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Abstract 

In this paper, we present a semi-automatic approach for 
summarizing the content of large execution traces. Similar 
to text summarization, where abstracts can be extracted 
from large documents, the aim of trace summarization is to 
take an execution trace as input and return a summary of its 
main content as output. The resulting summary can then be 
converted into a UML sequence diagram and used by 
software engineers to understand the main behavioural 
aspects of the system. Our approach to trace summarization 
is based on the removal of implementation details such as 
utilities from execution traces. To achieve our goal, we have 
developed a metric based on fan-in and fan-out to rank the 
system components according to whether they implement 
key system concepts or they are mere implementation 
details. We applied our approach to a trace generated from 
an object-oriented system called Weka that initially contains 
97413 method calls. We succeeded to extract a summary 
from this trace that contains 453 calls. According to the 
developers of the Weka system, the resulting summary is an 
adequate high-level representation of the main interactions 
of the traced scenario. 

Keywords: Reverse engineering; Dynamic analysis; Design 
recovery; Program comprehension 

1. Introduction 
Since the outset of our research, our goal has been to find 

ways to make it easier for software engineers to understand 
a program’s behaviour by exploring traces. This necessitates 
simplifying views of traces in various ways – in other 
words, reducing their size and complexity while keeping as 
much of their essence as possible.  

Most existing trace analysis tools such as the ones 
presented in [3, 4, 6, 8, 15, 19, 20, 23] rely a set of fine-
grained operations that software engineers can use to go 
from a raw sequence of events to a more understandable 
trace content. But due to the size and complexity of typical 
traces, this bottom-up approach can be difficult to perform 
and requires a considerable intervention of the users.  

However, when asked to describe their experience with 
using traces, many software engineers of QNX Software 
Systems, the company that supports part of this research, 
argued that they almost always want to be able to perform 
top-down analysis of a trace by having the ability to look at 
the big picture first and then dig into the details [10]. Many 
research studies in program comprehension have shown that 
an adequate understanding of the system artefacts 
necessitates both strategies (i.e. bottom-up and top-down) 
[16].  

In this paper, we present the concept of trace 
summarization and define it as the process of taking a trace 
as input and returning a summary of its main content as 
output. Most of the steps involved in this process are 
performed automatically. However, we anticipate that 
software engineers will need to further manipulate the 
resulting summary by adjusting its content to their specific 
needs. The result of this step will depend on the knowledge 
they have of the functionality under study, the nature of the 
function being traced, and the type of problem the trace is 
being used to solve (debugging, understanding, etc.).    

This paper is based on previous work (see [13]), where 
we presented a technique for recovering high-level 
behavioural design models from traces. The new 
contributions of this paper consist of: 

• The concept of trace summaries. 

• An improved metric for measuring the extent to 
which a component can be considered a utility. 

• A trace summarization algorithm 

• A case study to validate the summarization 
technique. 

The traces we focus on in this paper are the ones based 
on routine calls. We use the term ‘routine’ to refer to any 
routine, function, or procedure whether it is a method of a 
class or not. 

The remainder of this paper is organized as follows: In 
the next section, we define what we mean by a trace 
summary. In Section 3, we discuss the concepts of utilities 
and implementation details. A trace summarization 

 



algorithm is presented in Section 4. In Section 5, we present 
a case study where we evaluate the effectiveness of our 
approach. In Section 6, we discuss related work. 

2. What is a Trace Summary? 
In general, a summary represents the main points of a 

document while removing the details. The term ‘summary’, 
as used here is effectively synonymous with the term 
‘abstract’, discussed below in the context of text 
summarization. 

Jones defines a summary of a text as “a derivative of a 
source text condensed by selection and/or generalization on 
important content” [17]. Similarly, we define a summary of 
a trace as an abstract representation of the trace that results 
from removing unnecessary details by both selection and 
generalization.  

The study conducted in QNX, which is described in more 
detail in [10], shows that when trying to understand the 
content of large traces, most software engineers will likely 
want to hide low-level implementation details such as 
utilities. Our approach for summarizing the main content of 
traces is therefore based on the successive filtering of traces 
by removing such low-level implementation details. In other 
words, the trace content selected to be part of the summary 
consist of the routines that implement high-level domain 
concepts. 

