

An Approach for Mapping Features to Code Based on Static and
Dynamic Analysis

Abhishek Rohatgi1, Abdelwahab Hamou-Lhadj2, Juergen Rilling1
1Department of Computer Science and Software Engineering

2Department of Electrical and Computer Engineering
Concordia University

1455 de Maisonneuve West Montreal, Quebec
{a_rohatg, abdelw, rilling@encs.concordia.ca}

Abstract
System evolution depends greatly on the ability of a

maintainer to locate source code that is specific to feature
implementation. Existing feature location techniques
require either exercising several features of the system, or
rely heavily on domain experts to guide the feature location
process. In this paper, we present a novel approach for
feature location that combines static and dynamic analysis
techniques. An execution trace is generated by exercising
the feature under study (dynamic analysis). A component
dependency graph (static analysis) is used to rank the
components invoked in the trace according to their
relevance to the feature. Our ranking technique is based on
the impact of a component modification on the rest of the
system. The proposed approach is automatic to a large
extent relieving users from any decision that would
otherwise require extensive domain knowledge of the
system. A case study is presented to support and evaluate
the applicability of our approach.

Keywords: Feature location, dynamic analysis, static analy-
sis, program comprehension

1. Introduction
Feature location has been recognised as one of the most

important tasks during software evolution and maintenance.
Software maintainers typically do not comprehend an entire
system to perform a modification request rather they apply
an as needed approach, by focusing only on these parts of
the source code that is most relevant to the feature or source
code to be modified [11].

Existing feature location techniques can be grouped into
two main categories depending on their use of static and
dynamic analysis techniques. The first category, pure
dynamic approaches, require the generation of execution
traces that are then compared in order to identify the
components of a single feature. An example of these
techniques is the one proposed by Wilde and Scully [10],
known as Software Reconnaissance. The major limitation
with their approach is that it requires execution traces to be
generated and processed for many system features, although

the focus of a maintenance request is typically only on one
particular feature. The second category of feature location
techniques relies on a combination of static and dynamic
analysis. These approaches utilize static information to
further process the execution trace that corresponds to a
feature of interest. Several techniques have been presented
such as the ones based on concept analysis [2], latent
semantic indexing [1], etc. These techniques usually require
users to have some understanding of the source code prior to
the feature location analysis to be able to specify these parts
of the source code that need to be analyzed.

In this paper, we propose a novel technique based on
impact analysis for solving the feature location problem. We
define a software feature as any specific scenario of a
system that is triggered by an external user. This is similar
to the concept of scenarios found in UML [13], except that
we do not distinguish between primary and exceptional
scenarios in this paper. However, it is advisable to include at
least the primary scenario, since these scenarios tend to
correspond to the most common program execution
associated with a particular feature. Our approach combines
two different sources of information: an execution trace that
corresponds to the software feature under study (dynamic
analysis) and a component dependency graph (static
analysis). Using the graph, we rank the components invoked
in the trace by measuring the impact of a component
modification on the rest of the system. Our hypothesis is
that the smaller the impact set of a component modification,
the more likely it is that the component is specific to a
feature. Conversely, we expect a component affecting many
parts of a system to be invoked in multiple traces and
therefore rendering it as less specific to a particular feature.

The advantage of our approach is that it requires only
one trace to be generated, the one corresponding to the
feature under study. Furthermore, our approach is almost
fully automatic, without requiring users to have an extensive
system knowledge prior to performing the analysis.

This work is based on our previous work [9], where we
discussed how impact analysis can be applied to address the
feature location problem. In this paper, we extend this
previous work by introducing two new feature location

techniques based on impact analysis. The two techniques
differ in the way the impact of a component modification is
measured. We also show results from applying these
algorithms to a feature of an object-oriented system.

Organization of the paper: In the next section we describe
details of the proposed feature location approach and
discuss the application of impact analysis to detect feature
components. A case study is presented in Section 3,
followed by a discussion on related work in Section 4.
Section 5 concludes the paper and present future directions.

2. Approach
Figure 1 provides a general overview of our approach for

identifying important components that implement a specific
feature. In the context of our research, the components of
interest correspond to a system’s classes.

Figure 1. Overall Approach

Our approach is based on the following steps: (1) A trace is
generated by exercising the feature to be analyzed and
distinct classes are extracted from this trace. (2) We apply
our two proposed impact analysis metrics on the extracted
classes. Both metrics are based on a static class dependency
graph and are discussed in more detail in Section 2.2. (3)
Depending on these impact measures, classes are ranked to
identify feature specific classes.

