
MTF: A Scalable Exchange Format for Traces of High Performance  

Computing Systems 

 

Luay Alawneh and Abdelwahab Hamou-Lhadj 
Software Behaviour Analysis Group 

Department of Electrical and Computer Engineering 

Concordia University 

1455 de Maisonneuve Blvd. West 

Montreal, QC, Canada H3G 1M8 

{l_alawne, abdelw}@ece.concordia.ca 

 

 
Abstract— Execution traces generated from running high 

performance computing applications (HPC) may reach tens or 

hundreds of gigabytes. The trace data can be used for 

visualization, analysis and gathering profiling information 

about the target system. However, in order to make the 

utilization of this data efficient, the trace needs to be 

represented in a structure that facilitates the access to its data. 

One important factor that should be considered when 

representing trace data is the scalability of its schema; the 

trace metamodel should be able to represent the trace in a 

compact form that enables scalability of the analysis tools. 

Additionally, a trace file needs to be available in a format that 

is well-known in the software engineering arena supported by 

its openness. In this paper, we propose a metamodel for 

representing dynamic information generated from HPC that 

use the MPI as the inter-process communication model. MPI 

Trace Format (MTF) is meant to meet the aforementioned 

requirements and is intended to facilitate the interoperability 

among the different trace analysis tools. 

Keywords: HPC-High Performance Computing systems; Inter-

process communication traces; MPI-Message Passing Interface; 

Standard exchange format; Trace Metamodel 

I. INTRODUCTION 

High Performance Computing (HPC) systems are used 
extensively in various domains including bioinformatics, 
telecommunications, computation-intensive scientific 
systems, and others. Although the benefits of these 
applications are numerous, they tend to be difficult to 
analyze and understand which often hinders maintenance and 
other software engineering tasks [1]. These applications 
involve a large number of inter-communicating processes 
which is one of the main obstacles to their effective analysis. 
Several techniques and tools have emerged to facilitate the 
analysis of HPC applications (e.g. [2,3]). These tools come 
with many features including trace analysis algorithms, 
visualization layouts, optimization algorithms, pattern 
detection methods, and others that can help in studying the 
run-time behavior of these applications for performance 
analysis, debugging, deadlock detection, and so on. These 
tools, however, do not interoperate due to a lack of a 
common exchange format for representing HPC traces. The 
only way to take full advantage of these tools is to convert 
the trace file from one format into another. This is often 
cumbersome and impractical. Clearly, a common trace 

format that enables synergy and sharing of data among tools 
is needed, which reduces the cost to represent HPC traces. 

The objective of this paper is to present MTF (Message 
Passing Interface Trace Format), an exchange format that we 
have developed to represent run-time information generated 
from HPC applications. The focus is on inter-process 
communication traces based on the message passing 
paradigm, with a particular interest in the MPI (Message 
Passing Interface) standard, which is the de-facto standard 
used in most today’s high performance computing 
distributed systems [4]. There exist some exchange formats 
in the literature for HPC-generated traces (e.g., [5, 6]), but 
most of them do not scale up to large traces. Many of them 
are also proprietary and represent traces in binary format 
which hinders their portability. MTF is built with several 
requirements in mind to facilitate its adoption and enable it 
to become a standard exchange format for traces generated 
from HPC applications. One of the key requirements that we 
addressed carefully is the ability for MTF to support very 
large traces. This work is a continuation of the work 
presented in [7] in which we presented the first version of 
MTF where it failed to support large traces due to the fact 
that it does not consider any technique to compact the traces. 
The compaction scheme used in this paper is inspired by the 
work found in [8]. MTF was also limited to representing 
MPI operations. Several improvements have been made to 
the initial version of MTF such as a new mechanism for 
compacting MPI traces. We also added support for routine 
calls (user calls) which makes MTF more expressive.  

The rest of the paper is organized as follows. In Section 
2, we briefly discuss the shortcomings found in the literature. 
In Section 3, we present the MTF and its main components. 
Section 4 presents some empirical results showing the 
compaction gain. The paper is concluded in Section 5. 

