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Abstract 
System evolution depends greatly on the ability of a 

maintainer to locate source code that is specific to feature 
implementation. Existing feature location techniques 
require either exercising several features of the system, or 
rely heavily on domain experts to guide the feature location 
process. In this paper, we present a novel approach for 
feature location that combines static and dynamic analysis 
techniques. An execution trace is generated by exercising 
the feature under study (dynamic analysis). A component 
dependency graph (static analysis) is used to rank the 
components invoked in the trace according to their 
relevance to the feature. Our ranking technique is based on 
the impact of a component modification on the rest of the 
system. The proposed approach is automatic to a large 
extent relieving users from any decision that would 
otherwise require extensive domain knowledge of the 
system. A case study is presented to support and evaluate 
the applicability of our approach. 
 
Keywords: Feature location, dynamic analysis, static analy-
sis, program comprehension 

1. Introduction 
Feature location has been recognised as one of the most 

important tasks during software evolution and maintenance. 
Software maintainers typically do not comprehend an entire 
system to perform a modification request rather they apply 
an as needed approach, by focusing only on these parts of 
the source code that is most relevant to the feature or source 
code to be modified [11].   

Existing feature location techniques can be grouped into 
two main categories depending on their use of static and 
dynamic analysis techniques. The first category, pure 
dynamic approaches, require the generation of execution 
traces that are then compared in order to identify the 
components of a single feature. An example of these 
techniques is the one proposed by Wilde and Scully [10], 
known as Software Reconnaissance. The major limitation 
with their approach is that it requires execution traces to be 
generated and processed for many system features, although 

the focus of a maintenance request is typically only on one 
particular feature. The second category of feature location 
techniques relies on a combination of static and dynamic 
analysis. These approaches utilize static information to 
further process the execution trace that corresponds to a 
feature of interest. Several techniques have been presented 
such as the ones based on concept analysis [2], latent 
semantic indexing [1], etc. These techniques usually require 
users to have some understanding of the source code prior to 
the feature location analysis to be able to specify these parts 
of the source code that need to be analyzed.  

In this paper, we propose a novel technique based on 
impact analysis for solving the feature location problem. We 
define a software feature as any specific scenario of a 
system that is triggered by an external user. This is similar 
to the concept of scenarios found in UML [13], except that 
we do not distinguish between primary and exceptional 
scenarios in this paper. However, it is advisable to include at 
least the primary scenario, since these scenarios tend to 
correspond to the most common program execution 
associated with a particular feature. Our approach combines 
two different sources of information: an execution trace that 
corresponds to the software feature under study (dynamic 
analysis) and a component dependency graph (static 
analysis). Using the graph, we rank the components invoked 
in the trace by measuring the impact of a component 
modification on the rest of the system. Our hypothesis is 
that the smaller the impact set of a component modification, 
the more likely it is that the component is specific to a 
feature. Conversely, we expect a component affecting many 
parts of a system to be invoked in multiple traces and 
therefore rendering it as less specific to a particular feature.  

The advantage of our approach is that it requires only 
one trace to be generated, the one corresponding to the 
feature under study. Furthermore, our approach is almost 
fully automatic, without requiring users to have an extensive 
system knowledge prior to performing the analysis. 

This work is based on our previous work [9], where we 
discussed how impact analysis can be applied to address the 
feature location problem. In this paper, we extend this 
previous work by introducing two new feature location 



 

techniques based on impact analysis. The two techniques 
differ in the way the impact of a component modification is 
measured. We also show results from applying these 
algorithms to a feature of an object-oriented system.  

Organization of the paper: In the next section we describe 
details of the proposed feature location approach and 
discuss the application of impact analysis to detect feature 
components. A case study is presented in Section 3, 
followed by a discussion on related work in Section 4. 
Section 5 concludes the paper and present future directions. 

2. Approach 
Figure 1 provides a general overview of our approach for 

identifying important components that implement a specific 
feature. In the context of our research, the components of 
interest correspond to a system’s classes.  