2.1. Feature Trace Generation
We first generate a feature trace that corresponds to a

specific execution of the software feature under study. This
step requires the instrumentation of either the source code or
the execution environment. The instrumented version is then
executed to create a feature trace by exercising the feature
of interest. From the feature trace, we can then extract an
execution profile that corresponds to the distinct classes
invoked in the feature trace. It should be noted that the trace
does not need to be stored.

2.2. Impact Analysis
Impact analysis is the process of identifying these parts

of a program that are potentially affected by a program
change. Impact analysis has been shown to be useful for
planning changes, making changes, and tracing through the
effects of changes [6, 12].

In our approach, we apply impact analysis to identify
feature specific classes by measuring the potential impact
that modifications to each distinct class in the execution
profile has on the remaining parts of a system. The rationale
behind this is as follows: classes that impact many other
parts of the system will most likely be invoked in many
other feature traces, making them non-feature specific. Such
high impact classes often correspond to utility classes used
to implement core functionality of the system [4]. On the
other hand, a feature specific class is self-contained (i.e.,
low coupling and high cohesion), resulting in a class that
when modified has only a very low impact on the remaining
parts of the system. In situations where the impact set of a
class is in between these two cases, this will indicate classes
that implement functionality shared among similar features.

For the measurement of class impact on the remaining
parts of a system, we use a static class dependency graph
(CDG), which is a directed graph with nodes being a
system’s classes and edges represent a dependency
relationship among these classes (shown in Figure 2).

The construction of a class dependency graph typically
requires parsing the source code (or bytecode files). Several
types of relationships may exist between two classes such as
the ones based on method calls, generalization and
realization relationships, etc. It should be noted that the
accuracy of the impact analysis depends on the types of
dependency relations supported by the analysis, and that
edges within a CDG can be weighted to represent the
number of dependencies that exist between two given
classes.

Figure 2. Component Dependency Graph

The impact set of modifying a component C is defined as
the set of components that depend directly or indirectly on
C. More formally, a class dependency graph can be
represented using a directed graph G = (V, E) where V is a
set of classes and E a set of directed edges between classes.
The impact set of C consists of the set of predecessors of C.
A predecessor of a node is defined as follows: Consider an
edge e = (x, y) from node x to y, If there is a path in the
graph that leads from x to y, then x is said to be a
predecessor of y. For example, the impact set of class C5 of
Figure 2 consists of the classes C6, C7 C4, C3, and C1 (i.e.,
the predecessors of node C5) since there exist a path
between each of these classes and the class C5. Note that the

same class may occur in multiple paths. In this case, such a
class is considered only once.

Based on the definition of the impact set of a component,
we have developed two metrics for measuring the impact of
a class modification on the rest of the system. In what
follows, we introduce the TWI (Two Way Impact) and
WTWI (Weighted Two Way Impact) metrics. Before
describing these metrics in more detail, we present the
following definitions:

• S = Set of all classes of the system.

• P = Set of all packages of the system.

• CAI(C): Represents the Class Afferent Impact of a
class C, which consists of the number of classes that are
affected (directly or indirectly) when C is modified (i.e.,
the cardinality of the impact set of C).

• CEI(C): Represents the Class Efferent Impact of a
class C, which is the number of classes that will affect
(directly or indirectly) C if they change. These are the
classes in the directed graph that can be reached through
C. It should be noted that the intersection between CAI
and CEI is not necessarily empty, since some
components can be affected by a change to C while at
the same time they can affect C.

• PAI(C): Represents the Package Afferent Impact of a
class. This metric corresponds to the number of packages
affected directly or indirectly by a modification of C. We
consider all packages of the system as separate packages
whether they belong to another package or not.

Figure 3. Class dependency graph with packages

We will revisit the example in Figure 3 throughout this
section to illustrate how our impact analysis metrics can
identify feature related components. In this example, we
assume that the classes that are relevant to the specific
feature that needs to be analyzed are: C1, C2,..., C6,
which are all located in package P1. However, the feature
profile created from this specific feature trace contains
additionally the classes C7 and C8.

Metric 1: Two Way Impact (TWI):

The two way impact metric considers both the impact a
class modification has on the rest of a system (i.e. the
afferent impact), as well as the number of classes that
impact this class if these classes change (i.e., efferent
impact). We use the CDG to measure the afferent and the
efferent impact.