II. RELATED WORK 

In our previous work [7], we surveyed execution trace 
formats for traces generated from HPC applications that use 
the message passing model for inter-process communication. 
Most of these formats are being used in proprietary tools 
which hides the details of their metamodels. This contradicts 
the openness requirement for a common exchange format. 
Also, none of these formats proposes an approach for 
compacting traces of HPC systems, which hinders their 
ability to scale up to large traces. 



III. MPI TRACE FORMAT (MTF) 

In this section, we start by describing the principles that 
we used to guide the design of MTF followed by a 
description of the MPI traces domain with a particular focus 
on the compaction scheme we used to reduce the number of 
model elements that need to be represented. 

A. Guiding Principles 

A trace format should meet certain requirements, such as 
expressiveness, scalability, openness, simplicity and 
transparency, in order to qualify as a common exchange 
format [12]. In this paper, we only focus on the following 
key requirements as guiding principles in the design of MTF.  

Expressiveness: An exchange format should be 
expressive enough to capture the needed information to 
enable various types of analyses such as the MPI operations, 
routine calls, exchanged data, the sender, receiver, the 
timestamp, partner processes, and others. 

Scalability: An exchange format should be scalable to 
support a large amount of information efficiently and in a 
way that does not degrade access to the instance data for 
analysis purposes. 

Extensibility: Exchange formats should be easily 
extended in order to support new or different data types. 
Also, they should be extended without affecting previous 
versions of the trace data. 

B. The Domain of MPI Traces 

An MPI trace depicts the execution of the running 
processes in the program along with the messages exchanged 
among them. HPC applications often follow the Single 
Program Multiple Data (SPMD) paradigm in which the 
program tasks are run in parallel on multiple processors to 
maximize performance. Communication among processes is 
based on executing MPI operations supported by the MPI 
environment. MPI supports two communication modes: 
point-to-point and collective communications. The MPI 
specifications [4] provide detailed description of the various 
MPI operations. An MPI trace can be considered as a set of 
streams of data, where each stream corresponds to one 
process in the program. Each trace contains the routines 
executed by the process, the MPI operations invoked by the 
process to communicate with other processes, the messages 
sent and received, and many other details such as 
timestamps.  

f1
1

3
4

2

Send

1

3

2

Send

Msg 1

P1 Trace

4

Recv

5

Recv

5

Msg 2

f2

f3

f4

f1

f2

f5

f4

P2 Trace

MPI Trace
 

Figure 1. MPI Trace Representation 

Figure 1 shows an example of two processes that execute 
in parallel five functions f1, f2, f3, f4, and f5. The interaction 
between these two processes is also shown as typical Send 
and Receive MPI operations along the exchanged messages.  

Another important aspect that distinguishes HPC 
programs from other systems is the existence of 
communication patterns that characterize the process 
communication topology of the application [9]. Examples of 
such patterns include the butterfly and wavefront patterns 
[9].  MTF supports the description of these patterns. It also 
supports the ability for the user to define new patterns. In 
[10], we presented an approach for automatically detecting 
patterns in MPI execution traces expressed in MTF. 

We reduce the amount of data in the original trace by 
representing repetitive sequence of events that occurs in a 
trace only once. Our techniques vary depending on whether 
the repetitions appear contiguously in the trace or not. 
Contiguous repetitions are often caused by the presence of 
loops and recursive calls in the code or the way the scenario 
is executed. They can be removed by collapsing the 
repetitions into one node and keeping an array of timestamps 
extracted from the original nodes. Our second compaction 
mechanism consists of representing repetitions that appear 
non-contiguously in the trace (also known as trace patterns) 
only once in a trace. For this purpose, we adapted the 
compactness scheme presented in [8] and in which the 
authors proposed a variant of Valiente’s algorithm [8] to 
transform a call tree into an ordered Directed Acyclic Graphs 
(DAG) where similar subtrees are represented only once 
[11]. The authors showed that this transformation provided 
maximum compactness of the trace data while it preserved 
the order of calls in the original trace.  