  
Figure 1. Overall Approach 

 
Our approach is based on the following steps: (1) A trace is 
generated by exercising the feature to be analyzed and 
distinct classes are extracted from this trace. (2) We apply 
our two proposed impact analysis metrics on the extracted 
classes. Both metrics are based on a static class dependency 
graph and are discussed in more detail in Section 2.2. (3) 
Depending on these impact measures, classes are ranked to 
identify feature specific classes. 

2.1.  Feature Trace Generation 
We first generate a feature trace that corresponds to a 

specific execution of the software feature under study. This 
step requires the instrumentation of either the source code or 
the execution environment. The instrumented version is then 
executed to create a feature trace by exercising the feature 
of interest. From the feature trace, we can then extract an 
execution profile that corresponds to the distinct classes 
invoked in the feature trace. It should be noted that the trace 
does not need to be stored.  

2.2.  Impact Analysis 
Impact analysis is the process of identifying these parts 

of a program that are potentially affected by a program 
change. Impact analysis has been shown to be useful for 
planning changes, making changes, and tracing through the 
effects of changes [6, 12]. 

In our approach, we apply impact analysis to identify 
feature specific classes by measuring the potential impact 
that modifications to each distinct class in the execution 
profile has on the remaining parts of a system. The rationale 
behind this is as follows: classes that impact many other 
parts of the system will most likely be invoked in many 
other feature traces, making them non-feature specific. Such 
high impact classes often correspond to utility classes used 
to implement core functionality of the system [4]. On the 
other hand, a feature specific class is self-contained (i.e., 
low coupling and high cohesion), resulting in a class that 
when modified has only a very low impact on the remaining 
parts of the system. In situations where the impact set of a 
class is in between these two cases, this will indicate classes 
that implement functionality shared among similar features. 

For the measurement of class impact on the remaining 
parts of a system,  we use a static class dependency graph 
(CDG), which is a directed graph with nodes being a 
system’s classes and edges represent a dependency 
relationship among these classes (shown in Figure 2).  

The construction of a class dependency graph typically 
requires parsing the source code (or bytecode files). Several 
types of relationships may exist between two classes such as 
the ones based on method calls, generalization and 
realization relationships, etc. It should be noted that the 
accuracy of the impact analysis depends on the types of 
dependency relations supported by the analysis, and that 
edges within a CDG can be weighted to represent the 
number of dependencies that exist between two given 
classes. 

 

Figure 2. Component Dependency Graph 

The impact set of modifying a component C is defined as 
the set of components that depend directly or indirectly on 
C. More formally, a class dependency graph can be 
represented using a directed graph G = (V, E) where V is a 
set of classes and E a set of directed edges between classes. 
The impact set of C consists of the set of predecessors of C. 
A predecessor of a node is defined as follows: Consider an 
edge e = (x, y) from node x to y, If there is a path in the 
graph that leads from x to y, then x is said to be a 
predecessor of y. For example, the impact set of class C5 of 
Figure 2 consists of the classes C6, C7 C4, C3, and C1 (i.e., 
the predecessors of node C5) since there exist a path 
between each of these classes and the class C5. Note that the 



 

same class may occur in multiple paths. In this case, such a 
class is considered only once.  

Based on the definition of the impact set of a component, 
we have developed two metrics for measuring the impact of 
a class modification on the rest of the system. In what 
follows, we introduce the TWI (Two Way Impact) and 
WTWI (Weighted Two Way Impact) metrics. Before 
describing these metrics in more detail, we present the 
following definitions: 

• S = Set of all classes of the system. 

• P = Set of all packages of the system. 

• CAI(C): Represents the Class Afferent Impact of a 
class C, which consists of the number of classes that are 
affected (directly or indirectly) when C is modified (i.e., 
the cardinality of the impact set of C).  