The TWI metric is based on a metric presented by
Hamou-Lhadj and Lethbridge in [4]. The authors used fan-
in analysis to measure the extent to which a routine can be
considered a utility. According to their findings, a routine
with high fan-in (incoming edges in the call graph) should
be considered a utility as long as its fan-out (outgoing
edges) is not high. They argue that a routine that receives a
large number of calls from different parts of a program is
more likely to be a utility routine. On the other hand, if a
routine has many calls (outgoing edges in the call graph),
this is evidence that it is performing a complex computation
and therefore it is needed to understand the system.

The TWI metric uses a similar approach, except that it
considers the impact of a component modification rather
than its fan-in. The TWI metric therefore not only considers
the direct impact associated with a component change but
also the ones that are indirectly affected by this component
change. This allows us to measure the fact that the afferent
impact of a component can be very high without necessarily
having a high fan-in. For example in Figure 4, class C2 has
a very low fan-in (one incoming edge) but a high afferent
impact value (five classes are affected by a change to C2).

Figure 4. Difference between Fan-in and CAI

Fan-in (C2) = 1 and CAI(C2) = 5

The TWI metric is defined as follows:

|)(|

)
1)(

||
(

||

)(
)(

SLog
cCEI

S
Log

S

cCAI
cTWI

+
×=

 This formula is divided into two parts. The first part

||

)(

S

cCAI
reflects the fact that the classes with large CAI are

the ones that are most likely to be non-feature specific
classes, as previously described. We multiply the first part

(i.e.
||

)(

S

cCAI
) by a coefficient that takes into account the

efferent impact although with a lower emphasis by using the

Logarithm. We achieve this using)
1)(

||
(

+cCEI
S

Log .

1)(+cCEI is used for convenience to avoid situations
where)(cCEI = 0.

If a class c is not affected by any modification made to
other classes of the system then)(cCEI equals zero and

hence |).(|)
1)(

||
(SLog

cCEI
S

Log =
+

In this case, the result

of TWI will depend on the afferent impact.

On the other hand if the efferent impact is considerably

large then)
1)(

||
(

+cCEI
S

Log will converge towards zero

and therefore canceling out the effect of)(cCAI . This class
depends (directly or indirectly) on many other classes and
therefore it might be important to understand the
implementation of the feature.

We divide the result by |)(| SLog to ensure that both
expressions and the entire formula vary from 0 to 1. With 0
being a component that is feature specific and not shared by
any component in the system and 1 being a component that
is shared among all components in the system.

Table 1. Applying TWI to the example of Figure 3

Classes CAI CEI TWI

C1 0 7 0
C2 1 3 0.04
C4 1 1 0.08
C3 2 2 0.12
C6 3 1 0.25
C7 3 1 0.25

C5 5 0 0.63
C8 5 0 0.63

Table 1 shows the result after applying the TWI metric
on the example program (Figure 3). The results are sorted
based on the feature specific classes (i.e. TWI value in
ascending order). All classes related to the particular feature
are clustered together at the top of the table (represented in
bold), except C5 (a feature specific class) that is ranked
after C7 (a non-feature specific class). This is due mainly to
the fact that the class afferent impact factor of C7 (CAI =
3) is less than C5 (CAI = 5).

Next, we introduce our Weighted TWI metrics that
improves on our TWI metric by also considering the
package afferent impact as part of the measurement.

Metric 2: Weighted Two Way Impact (WTWI):

The WTWI metric uses available information about the
system architecture, to weigh the two way impact metric.
More specifically, for the WTWI metric we also consider
the number of packages affected by a class modification (i.e.
the package afferent impact, PAI). For example, a class
affecting five classes from three different packages is more
likely to be part of the execution profile of several features
than a class affecting five classes all located in one package.

We introduce the following metric:

||

)(
)()(

P

cPAI
xcTWIcWTWI =

The range for the)(cWTWI is from 0 to 1, with 0 being a
component that is feature specific and not shared by neither
other components or package in the system and 1 being a
component that is shared among all components all pack-
ages in the system.

Table 2. Applying WTWI to the example of Figure 3

Classes PAI WTWI

C1 1 0
C2 1 0.01
C4 1 0.02
C3 1 0.03
C5 1 0.16
C6 1 0.06
C7 4 0.25

C8 4 0.63

Table 2 shows the result after applying the WTWI metric
to the example in Figure 3. The results in table 3 are sorted
in ascending order based on the feature specific classes (i.e.
WTWI value). The table shows that all classes (shown in
bold) related to the particular feature are clustered at the top
of the table, which improves the results obtained by
applying TWI.

3. Case Study
In what follows, we present a case study to evaluate the

applicability of our feature location techniques. We apply
our techniques on a feature trace generated from a Java-
based system called Checkstyle1 (version 3.3).