A

F
RB

F
BB

C C D
F

F

C D K L F

F

F

C D

1
5

11 15
19

8

2 3 4 6

7

9 10 12 13 16

17

18

20 21

L

14

A

F RB

C D F

K

Ord = 19

Ord = 15
Ord = 11

Seq = 2

Ord = 16

Ord = 10 Rec = 2

Ord = 12

Rec = 3 L

Seq = 2

Ord = 13

Ord = 5

Ord = 1

Ord = 8

Ord = 9

Seq = 2

Ord = 2

Ord = 4

Ord = 17

(a) Original Graph:

(b) DAG:

 

Figure 2. Tree to DAG Conversion Example 

Figure 2 shows an example of converting a tree into an 
ordered DAG after removing contiguous repeats. We keep 
the original label (order) on each edge in order to keep track 
of the changes in the original tree. Figure 2b shows the final 
DAG which contains 9 nodes and 16 edges compared to 22 
nodes and 21 edges in the original tree. Moreover, in the 



MPI trace, if the same message between two processes is 
being exchanged repeatedly, then we can collapse these 
messages into one node while keeping track of the 
timestamps in an array. 

C. MTF Metamodel 

The MTF metamodel is represented as the class diagram 
shown in Figure 3.  The metamodel supports the description 
of the usage scenario (class Scenario), the ability to express 
different trace types (class Trace), information about 
processors and processes that run on these processors 
(classes Processor and Process), various traceable units 
including the program function calls (RoutineCall), and MPI 
operations. The MPI operations that are supported by the 
model cover a large range of the MPI standard including the 
point-to-point and collective operations. We believe that this 
makes MTF a very rich and expressive language. It also 
subsumes a number of existing exchange formats for MPI 
applications, and which only provide partial support for MPI 
traces. The class Edge models the edges between various 
traceable units. An Edge can be a regular edge, a sequence 
edge, or a recursive edge, which is represented by the 
attribute type. It has a number of repetitions. It should be 
noted that a traceable unit which characterizes routine calls 
can have multiple incoming and outgoing edges to support 
the concept of ordered directed acyclic graphs. Several 
constraints are added to the model (not shown in this paper) 
to limit the traceable units that can have multiple incoming 
and outgoing edges to routine calls only (e.g. instances of the 
MPOperation class cannot have an outgoing edge). The 
communication patterns are represented by the classes 
TracePattern and PatternOccurrence, which depict, 
respectively, the pattern itself and its occurrences in the 
trace. 

IV. EMPIRICAL EVALUATION 

In order to show the ability of MTF to represent MPI 
traces generated from large systems in a compact form, we 
tested it on several trace files generated by the VampirTrace 
tracing tool [12] in the OTF format [5]. The OTF format 
does not apply any compaction on the trace events 
themselves. It uses zlib [13] to compress the trace file into 
several streams. However, the number of traces in the 
uncompressed OTF file map exactly to the number of events 
generated from the target system. We take OTF traces and 

apply our compaction techniques on them. More precisely, 
we load OTF traces as call trees. Each call tree represents the 
calls executed by one process. The point-to-point messages 
are linked to their corresponding MPI calls as was shown 
previously in Figure 1. Then, we perform our collapsing 
rules on the nodes in the tree as well as on the messages. 
Finally, we convert each tree into a DAG which is the MTF 
representation of the original OTF trace. 

We targeted four programs provided by the NAS Parallel 
Benchmark [14]. In this case study, we target four programs 
that are part of the NPB suite (CG, MG, LU, and SP). Table 
1 shows the empirical results and the compaction rate (CR) 
gained after applying our compaction scheme which reached 
78% in some cases. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we presented an exchange format for MPI 
traces generated from HPC applications, called MTF. MTF 
is built with the requirements for a standard trace exchange 
format, which we believe can facilitate its adoption. We 
provided the abstract syntax (metamodel) of MTF in the 
form of a UML class diagram. MTF is extensible to acquire 
new trace types. Also, MTF is scalable to very large traces. It 
enables representing each process trace as an ordered 
directed acyclic graph. We provide the specifications of 
MTF in an open framework in order to promote it to be 
adopted as a standard exchange format. 

We provided 8 traces generated from 4 different HPC 
programs. We applied our compaction method using DAG 
on traces in the OTF format. The results show that by using 
our approach, a trace could be 78% more compact than its 
original version. An immediate future direction is to continue 
to demonstrate how MTF can represent very large traces. We 
also need to further investigate ways to reduce the number of 
edges between the nodes of the ordered DAG. This can be 
made possible by investigating ways to group similar (but 
not identical subtrees) as instances of the same pattern. We 
need to create converters that would convert the formats used 
by other tools into MTF to encourage tool vendors to adopt 
it. Finally, we will continue working on the tool support for 
MTF by enriching its query language. 

