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ABSTRACT 

Understanding software behaviour can help in a variety of 
software engineering tasks if one can develop effective techniques 
for analyzing the information generated from a system's run. 
These techniques often rely on tracing. Traces, however, can be 
considerably large and complex to process.  
In this paper, we present an innovative approach for trace analysis 
inspired by the way the human brain and perception systems 
operate. The idea is to mimic the psychological processes that 
have been developed over the years to explain how our perception 
system deals with huge volume of visual data. We show how 
similar mechanisms can be applied to the abstraction and 
simplification of large traces. Some preliminary results are also 
presented. 
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1. INTRODUCTION 
Since the outset of our research we have been looking for ways to 
help software engineers understand the behavioural aspects of 
software systems through tracing and run-time monitoring 
techniques. This can be useful in a number of software 
engineering activities including maintenance, performance 
analysis, and most recently security.  

Understanding software behavior, however, is a difficult task. 
Tracing even a small system can generate large amounts of data 
that pose a real obstacle to any viable analysis. We (and other 
researchers) have been studying, for a long time now, techniques 
to reduce the size of large traces while keeping their content. The 
common approach has been based on investigating various 
heuristics that can guide the trace abstraction and simplification 

process. Although significant improvement has been made in the 
area, there is a consensus within the trace analysis community that 
more needs to be done. 

In this paper, we present what we think it is a novel approach to 
the problem by drawing parallels between the way software 
systems behaviour is analyzed and the way the human brain 
operates when dealing with information received through the 
visual sense. This is motivated by the following three 
observations: 

- The amount of visual data received through our sensory is in 
general too high to be completely processed in detail [3] so is 
the amount of information generated from a system run. 

- The inability for the human brain to keep track of all relevant 
data in a specific domain of interest in both cases. There is a 
limited amount of information that can be handled by the 
human memory at any given time. George Miller showed that 
short-term memory, or working memory, has a limited 
capacity (only 7±2 pieces of information, such as words or 
numbers, can be held at any one time) and cannot keep track 
of all the information from the visited knowledge domain [2].  

- The need to acquire the needed information in a relatively 
short time. In the case of trace analysis, time-to-market and 
other constraints such as the criticality of the analysis makes 
it necessary to obtain the needed information as quickest as 
possible. The same holds for human perception; our 
perception system works in a way we grasp the essence of a 
scene within a small fraction of a second [3]. This 
remarkable speed in gaining the information contributes to 
low response time and quick reactions.  

There are a number of processes that are proposed in psychology 
to explain how the human brain and the perception system 
automatically (not voluntarily) deal with huge volume of visual 
data considering limited short-term memory and necessity of a 
short response time. In this research, we aim to learn from these 
techniques and to build similar mechanisms that can help process 
large traces. The processes in questions are as follows [1, 3, 5, 8, 
9, 13]:  

1. It appears that our perceptual system segments local elements 
against their context and integrates them as objects and 
regions (implicit perception). 

2. The segmented scene is then quickly scanned with eye 
movements so as the brain obtains an overall impression of it 
(global perception). 

3. The scene is analyzed in more detail by visiting the regions 
in a certain order. The pop-out effect is an important factor in 
this process (preattentive process).  
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In this paper, we introduce a framework for trace analysis that is 
inspired by these three processes. This is still an on-going work. 
Some preliminary studies have been conducted and reported in 
this paper. The long-term goal is to build better trace analysis 
tools that, again, can help understand various aspects of a running 
system.  

2. FRAMEWORK 
Our proposed framework is currently composed of three 
components (see Figure 1). Each of these components mimics one 
of the processes employed by the human perception system to 
process visual data. We discuss each of these components in the 
following subsections. 

2.1 The Trace Segmenter 
The first component of our framework, the trace segmenter, aims 
to divide a large trace into meaningful segments that represent 
what we call execution phases. Examples of execution phases 
could be initializing variables, applying a specific algorithm, etc. 
These segments can significantly simplify the exploration of large 
traces by enabling software engineers to browse traces as a flow of 
execution phases instead of mere low-level events. 