• CEI(C): Represents the Class Efferent Impact of a 
class C, which is the number of classes that will affect 
(directly or indirectly) C if they change. These are the 
classes in the directed graph that can be reached through 
C. It should be noted that the intersection between CAI 
and CEI is not necessarily empty, since some 
components can be affected by a change to C while at 
the same time they can affect C.  

• PAI(C): Represents the Package Afferent Impact of a 
class. This metric corresponds to the number of packages 
affected directly or indirectly by a modification of C. We 
consider all packages of the system as separate packages 
whether they belong to another package or not. 

 
Figure 3. Class dependency graph with packages 

We will revisit the example in Figure 3 throughout this 
section to illustrate how our impact analysis metrics can 
identify feature related components. In this example, we 
assume that the classes that are relevant to the specific 
feature that needs to be analyzed are: C1, C2,..., C6, 
which are all located in package P1. However, the feature 
profile created from this specific feature trace contains 
additionally the classes C7 and C8.  

Metric 1: Two Way Impact (TWI): 

The two way impact metric considers both the impact a 
class modification has on the rest of a system (i.e. the 
afferent impact), as well as the number of classes that 
impact this class if these classes change (i.e., efferent 
impact). We use the CDG to measure the afferent and the 
efferent impact.  

The TWI metric is based on a metric presented by 
Hamou-Lhadj and Lethbridge in [4]. The authors used fan-
in analysis to measure the extent to which a routine can be 
considered a utility. According to their findings, a routine 
with high fan-in (incoming edges in the call graph) should 
be considered a utility as long as its fan-out (outgoing 
edges) is not high. They argue that a routine that receives a 
large number of calls from different parts of a program is 
more likely to be a utility routine. On the other hand, if a 
routine has many calls (outgoing edges in the call graph), 
this is evidence that it is performing a complex computation 
and therefore it is needed to understand the system.  

The TWI metric uses a similar approach, except that it 
considers the impact of a component modification rather 
than its fan-in. The TWI metric therefore not only considers 
the direct impact associated with a component change but 
also the ones that are indirectly affected by this component 
change. This allows us to measure the fact that the afferent 
impact of a component can be very high without necessarily 
having a high fan-in. For example in Figure 4, class C2 has 
a very low fan-in (one incoming edge) but a high afferent 
impact value (five classes are affected by a change to C2).  

 
Figure 4. Difference between Fan-in and CAI  

Fan-in (C2) = 1 and CAI(C2) = 5 

 
The TWI metric is defined as follows: 
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reflects the fact that the classes with large CAI  are 

the ones that are most likely to be non-feature specific 
classes, as previously described. We multiply the first part 
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of TWI will depend on the afferent impact.  

On the other hand if the efferent impact is considerably 

large then )
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and therefore canceling out the effect of )(cCAI . This class 
depends (directly or indirectly) on many other classes and 
therefore it might be important to understand the 
implementation of the feature.  

We divide the result by |)(| SLog  to ensure that both 
expressions and the entire formula vary from 0 to 1. With 0 
being a component that is feature specific and not shared by 
any component in the system and 1 being a component that 
is shared among all components in the system.   

Table 1. Applying TWI to the example of Figure 3 

Classes CAI CEI TWI 

C1 0 7 0 
C2 1 3 0.04 
C4 1 1 0.08 
C3 2 2 0.12 
C6 3 1 0.25 
C7 3 1 0.25 

C5 5 0 0.63 
C8 5 0 0.63 

 

Table 1 shows the result after applying the TWI metric 
on the example program (Figure 3). The results are sorted 
based on the feature specific classes (i.e. TWI value in 
ascending order). All classes related to the particular feature 
are clustered together at the top of the table (represented in 
bold), except C5 (a feature specific class) that is ranked 
after C7 (a non-feature specific class). This is due mainly to 
the fact that the class afferent impact factor of C7 (CAI = 
3) is less than C5 (CAI = 5).  

Next, we introduce our Weighted TWI metrics that 
improves on our TWI metric by also considering the 
package afferent impact as part of the measurement.  