In the next section, we present a metric based on fan-in 
and fan-out that will help us detect the utility components of 
a poorly documented system. However, we draw a 
distinction by considering utilities to be a subset of the 
concept of implementation details. A definition of what we 
mean by an implementation detail is presented in the end of 
the next section. In Section 4, we will present a trace 
summarization algorithm that uses the detection of utilities 
as its main mechanism. 

Content generalization, an alternative approach to 
content selection, consists of generalization of specific 
content; i.e. replacing it with more general abstract 
information [17]. When applied to execution traces, 
generalization can be performed in two ways: 

The first approach to generalization involves assigning a 
high-level description to selected sequences of events. For 
example, many trace analysis tools provide the users with 
the ability to manually select a sequence of calls and replace 
it with a description expressed in a natural language. 
However, this approach relies on user input so would not be 
practical to automate.  

A second approach to generalization relies on treating 
similar sequences of events as if they were the same. This 
approach can be automated by varying a similarity function 
used to compare sequences of calls. Other possibilities 

include treating all subtrees that differ by only a certain edit 
distance as the same.  

In the remainder of this paper, we will focus on content 
selection, leaving content generalization for consideration as 
another line of research. 

3. The Concept of Utilities and Implementation 
Details 

We define a utility as: Any element of a program 
designed for the convenience of the designer and 
implementer and intended to be accessed from multiple 
places within a certain scope of the program. The rationale 
behind this definition is as follows: the more calls a method 
has from different places (i.e. the more incoming edges in 
the static call graph), then the more purposes it likely has, 
and hence the more likely it is to be a utility. Conversely, 
we would expect a utility routine to be relatively self-
contained (i.e. to have low coupling and high cohesion); if a 
routine has many calls (outgoing edges in the static call 
graph), this is evidence that it is less likely to be considered 
a utility. Also, routines that make many calls may be more 
needed in a trace summary to understand the system.  

In [13], we presented a metric for measuring the extent to 
which a particular routine can be considered a utility that is 
based on the fan-in metric. In this paper, we improve this 
metric by considering fan-out as well as fan-in. We 
therefore suggest the following utilityhood metric:  

Given a routine r and the following: 

• N  = The number of routines in the routine call graph 

• Fanin(r) = The number of routines in the graph, other 
than r, that call r.  

• Fanout(r) = The number of routines in the graph, 
other than r, that r calls.  

We define the utilityhood metric of the routine r, U(r), as: 
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U(r) has 0 (not a utility) as its minimum and approaches 1 
(most likely to be a utility) as its maximum. 

Explanation: 

First, we want to note that Fanin(r) and Fanout(r) both vary 
from 0 to |N|-1 (i.e. self dependencies are ignored). 

This formula can be split into two parts. The first part 

N
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large fan-in are the ones that are most likely to be utilities. 

 



For example, if the routine is called from all other routines 

of the system then its 
N

rFanin )(
 will be close to 1 (it will 

never reach 1 since self dependencies are ignored, i.e., 
Fanin(r) < N).  

However, as discussed earlier, it is also important to 
consider the number of routines that are called by a 
particular routine. Therefore, we multiply the first part 

(i.e.
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convenience to avoid situations where Fanout = 0.  

If a routine r does not call any other routine of the system 

then Fanout (r) = 0, hence )()
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which would be dependent on the size of the system under 
study. We divide this result by Log(N) to ensure that both 
this expression and the entire formula vary from 0 to 1. In 
the case of r, its utilityhood metric will be equal 

to
N

rFanin )(
.  

On the other hand, a routine that has very large fan-out 

will result in )
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N
Log  that tends to zero 

cancelling the effect of fan-in. This is a routine that should 
not be considered as a utility. 

 
Figure 1. Example of a routine call graph 

The result of applying the utilityhood metric to the static 
call graph of Figure 1 is shown in Table 1 (in this table, the 
base of the logarithm is 2). This table is sorted according to 
the descending order of U. In this example, we can see that 
the routine r2 is a candidate utility routine since it is called 
by all other routines and does not call any other routine (its 
U value is the highest). 