Checkstyle is a development tool to support
programmers to write Java code that adheres to a coding

1 http://checkstyle.sourceforge.net/

standard. The tool allows programmers to create XML-
based files to represent almost any coding standard.
Checkstyle uses ANTLR2 (ANother Tool for Language
Recognition) and the Apache regular expression pattern
matching package3. These two packages have been excluded
from this analysis. Checkstyle (without ANTLR and the
Apache module) has 17 packages, 210 classes, and 130
KLOC. The system is well documented and allowing us to
validate our results against the documented feature
implementations.

3.1. Software Feature
We applied our feature location techniques on a

Checkstyle feature called CheckCode, which consists of
checking Java code for coding problems such as
uninitialized variables, etc. We generated the corresponding
feature trace by instrumenting Checkstyle using our own
instrumentation tool based on BIT framework [5]. Probes
were inserted at each entry and exit method (including
constructors). The resulting CheckCode feature trace
contained 68 distinct classes.

We applied impact analysis to the Checkstyle systems
using a tool called Structural Analysis for Java (SA4J)4. The
tool parses the source code and generates a global class
dependency table that contains various metrics including the
class afferent and efferent impacts. SA4J supports a large
spectrum of relations among classes such as: accesses, calls,
contains, extends, implements, instantiates, references, etc.

3.2. Analysis
The execution profile for the CheckCode feature consists

of classes belonging to the following packages: coding
(32 classes), checkstyle (12 classes), checks (5
classes), grammars (2 classes), and apis (17 classes).

We used Checkstyle documentation to identify the most
relevant components related to the CheckCode feature. We
found that the package coding contains the key classes
used to implement the various checking procedures relevant
to CheckCode feature. Our feature location technique based
on the TWI metric did also rank most classes within the
coding package as important (these classes are not shown
in this paper due to limited space). The only major
exceptions are the classes: AbstractSuperCheck and
AbstractNestedDepthCheck. Both classes have a
large class afferent impact (CAI = 3) factor compared to
CAI factor of 1 for the remaining classes in the coding
package. This is a result of these classes being abstract
classes that implement general purpose functions used by

2 http://www.antlr.org/
3 http://jakarta.apache.org/regexp/
4 http://www.alphaworks.ibm.com/tech/sa4j

many other classes. Therefore, one way to improve our
feature location approach is to treat abstract classes
separately. We leave out this point as future direction.

The packages checkstyle, checks and
grammars invoked in the CheckCode feature trace contain
classes that implement common functionality used by most
checks performed by Checkstyle. For example the
grammars package contains operations that build a
grammar from the code used in the analysis. Most of these
classes in this package are ranked lower than the classes of
the coding package (with a few exceptions). For example,
the class checkstyle.TreeWalker was ranked among
the most relevant classes, since it provides tree traversal
functionalities used by many features within the Checkstyle
tool, to navigate the syntax tree created for the Java code to
be checked.

The apis package is a Checkstyle utility package with
most of its classes (except FilterSet and
AbstractFileSetCheck) being correctly ranked low
using the TWI based feature location approach.

Applying the WTWI based feature location technique on
the CheckCode feature provided noticeably better results
than using the TWI metric. Using the WTWI metric, the
classes AbstractSuperCheck and
AbstractNestedDepthCheck were identified to be
important classes, by significantly closing the gap among
these and the other classes of the coding package. We also
observed an improvement in the ranking of the classes in the
apis package (closer ranking).

However, the approach placed some classes of the
checks package such at the classes AbstractLoader,
AbstractFormatCheck (two abstract classes), and
CheckUtils with the apis classes. As mentioned
previously, abstract classes seem to behave differently from
the other classes of the same packages. As for
CheckUtils, it is a utility class whose scope is within
the checks package, unlike the classes of the apis
package, which are system-level utilities.

4. Related Work
Wilde and Scully [10] introduced the concept of

Software Reconnaissance. In their approach, traces are
generated by exercising several features. They compared the
resulting traces to identify components specific to the
feature. In our approach, we only generate a trace for the
feature to be analyzed.

Eisenbarth et al. [2] proposed a hybrid feature location
approach that uses both static and dynamic analysis
techniques. The dynamic information is based on generating
traces based on a set of scenarios. Formal concept analysis

is then applied on the collected execution traces to
determine the relation between features. Static analysis is
applied to identify additional components relevant to the
feature. This approach requires considerable domain
knowledge of the software system along with several test
cases in order to identify a single feature.