Metric 2: Weighted Two Way Impact (WTWI): 

The WTWI metric uses available information about the 
system architecture, to weigh the two way impact metric. 
More specifically, for the WTWI metric we also consider 
the number of packages affected by a class modification (i.e. 
the package afferent impact, PAI). For example, a class 
affecting five classes from three different packages is more 
likely to be part of the execution profile of several features 
than a class affecting five classes all located in one package.  

We introduce the following metric: 
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The range for the )(cWTWI is from 0 to 1, with 0 being a 
component that is feature specific and not shared by neither 
other components or package in the system and 1 being a 
component that is shared among all components all pack-
ages in the system.   

Table 2. Applying WTWI to the example of Figure 3 

Classes PAI WTWI 

C1 1 0 
C2 1 0.01 
C4 1 0.02 
C3 1 0.03 
C5 1 0.16 
C6 1 0.06 
C7 4 0.25 

C8 4 0.63 

Table 2 shows the result after applying the WTWI metric 
to the example in Figure 3. The results in table 3 are sorted 
in ascending order based on the feature specific classes (i.e. 
WTWI value). The table shows that all classes (shown in 
bold) related to the particular feature are clustered at the top 
of the table, which improves the results obtained by 
applying TWI. 

3. Case Study 
In what follows, we present a case study to evaluate the 

applicability of our feature location techniques. We apply 
our techniques on a feature trace generated from a Java-
based system called Checkstyle1 (version 3.3). 

Checkstyle is a development tool to support 
programmers to write Java code that adheres to a coding 
                                                
 
1 http://checkstyle.sourceforge.net/ 



 

standard. The tool allows programmers to create XML-
based files to represent almost any coding standard. 
Checkstyle uses ANTLR2 (ANother Tool for Language 
Recognition) and the Apache regular expression pattern 
matching package3. These two packages have been excluded 
from this analysis. Checkstyle (without ANTLR and the 
Apache module) has 17 packages, 210 classes, and 130 
KLOC. The system is well documented and allowing us to 
validate our results against the documented feature 
implementations.  

3.1. Software Feature 
We applied our feature location techniques on a 

Checkstyle feature called CheckCode, which consists of 
checking Java code for coding problems such as 
uninitialized variables, etc. We generated the corresponding 
feature trace by instrumenting Checkstyle using our own 
instrumentation tool based on BIT framework [5]. Probes 
were inserted at each entry and exit method (including 
constructors). The resulting CheckCode feature trace 
contained 68 distinct classes.  

We applied impact analysis to the Checkstyle systems 
using a tool called Structural Analysis for Java (SA4J)4. The 
tool parses the source code and generates a global class 
dependency table that contains various metrics including the 
class afferent and efferent impacts. SA4J supports a large 
spectrum of relations among classes such as: accesses, calls, 
contains, extends, implements, instantiates, references, etc.  

3.2. Analysis 
The execution profile for the CheckCode feature consists 

of classes belonging to the following packages: coding 
(32 classes), checkstyle (12 classes), checks (5 
classes), grammars (2 classes), and apis (17 classes). 

We used Checkstyle documentation to identify the most 
relevant components related to the CheckCode feature. We 
found that the package coding contains the key classes 
used to implement the various checking procedures relevant 
to CheckCode feature. Our feature location technique based 
on the TWI metric did also rank most classes within the 
coding package as important (these classes are not shown 
in this paper due to limited space). The only major 
exceptions are the classes: AbstractSuperCheck and 
AbstractNestedDepthCheck. Both classes have a 
large class afferent impact (CAI = 3) factor compared to 
CAI factor of 1 for the remaining classes in the coding 
package. This is a result of these classes being abstract 
classes that implement general purpose functions used by 

                                                
 
2 http://www.antlr.org/ 
3 http://jakarta.apache.org/regexp/ 
4 http://www.alphaworks.ibm.com/tech/sa4j 

many other classes. Therefore, one way to improve our 
feature location approach is to treat abstract classes 
separately. We leave out this point as future direction.  