Table 1. Utilityhood metric for the routine of Figure 1. 

Routines Fanin Fanout U 
r2 6 0 0.86 
r5 3 1 0.27 
r6 2 2 0.12 
r3 1 2 0.06 
r7 1 2 0.06 
r4 1 4 0.02 
r1 0 3 0.00 

However, it is important to use a static call graph rather 
than a dynamic call graph generated from the trace itself (or 
a set of traces). The rationale is that the if we were to use the 
dynamic call graph, we may find many cases where a 
routine by chance has only one call to it (or just a few) and 
hence would not be considered a utility merely because the 
scenario that generated the graph did not result in calls from 
any other places. 

A tool using the utilityhood metric would need to select a 
threshold above which to consider routines as utilities, and 
therefore to suppress them from the trace. The exact 
threshold will vary depending on the context; for example, 
if there is a strong need to compact the trace further, then a 
higher threshold can be picked. Alternatively, if the trace 
has already been compacted too far, and the software 
engineer finds that he or she would like to see more detail in 
order to understand it, then the threshold can be reduced. 

We want to note that according to the above definition of 
utilities, not all implementation details will be considered 
utilities. Many routines that implement details in algorithms 
might be designed to be called from one specific place. 
Later on, when we examine the compacting of traces by the 
removal of utilities, it may be necessary to consider the 
removal of other implementation details as well.  

We define an implementation detail as: Any element of a 
program whose presence could be suppressed without 
reducing the overall comprehensibility of the design of a 
particular feature, component or algorithm.  

This above definition is, of course, dependent on the 
design component or algorithm being considered, which is 
one of the reasons why the software engineer needs to be 
given some control over the parameters of our algorithm, 
such as the threshold mentioned above. 

Utilities are clearly one kind of implementation details. 
Other examples of implementation details include 
constructors/destructors, accessing methods, etc. These 
elements are used simply to support the implementation of 
the system by performing functions that need to be 
performed in any system, rather than to implement the 
operations distinct to this particular system. A more detailed 

 



discussion about the types of implementation details found 
in an object-oriented system can be found in [14]. 

4. Trace Summarization Algorithm 
In this section, we present the steps of the trace 

summarization algorithm. The algorithm is deliberately 
underspecified, since further research is needed to determine 
the best settings of certain parameters (see Step 1 below) 
and how to categorize and detect various other kinds of 
implementation details in addition to utilities (Step 2). The 
following are the steps of the algorithm: 

Step 1: Set the parameters for the summarization process. A 
key parameter is the Exit Condition (EC) that will be used 
to determine when to stop summarizing. More details about 
setting parameters are presented below.  

Step 2: Remove various categories of known 
implementation details such as accessing methods, 
constructors and any methods the user manually wishes to 
exclude from the result. 

Step 3: Compute the utilityhood metric (U) for the routines 
remaining after Step 2:  

• While EC is False, remove the routines invoked in 
the trace that have the highest remaining value of U. 

Step 4: Evaluate the result of Step 3, adjust the parameters 
and run the algorithm again if necessary, or manually 
manipulate the output (e.g. using a trace analysis tool).  

Step 5: Output the final result 

A.  Some details of Step 1: Setting the parameters 

Step 1 of the algorithm sets certain parameters that will 
guide the summarization process. The first of these is to 
determine an exit condition (EC) that will be used to stop 
the filtering process. There are several criteria that could be 
considered for this purpose. Perhaps the simplest one might 
be to compute the ratio of the size of the summary to the 
size of the initial trace. However, due to the various types of 
repetitions that exist in a trace, using a simple size ratio will 
often not be useful. For example, simple elimination of the 
large number of repeated calls in one loop may cut the trace 
to 10% of its size, without improving our ability to 
comprehend it very much.  

In [11], we introduced a set of practical metrics for 
measuring various properties of traces. One of these metrics 
is the number of comprehension units (Scu), which we 
defined as the number of distinct subtrees of the trace (i.e. a 
comprehension unit is a distinct subtree of the call tree 
representing a trace of routine calls). We have therefore 
found it useful to base the exit condition, EC, on 
comprehension units. In particular we can define a ratio R 
that compares the number of comprehension units contained 

in the summary to the number of comprehension units of the 
initial trace.  