Poshvanyk et al. [7, 8] introduced another hybrid
approach based on source code based information retrieval
(IR) to describe components invoked in a trace. The
advantage of their approach is that it requires only one trace
to perform feature location. The disadvantage is that it relies
on informal knowledge, such as source code comments,
identifiers, etc.

Greevy et al. [3] exploited the relationship between
features and classes to analyze the way features of a system
evolve and to detect changes in the code from a feature
perspective. Rather than detecting feature specific
components, the main focus of the authors approach is on
studying how the classes may change their roles during
software evolution.

5. Conclusion and Future Work
In this paper, we presented a new approach to address the

feature location problem with a focus on identifying the
classes that are the most relevant to the feature to be
analyzed.

Our approach combines both static and dynamic analysis.
A trace is generated by exercising a feature under study. The
invoked classes in the trace are ranked based on identifying
the impact of a class modification on the rest of the system.
To measure the impact, a class dependency graph is used.
We proposed two impact metrics. The first metric, TWI
(Two Way Impact), showed very good results when applied
to the trace generated in our case study. It did, however,
misplace a few classes (2 out of 32 important classes). The
second metric, WTWI (Weighted Two Way Impact),
improves the results of TWI by considering information
from the system architecture. This can be seen from the
results of our case study as WTWI performed well by
bringing the two previously misplaced classes closer to the
group of important classes.

As part of our future work, we plan to conduct further
evaluations of our approach by analyzing larger, less well
designed systems. We also plan to apply thresholds to
determine automatically then to consider classes to be
feature relevant

Acknowledgements
This work has been partially supported by the Natural

Sciences and Engineering Research Council of Canada
(NSERC).

References
[1] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.
Landauer, and R. Harshman, “Indexing by Latent Semantic
Analysis”, Journal of the American Society for Information
Science, 41(6), 1990, pp. 391-407.
[2] T. Eisenbarth, R. Koschke, and D. Simon, “Locating
Features in Source Code”, IEEE Transactions on Software
Engineering, 29(3), 2003, 210 - 224.
[3] O. Greevy, S. Ducasse, and T. Girba, "Analyzing
Feature Traces to Incorporate the Semantics of Change in
Software Evolution Analysis", In Proc. of 21st IEEE Int.
Conf. on Software Maintenance, 2005, pp. 347-356.
[4] A. Hamou-Lhadj, and T. Lethbridge, "Summarizing the
Content of Large Traces to Facilitate the Understanding of
the Behaviour of a Software System", In Proc. of the 14th
IEEE Int. Conf. on Program Comprehension, 2006, pp. 181-
190.
[5] H. Lee, B. G. Zorn, BIT, “A tool for Instrumenting Java
Bytecodes”, USENIX Symposium on Internet technologies
and Systems, 1997, pp. 73-82.
[6] J. Law , G. Rothermel, “Whole program Path-Based
dynamic impact analysis”, In Proc. of the 25th Int. Conf. on
Software Engineering, 2003, pp. 308-318.
[7] D. Poshyvanyk, Y. G. Gueheneuc, A. Marcus, G.
Antoniol, and V. Rajlich, “Feature Location using
Probabilistic Ranking of Methods based on Execution
Scenarios and Information Retrieval”, IEEE Transactions
on Software Engineering, 33(6), 2007, pp. 420-432.
[8] D. Poshyvanyk, and D. Marcus, “Combining Formal
Concept Analysis with Information Retrieval for Concept
Location in Source Code”, In Proc. of 15th IEEE Int. Conf.
on Program Comprehension, 2007, pp. 37-48.
[9] A. Rohatgi, A. Hamou-Lhadj, J. Rilling, "Feature
Location Based on Impact Analysis", In Proc. of 11th
IASTED Int. Conf. on Software Engineering and
Applications, 2007.
[10] N. Wilde, and M. Scully, “Software Reconnaissance:
Mapping Program Features to Code”, Software
Maintenance: Research and Practice, 7(1), 1995, pp. 49-62.
[11] N. Wilde , M. Buckellew, H. Page , V. Rajlich , L.
Pounds, “A comparison of methods for locating features in
legacy software”, Journal of Systems and Software, 65(2),
2003, pp.105-114.
[12] S. S. Yau, J. S. Collofello, and T. MacGregor, “Ripple
Effect Analysis of Software Maintenance”, In Proc. of the
4th IEEE Int. Conf. on Computer Software and Applications
Conference, 1978, pp. 60-65.
[13] OMG UML 2.0 Specification:

http://www.omg.org/technology/documents/formal/uml.htm