The packages checkstyle, checks and 
grammars invoked in the CheckCode feature trace contain 
classes that implement common functionality used by most 
checks performed by Checkstyle. For example the 
grammars package contains operations that build a 
grammar from the code used in the analysis. Most of these 
classes in this package are ranked lower than the classes of 
the coding package (with a few exceptions). For example,   
the class checkstyle.TreeWalker was ranked among 
the most relevant classes, since it provides tree traversal 
functionalities used by many features within the Checkstyle 
tool, to navigate the syntax tree created for the Java code to 
be checked.  

The apis package is a Checkstyle utility package with 
most of its classes (except FilterSet and 
AbstractFileSetCheck) being correctly ranked low 
using the TWI based feature location approach. 

Applying the WTWI based feature location technique on 
the CheckCode feature provided noticeably better results 
than using the TWI metric. Using the WTWI metric, the 
classes AbstractSuperCheck and 
AbstractNestedDepthCheck were identified to be 
important classes, by significantly closing the gap among 
these and the other classes of the coding package. We also 
observed an improvement in the ranking of the classes in the 
apis package (closer ranking).  

However, the approach placed some classes of the 
checks package such at the classes AbstractLoader, 
AbstractFormatCheck (two abstract classes), and 
CheckUtils with the apis classes. As mentioned 
previously, abstract classes seem to behave differently from 
the other classes of the same packages. As for 
CheckUtils, it is a utility class whose scope is within 
the checks package, unlike the classes of the apis 
package, which are system-level utilities.   

4. Related Work  
Wilde and Scully [10] introduced the concept of 

Software Reconnaissance. In their approach, traces are 
generated by exercising several features. They compared the 
resulting traces to identify components specific to the 
feature. In our approach, we only generate a trace for the 
feature to be analyzed. 

Eisenbarth et al. [2] proposed a hybrid feature location 
approach that uses both static and dynamic analysis 
techniques. The dynamic information is based on generating 
traces based on a set of scenarios. Formal concept analysis 



 

is then applied on the collected execution traces to 
determine the relation between features. Static analysis is 
applied to identify additional components relevant to the 
feature. This approach requires considerable domain 
knowledge of the software system along with several test 
cases in order to identify a single feature. 

Poshvanyk et al. [7, 8] introduced another hybrid 
approach based on source code based information retrieval 
(IR) to describe components invoked in a trace. The 
advantage of their approach is that it requires only one trace 
to perform feature location. The disadvantage is that it relies 
on informal knowledge, such as source code comments, 
identifiers, etc.         

Greevy et al. [3] exploited the relationship between 
features and classes to analyze the way features of a system 
evolve and to detect changes in the code from a feature 
perspective. Rather than detecting feature specific 
components, the main focus of the authors approach is on 
studying how the classes may change their roles during 
software evolution.  

5. Conclusion and Future Work 
In this paper, we presented a new approach to address the 

feature location problem with a focus on identifying the 
classes that are the most relevant to the feature to be 
analyzed.  

Our approach combines both static and dynamic analysis. 
A trace is generated by exercising a feature under study. The 
invoked classes in the trace are ranked based on identifying 
the impact of a class modification on the rest of the system. 
To measure the impact, a class dependency graph is used. 
We proposed two impact metrics. The first metric, TWI 
(Two Way Impact), showed very good results when applied 
to the trace generated in our case study. It did, however, 
misplace a few classes (2 out of 32 important classes). The 
second metric, WTWI (Weighted Two Way Impact), 
improves the results of TWI by considering information 
from the system architecture. This can be seen from the 
results of our case study as WTWI performed well by 
bringing the two previously misplaced classes closer to the 
group of important classes.   

As part of our future work, we plan to conduct further 
evaluations of our approach by analyzing larger, less well 
designed systems. We also plan to apply thresholds to 
determine automatically then to consider classes to be 
feature relevant  
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