ACKNOWLEDGMENT 

This research is supported by NSERC (Natural Sciences 
and Engineering Research Council of Canada) 

Table 1 Empirical Results (#P is number of Processes, N is number of Nodes, E is number of Edges, CR is the 

Compaction Rate = (1 – B / A) * 100%, M is number of Messages, 0: before compaction, c: after compaction 

 #P N0 E0 M0 A =∑(N0, E0, M0) Nc Ec Mc B = ∑(Nc, Ec, Mc) CR 

CG 16 3509121 3509105 47104 7065330 561 1479281 42716 1522558 78% 

CG 32 7139585 7139553 134656 14413794 1121 3039969 119252 3160342 78% 

MG 16 609874 609858 11024 1230756 648 608280 7588 616516 49% 

MG 32 692690 692658 21728 1407076 561 689428 15001 704990 50% 

LU 32 10473947 10473915 1644936 22592798 1518 6009007 986054 6996579 69% 

LU 64 18310623 18310559 3542924 40164106 2990 12088359 2046493 14137842 68% 

SP 64 9525649 9525585 1232256 20283490 2881 4340289 1112352 5455522 73% 

SP 100 14359525 14359425 2406600 31125550 4501 8465901 2188443 10658845 66% 



 
Figure 3. The Modified MTF Metamodel 

 

REFERENCES 

[1] D. Becker, . Wolf, W. Frings, M. Geimer, B.J.N. Wylie, B. 

Mohr, “Automatic tracebased performance analysis of 

metacomputing applications,” In Proc. of the International 

Parallel and Distributed Processing Symposium, IEEE 

Computer Society, 2007. 

[2] TAU User’s Guide. URL: http://www.cs.uoregon.edu 

[3] Vampir Visualization tool. URL: http://vampir.eu 

[4] Message Passing Interface forum. MPI: a message passing 

interface standard, June 1995 

[5] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, W. Nagel, 

“Introducing the Open Trace Format (OTF)”, In Proc. of the 

International Conference on Computational Science, 2006. 

[6] A. I. Margaris, “Log File Formats for Parallel Applications: A 

Review,” International Journal of Parallel Programming, 

37(2), 2009. 

[7] L. Alawneh and A. Hamou-Lhadj, “An exchange format for 

representing dynamic information generated from High 

Performance Computing applications,” Future Generation 

Computer Systems, 27(4), 2011. 

[8] A. Hamou-Lhadj, T. Lethbridge, “A metamodel for dynamic 

information generated from object-oriented systems,” In Proc. 

of WCRE’04, Electronic Notes in Theoretical Computer 

Science, vol. 94, 2004. 

[9] N. Palma, “Performance Evaluation of Interconnection 

Networks using Simulation: Tools and Case Studies” PhD 

Dissertation, Department of Computer Architecture and 

Technology, University, Spain, 2009. 

[10] L. Alawneh and A. Hamou-Lhadj, "Pattern Recognition 

Techniques Applied to the Abstraction of Traces of Inter-

Process Communication", In the Proc. of CSMR 2011, 

Oldenburg, Germany, 2011. 

[11] Downey J.P., Sethi R., and Tarjan R.E., “Variations on the 

Common Subexpression Problem”, Journal of the ACM, 

Volume 27, Issue 4, pages 758-771, 1980. 

[12] VampirTrace, ZIH, Technische Universitat, Dresden. 

http://tu-resden.de/die_tu_dresden/zentrale_einrichtungen/zih. 

[13] J. L. Gailly and M. Adler, “zlib 1.1.4 Manual”, 2002. URL: 

http://www.zlib.net/manual.html. 

[14] NAS Parallel Benchmarks 3.3, URL: 

http://www.nas.nasa.gov/Resources/Software/npb.html. 

 

http://tu-resden.de/die_tu_dresden/zentrale_einrichtungen/zih
http://www.zlib.net/manual.html
http://www.nas.nasa.gov/Resources/Software/npb.html