To achieve this ambitious goal, we turn to Gestalt laws of 
perception, which describe how people group similar items 
visually based on their perception [13]. Gestalt psychology is an 
application of physics to essential parts of brain physiology that 
help determine the type of processes that occur in the brain when 
we see a scene, and how our perceptual systems follow certain 
grouping principles (e.g., good continuation, proximity, and 
similarity properties of the elements) [13] to integrate the scene 
elements (i.e. objects and regions) as a whole and not just as 
points and lines. These laws explain how our perceptual system 
segments local elements against their context and integrates them 
as objects.  

In our previous work [16], we have developed two gravitational 
schemes (more precisely the similarity and continuity schemes) 
based on Gestalt laws that are used as gravitational forces that 
yield the formation of dense groups of trace elements, which 
indicate the candidate execution phases. When dense groups are 
formed, we automatically identify the beginning and end of each 
phase using K-means clustering with BIC (Bayesian Information 
Criterion) support. When applied to a trace T (see Figure 1), the 
output consists of a trace T’ where the execution phases are 
identified.  

The effect of applying each of the two gravitational schemes we 
have developed (i.e. similarity and continuity schemes) is as 
follows:  

Similarity scheme: By applying this scheme the elements in the 
trace are repositioned in a way that the distance between the 
similar elements is reduced (Figure 2 (a)).  

Continuity scheme: The application of this scheme results in the 
repositioning of the elements in a way that the elements that are 
continuously invoked (and not returned as much) are made closer 
one to another to emphasize a trend in the execution of the 
program (Figure 2 (b)).  

The two gravitational schemes that we have developed are also 
aligned with the fact that a phase change in an execution trace 
corresponds to a significant change in the pattern of some 
attributes of the elements in the trace over time. Therefore, our 
strategy can be seen as reducing the distances between the 
elements for which the characteristics can form a pattern 
specifying a phase. Again, this is similar to the way a human brain 
automatically processes points and lines to form objects and 
regions. 

2.2 Gist of Traces 
When we first look at a scene, we have the impression to see the 
entire scene, and rarely focus on the details. This representative 
image of the scene is provided through quick eye movements over 
different parts of the scene. This scanning provides us with the 
gist of the scene by performing a single short sampling that lasts 
in the order of 0.1 sec. Boothe explains that the sampling 
mechanism cannot be a dumb process, as “it would seriously limit 
our ability to maintain a high-fidelity perceptual database” [5]: A 
‘smart’ guided sampling must be performed. This smart guided 
sampling is suggested to be evolutionarily advantageous because 
it can speed up information processing. Uchida et al. [1] suggest 
that processing limited low-level information from short chunks 
could facilitate rapid construction of global percept of scenes. A 
smart process could be one that performs sampling on each 
segment of the scene rather than on mere unstructured details of 
the scene. 

Similarly, in the domain of trace analysis, regular and random 
sampling techniques have often been used to reduce the size of 
execution traces (e.g., [10, 14]). In general, sampling techniques 
are concerned with selecting a sample of a trace for analysis 
instead of analyzing the entire trace. However, finding the right 
sampling parameters can be a difficult task and even if some 
parameters work well for one trace, they might not work for 
another trace (even if generated from the same system) [14]. Also, 
since trace sampling is often not based on information about the 
trace (e.g., distribution of the trace elements, its homogeneous 
subsequence, outliers, etc.) it may result in a sample that is not 
representative of the original trace. In general, when the 
population on which we perform sampling is not homogeneous 
(i.e., it is made up of elements that are different than each other in 
sub-populations, and that each sub-population represents a group 
of similar elements), then random sampling might result in an 
unrepresentative sample [15]. It is a common situation for 
execution traces not to be homogeneous. The reason is that a trace 
is composed of a sequence of events where each subsequence 
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represents a specific task performed by the program. The events in 
one particular set of events can be completely different than the 
ones of another subsequence.  