More formally, let: 

• Scu(T) = Number of comprehension units of a trace T 

• Scu(S) = Number of comprehension units of the 
summary S extracted from the trace T 

Then we define this ratio as R = Scu(S)/Scu(T) 

Another parameter to set in Step 1 of the algorithm is the 
matching criteria used to compute Scu; choosing appropriate 
criteria allows one to vary the degree of generalization of 
the trace content. In other words, two sequences of calls that 
are not necessarily identical can be grouped together as 
instances of the same comprehension unit if they exhibit 
certain similarities. In this paper, the grouping we use is of 
the simplest kind: we ignore the number of contiguous 
repetitions when computing the number of comprehension 
units. A more discussion about other possible criteria can be 
found in [3]. 

B.  Explanation of the remaining steps 

Step 2 of the algorithm proceeds by removing any known 
implementation details from the source trace. Examples of 
implementation details were presented in the previous 
subsection and include accessing methods, methods that 
override the methods contained in the language library (e.g. 
Java.util), constructors, etc. 

The software engineers can, as one of the parameters set 
in step 1, manually specify a list of components to be 
considered implementation details; these will be removed at 
this step. 

We considered omitting Step 2, and letting Step 3 so all 
the summarization work is done automatically. However, 
we found in early trials that better results are obtained by 
incorporating Step 2 as described here. 

Step 3 takes the traces resulting from Step 2 and 
proceeds by iteratively removing the routines with the 
highest value of U (utilityhood) until the exit condition is 
satisfied.  

The application of the above steps is mainly automatic. 
However, there is a need to account for the following 
situations:  

• Situation 1: The resulting summary still contains too 
much information for the users. 

• Situation 2: The resulting summary is too abstract for 
the users to develop a sufficient understanding of the 
system behaviour. For example, the removal of a 
certain widely-used utility might cause the number of 
comprehension units to drop considerably below the 
designated threshold.  

 



If either of these situations occurs, the maintainer will 
find the summary to be uninformative, and will have to 
adjust the exit condition and re-run the algorithm (Step 4 of 
the algorithm). The maintainer might alternatively further 
process the result using a trace analysis tool. 

Step 5 is simply a presentation step where the final 
summary is turned into a visual representation such as a 
UML sequence diagram and given to the users as output.  

5. Case Study 
In this section, we present a case study in order to 

evaluate the effectiveness of the trace summarization 
approach by applying it to a trace generated from the 
execution of a Java-based system called Weka (ver. 3.0) 
[21]. Weka has 10 packages, 147 classes, 1642 public 
methods, and 95 KLOC. 

We do not only apply the algorithm, but also the manual 
steps involved in its use such as manipulating the results 
(i.e. Step 4). We then evaluate the overall approach by 
asking the developers of the system to provide feedback on 
the final results.  

5.1 Usage Scenario 
The software feature we selected to analyze is the Weka 

implementation of the C4.5 classification algorithm, which 
is used for inducing classification models, also called 
decision trees, from datasets [22]. Weka proceeds by 
building a decision tree from a set of training data that will 
be used to classify future samples. It uses the concept of 
information gain to determine the best possible way of 
building the tree. The information gain can be described as 
the effective decrease in entropy resulting from making a 
choice as to which attribute to use and at what level of the 
tree.  

Another important step Weka performs is pruning the 
decision tree. This is done by replacing a whole subtree by a 
leaf node to reduce the classification error rate. Weka 
supports various techniques that can be used to evaluate the 
learning results using the same dataset. In our usage 
scenario, we chose to apply the cross-validation technique, 
which is a procedure that involves splitting the training data 
into equally sized mutually exclusive subsets (called folds). 
Each one of the subsets is then used in turn as a testing set 
after all the other sets combined have been the training set 
on which a tree has been built.  

