the graphmodel will allow adding the node

(Define a bridge between the UML meta-model representation of
the design and the GraphModel interface used by GEF).

⇒ Determine if the given object is present as a node in the graph

⇒ Final call at creation time of the Fig, i.e. here the node icon is put on
a Diagram: the displayed diagram icons for UML
ModelElements looks like nodes, has editable names, and can be

resized.

⇒ Add the given node to the graph, if of the correct type.
o Sub-phase 3.3:

⇒ Give continuous feedback to aid in the making of good design
decisions: Perform critiques about well-formedness of the model.

⇒ Change the mode of multieditorpane (particularly the
TabDiagrams) to deselect all tools in the toolbar (Unselect all the

toolbar class button).
o Sub-phase 3.4:

⇒ Hit the class (prepare selection of the class diagram).

⇒ Compute handle selection, if any, from cursor location.

⇒ Prepare selection of the current element.