Inspired by the process of obtaining global percept in the human 
perception system, we propose a smart guided sampling process 
that makes use of proportional stratified sampling extensively 
studied in Information Theory [7]. In stratified sampling, first, the 
original trace needs to be separated into a desired number of non-
overlapping and exhaustive subsets (called stratum) and then trace 
elements that would be part of the sample are selected within each 
stratum. The size of a sample of each stratum is in proportion with 
the population size of the stratum. By doing this, we guarantee 
that the final sample contains elements that are representative of 
every part of the trace. 

As shown in Figure 1, we use the trace segments (execution 
phases) to serve as strata in the sampling process. In other words, 
once the phases have been detected (i.e. the trace T’ is obtained – 
Figure 1), we start the stratified sampling process, which is 
implemented in our framework, as part of the smart guided 
sampling unit. This unit receives a phased execution trace T’ as its 
input and outputs a sample of the execution trace using stratified 
sampling. Since the elements within each stratum are 
homogeneous, we perform the selection of trace elements from 
each stratum using random sampling. The size of a sample of each 
phase is in relative to the size of the phase. The result of this 
phase in a sampled trace T’’ which is smaller trace than T’ and yet 
representative of the content of T’. 

It might sound contradictory that we are using random sampling, 
which was criticized earlier, to detect sample in each stratum. 
However, it should be noted that random sampling usually 
performs well on homogenous data (in this case the content of a 
stratum). As mentioned earlier, it does not return representative 
samples when applied to large non-homogenous data spaces such 
as an entire trace. 

2.3 Prioritizing Content 
The third process by which a human brain processes visual data is 
through analyzing the scene in more detail by visiting the regions 
in a certain order. The order could be selected by a preattentive 
process [8]. Pop-out effect is one of the important factors in this 
process that leads to rapid detection of elements that differ greatly 
from surrounding elements usually in single dimension such as 
color or orientation [9, 3]. In general, a high frequency of an 

element in one region shows the importance of that element while 
if one element is scattered between different regions is considered 
less important – an apple among oranges pops out. The elements 
that pop out exhibit relative importance as they have a unique 
perceptual feature. The basic assumption is that important 
elements should appear more times in one region and not in many 
other regions of a scene. 

The question is therefore: what pops out in a trace? The idea of 
weighting trace elements based on their frequency has been 
proposed in many studies (e.g., [10, 11]) to detect trace elements 
that do not follow the same frequency distribution (they are 
invoked considerably more than the other elements). But simply 
relying on mere frequency, we do not think that it is sufficient to 
detect important elements of a trace. In fact, Durgerdil et al. [10] 
showed that elements that appear frequently all over the trace, 
called temporal omnipresent elements, are the least important 
elements.  

We suggest a new technique similar to the preattentive prioritizing 
process in our perception system that takes into account both 
frequency of elements and their appearance in behavioral 
segments (execution phases) of the trace. In our technique, a 
weight is assigned to each trace element that represents the 
relative importance of that element in the whole trace. As shown 
in Figure 1, this is the role of the content prioritizer component, 
which receives a phased trace T’ as input. The basic idea is that 
trace elements that appear often in a particular phase, but appear 
relatively infrequently in all the phases should receive the highest 
weight, meaning that it is doing something important in this 
particular phase. The unit generates a trace T’’’ containing only 
the important elements. The output of the content prioritizer is a 
set of the most relevant components that implement the traced 
feature. The important elements can also be used to create 
summaries from large traces. Because of the fact that our approach 
is similar, in principle, to the TFIDF (Term Frequency - Inverse 
Document Frequency) weighting approach in information 
retrieval [6], we call our approach the Element Frequency Inverse 
Phase Frequency weighting (EFIPF). We are also aware that 
thresholds and other parameter settings need to be investigated, 
not only for the content prioritzer component but for the entire 
framework. But again, this work is recent and further studies are 
needed.  
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3. PERLIMINARY RESULTS 
At the moment, we are evaluating our techniques in a number of 
ongoing experiments. In [16], we applied our phase detection 
algorithm to large traces generated from two object-oriented 
systems: JHotDraw 5.2 and ArgoUML 0.27.  