5.2 Process Description 
To perform trace summarization on runs of the Weka 

system, we performed the following activities: 

a) We instrumented the Weka source code, using our own 
instrumentation tool based on the BIT framework [9] to 
insert probes at the entry and exit points of each 

system’s non-private methods. Constructors are treated 
in the same way as regular methods.  

b) We generated a trace of method calls by exercising the 
target system according to the functionality under study 
(i.e. C4.5 algorithm): The trace was generated as the 
system was running, and was saved in a text file 
containing raw lines of events, where each line 
represents the full class name, method name, and an 
integer indicating the nesting level. For simplicity 
reasons, in the rest of this paper, we refer to the 
generated trace as The C45 Trace. 

c) We built the static call graph of the Weka system that is 
needed for our trace summarization algorithm: One of 
the most difficult aspects of this step is resolving 
polymorphic calls. There are several techniques to 
accomplish this task including Class Hierarchy 
Analysis (CHA) [2, 5], Rapid Type Analysis (RTA) [2], 
and Reaching-Type Analysis [18], which differ mainly 
in the way they estimate the run-time types of the 
receiver objects. In this case study, we used RTA for its 
simplicity, efficiency, and tool support [2].  

d) Finally, we applied the trace summarization algorithm 
described earlier to the C45 trace. The results are 
discussed in the next subsections. 

5.3 Quantitative Results 
In this section, we present the gain in terms of size 

achieved by filtering the C45 trace using the trace 
summarization algorithm. 

Step 1: Setting the parameters: 

The most important parameter we set is the exit 
condition, EC. We randomly chose a threshold R = 10% 
(future research needs to investigate adequate thresholds). 
That is, we stop the algorithm when the ratio of the number 
of comprehension units of the resulting trace to the number 
of comprehension units of the initial trace drops just below 
10%.  

We also specified the methods to be manually removed 
in Step 2. We specified that the following methods were to 
be removed prior to the automatic detection of utilities:  

• Methods found in the java.lang.Object class (usually 
overridden by user-defined classes) 

• Methods in the classes of the java.util package (e.g. 
methods of the Enumeration interface, etc) 

• Methods in a class called weka.core.Utils that contains 
general purpose methods such as grOrEq, etc. We were 
able to easily see that these are utilities from a quick 
scan of the Weka documentation. 

 

 



Step 2: Removing implementation details 

Step 2 of the algorithm deals with removing various 
categories of implementation details. The implementation 
details removed in this case study include methods of inner 
classes, accessing methods, constructors/finalizers, etc. A 
more complete list of implementation details and the 
rationale behind considered these components as low-level 
details are discussed in [14]. 

As shown in Table 2, The C45 trace, referred to it as T in 
the table, contains initially 97413 calls (S = 97413), 275 
comprehension units (Scu = 275), and invokes 181 distinct 
methods (Nm = 181).  

The removal of the above implementation details results 
in a trace Timpldetails whose size, S, is 31102 calls (i.e. 32% of 
the size of the initial trace). Its number of comprehension 
unit is 120 (44% of Scu of the initial trace) and the number 
of distinct methods is 95. 

Table 2. Quantitative results 

 T Timpldetails Tutilities

S 97413 31102 32% 3219 3% 
Scu 275 120 44% 67 24% 
Nm 181 95 52% 51 28% 

Step 3: Detecting utilities 

Step 3 aims to improve the results obtained in the 
previous step by detecting and removing utilities. For this 
purpose, the utilityhood metric was computed for the 
methods that are invoked in the C45 trace using the Weka 
static call graph. We proceeded by removing the routines 
that have high utilityhood value (the ones that are ranked 
first in the ranking table). After each iteration, we checked 
whether the exit condition, R = 10%, holds or not. This 
process continued until the algorithm hit a method called 
weka.j48.J48.buildClassifier.  

The removal of this method resulted in a trace that 
contains 156 calls (0.2% of the size of the initial trace), 20 
comprehension units (7% of the number of comprehension 
units of the initial trace), and 20 routines (11% of the 
number of routines of the initial trace). Note that this trace 
contains considerably fewer comprehension units than the 
threshold (7% compared to 10%). Based on that, we decided 
to reverse the removal of this method and stop this step at a 
higher EC threshold.  

The resulting trace is called Tutilities and it contains S = 
3219 calls (3%), Scu = 67 comprehension units (24%), and 
51 methods (28%) as shown in Table 2.  

 

 

 



 
Step 4: Further Manipulation of the Results 

Our initial objective was to have a summary that contains 
just below 10% of the total comprehension units of the 
initial trace. However, the algorithm in Step 3 overshot this, 
so as mentioned we backed up and stopped at 24% (i.e. we 
are in Situation 1 as described in Section 4). Therefore, we 
decided to further explore the content of the final trace, 
Tutilities, in order to make some further adjustments. This 
process was done using a trace exploration tool called SEAT 
(Software Exploration and Analysis Tool) [12] that we have 
developed to support fast analysis of large traces. 

Exploration using the tool showed that the method called 
buildTree generates three additional levels of the tree 
representation of the trace and most of the methods that 
appear in these levels have small fan-in (1 or 2) and small 
fan-out (1 or 2). The role of the buildTree method is to build 
the decision tree that is used by the C4.5 algorithm. At this 
point, we thought that the details of how the tree is built 
might be something that can be hidden and that it is 
sufficient for a summary to have an indication that a tree is 
being built. Therefore, we decided to remove the methods 
generated from the buildTree method from the summary. 
The whole process took no more than fifteen minutes and 
involved expanding and collapsing the tree along with 
displaying statistics about the content of the trace – these 
operations are efficiently supported by SEAT. Whether the 
content of the buildTree method should be kept in the 
summary or not is something that we will discuss in the next 
section in the context of evaluating the content of the 
summary. The resulting trace is called Tadjust and contains 
453 calls (0.5% of the initial size), 26 comprehension units 
(10% of the initial number of comprehension units), and 26 
methods (14% of the initial total of methods).  

Finally, the trace was converted into a UML sequence 
diagram (Figure 2) where the contiguous repetitions have 
been collapsed (some additional notations have been used to 
show repeated sequences such as the Loop and (*) 
constructs). The sequence diagram and the tree 
representation of the final trace were presented to the Weka 
software developers for evaluation.  

5.4 Questionnaire Based Evaluation 
 We designed a questionnaire that aims to evaluate 

various aspects of the extracted summary (in this paper, we 
only report on the main findings). The questionnaire was 
given to nine software engineers who have experience with 
using the Weka system: Either they were part of the Weka 
development team or they added new features to the system.  

Background of the Participants: 

We designed three questions to enable us classify our 
participants according to their expertise in the domain 

represented by Weka (i.e. machine learning algorithms) as 
well as their knowledge of the system structure. For each 
question, the participants selected from fixed values ranging 
between ‘Very poor’ (score of 1) and ‘Excellent’ (score of 
5). The questions are: 

Q1. My knowledge of the Weka system (i.e. classes, 
methods, packages, etc.) is: 

Q2. My knowledge of the domain represented by Weka 
(i.e. machine learning algorithms) is: 

Q3. My experience in software development is: 

Table 3 shows the answers of the participants (P1 to P9), 
which can be divided into three groups according to the 
knowledge they have of the Weka structure (Q1) as well as 
the knowledge they have of the domain (Q2). The first 
group consists of participants P1 and P2 and can be 
qualified as intermediate users since they have an average 
knowledge of the Weka internal structure (score of 3) 
although they have good knowledge of the domain (score of 
4). The second group consists of participants P3, P4, and P5 
and we refer to them as experienced users (they all scored 4 
out of 5 in both questions Q1 and Q2). Finally, the last 
group includes participants P6, P7, P8, and P9 and we call 
them experts since their knowledge of the internal structure 
of Weka as well as the domain is excellent (score of 5 for 
Q1 and Q2). These are also the users who contributed to the 
original development of Weka. 

In addition, all participants except P1 have good to 
excellent experience in software development. Presuming 
that they were also involved in maintaining software, their 
feedback will certainly help us evaluate the overall 
effectiveness of a trace summary in performing software 
maintenance tasks.  

Quality of the Summary: 

The objective of this category of questions is to assess 
whether the extracted summary captures the main 
interactions that implement the traced scenario.  

Question Q4 asked: 

Q4. How would you rank the quality of the summary with 
respect to whether it captures the main interactions 
of the traced scenario? 