Our phase detection technique was applied to a method call trace 
generated from ArgoUML by exercising the following scenario: 
Starting up ArgoUML, drawing a class on the class diagram, and 
quitting ArgoUML). The resulting trace contained 35754 method 
calls (to 2331 different methods). Note that a method invocation 
requires at least two events to be collected, the entry and exit of a 
method. The trace size in terms of events is therefore about 71508 
events, which is considered a relatively large trace. Figure 2 (right 
upper diagram) shows the result. A clear division of the execution 
trace into five major phases was also supported by the BIC score 
with K = 5 as the best fit. As expected, the first phase indicates the 
initialization of ArgoUML. The second detected phase is 
concerned with loading auxiliary modules from the input stream 
and adding them to the Post Load Actions list, which contains 
actions that are run after ArgoUML has started. The third phase is 
the phase where the actual class element is drawn. This phase is 
followed with two other small phases. The first of these phases 
(i.e., Phase 4) refreshes and updates the models and the last phase 
(Phase 5) terminates the application. We further applied our 
technique, with a lower threshold to Phase 3 (drawing a class) to 
understand how this is accomplished (Figure 2 right bottom). We 
also applied our content prioritizing technique to find important 
tasks performed in the trace to summarize it and assign 
description to each phase. Table 1 shows a task summary for sub-
phases of phase 3. The work on prioritizing trace content and 
generating high-level summaries has not been evaluated yet.  

We also applied our smart guided sampling technique to traces of 
JHotDraw, we found that our approach gave better results in more 

than 80% of the cases and in all these cases it leads to a more 
representative sample trace (after manually analyzing each 
sample). Furthermore, as the size of the sample decreases (to up to 
1% of original size) our technique maintains its representativeness 
while random sampling leads to cases that are significantly 
unrepresentative of the original trace. 

4. CONCLUSION 
In this paper, we drew parallels between trace analysis and the 
human perception system. We have developed a trace analysis 
framework inspired by the way the human brain perceives regions 
and shapes.  

The studies presented in this paper are preliminary. Some 
experimentation has been conducted as proof of concepts. The 
results are promising.  
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Table 1. Summary of the tasks performed in Phase 3 

� Phase 3: Adding a class:  
o Sub-phase 3.1: 

⇒ Command to create nodes with the appropriate modelelement: 

Delegate creation of the node to the uml model subsystem and 
return an object which represents a UML class diagram. 

⇒ Define a renderer object for UML Class Diagrams: Return a Fig that 
can be used to represent the given node. 

o Sub-phase 3.2: 

⇒ Prepare the box coordinates to display graphics for a UML Class in 
a diagram.  

⇒ Determine whether the graphmodel will allow adding the node 

(Define a bridge between the UML meta-model representation of 
the design and the GraphModel interface used by GEF). 

⇒ Determine if the given object is present as a node in the graph 

⇒ Final call at creation time of the Fig, i.e. here the node icon is put on 
a Diagram: the displayed diagram icons for UML 
ModelElements looks like nodes, has editable names, and can be 

resized. 

⇒ Add the given node to the graph, if of the correct type. 
o Sub-phase 3.3: 

⇒ Give continuous feedback to aid in the making of good design 
decisions: Perform critiques about well-formedness of the model.  

⇒ Change the mode of multieditorpane (particularly the 
TabDiagrams) to deselect all tools in the toolbar (Unselect all the 

toolbar class button). 
o Sub-phase 3.4: 

⇒ Hit the class (prepare selection of the class diagram).  

⇒ Compute handle selection, if any, from cursor location.  

⇒ Prepare selection of the current element.  