The participants were asked to select from fixed values 
ranging between ‘Very poor’ (score of 1) and ‘Excellent’ 
(score of 5).  

Table 4 shows that intermediate and experienced 
participants all agree that the summary captures the most 
important interactions of the trace. Two experts added that it 
is actually an excellent representation of the main 
interactions. 

 



 

Table 3. Background information about the participants 
 

 Intermediate Experienced Experts  

 P1 P2 P3 P4 P5 P6 P7 P8 P9 Average 

Q1 (System) 3 3 4 4 4 5 5 5 5 4.2 

Q2 (Domain) 4 4 4 4 4 5 5 5 5 4.4 

Q3 (Experience) 3 4 4 4 4 4 4 5 5 4.1 

 
 
 
 
 
 
 
 
Participant P9 (an expert) commented that the overall 

summary is good but he would have preferred to see more 
details about way the decision tree is built and therefore 
ranked it as an average (score of 3) representation of the 
main events. These are the routines we removed manually 
using SEAT in order to reach a threshold of 10%. This 
confirms the fact that any tool that would support trace 
summarization will need to allow enough flexibility so as 
the users vary the amount of information displayed. 

Question Q5 asked: 

Q5. If you designed or had to design a sequence diagram 
(or any other behavioural model) for the traced 
feature while you were designing the Weka system, 
how similar do you think that your sequence diagram 
would be to the extracted summary? 

The participants were asked to select from fixed values 
ranging between ‘Completely different’ (score of 1) and 
‘Very similar’ (score of 5) 

Most participants including three experts answered that 
the sequence diagram they would have designed would most 
likely be similar (sometimes even very similar) to the 
summary extracted semi-automatically from the trace. 
However, participants P3 (experienced) and P9 (expert) 
commented that their design would have been slightly more 
concise than the summary. They mostly refereed to the fact 
that the summary lacks details about building the decision 
tree.  

Question Q6 asked: 

Q6. In your opinion, how effective can a summary of a 
trace be in software maintenance?  

The participants were asked to select from fixed values 
ranging between ‘Very ineffective’ (score of 1) and ‘Very 
effective’ (score of 5). 

All participants agreed that a trace summary can be 
effective in software maintenance. Many of them added that 
this is a very good way to understand what the system is 
doing when the documentation is out of date or simply 

inexistent. They also said that recovering the system 
behavioural design models can be made easier if trace 
summarization is applied. Indeed, design recovery has 
always been a challenging task, and when it is done it 
usually focuses on the system architecture. The techniques 
for recovering dynamic models are also needed just like in 
forward engineering where engineers focus on developing 
both static and dynamic views of the system. 

6. Related Work 
Although, there are many tools that manipulate execution 

traces of object oriented systems, they are either tuned to 
analyze performance problems [4] or they rely heavily on 
specific visualization techniques [3, 6, 8, 15, 19, 20, 22]. 

ISVis is a visualization tools that supports analysis of 
execution traces [6]. ISVis is based on the idea that large 
execution traces are made of recurring patterns and that 
visualizing these patterns is useful for reverse engineering. 
The execution trace is visualized using two kinds of 
diagrams: the information mural and message sequence 
charts. The two diagrams are connected and presented on 
one view called the scenario view. The information mural 
uses visualization techniques to create a miniature 
representation of the entire trace that can easily show 
repeated sequences of events. Message sequence charts are 
used to display the detailed content of the trace.  

Given a trace pattern, the user can search in the trace for 
an exact match, an interleaved match, a contained exact 
match (components in the scenario that contain the 
components in the pattern) and a contained interleaved 
match. The authors do not really motivate why these criteria 
are useful to understanding the trace.  

Richner and Ducasse present a tool, called Collaboration 
Browser that is used to extract collaboration patterns from 
traces of method calls [15]. A collaboration pattern consists 
of a repeated sequence of method calls. Additionally, 
Collaboration Browser provides a query mechanism that 
allows the user to search for interesting collaborations. In 
order to understand the main content of a trace, a user  needs  

 

 

 



Table 4. Evaluating the quality of the summary 

 Intermediate Experienced  Experts  
Questions  P1 P2 P3 P4 P5 P6 P7 P8 P9 Average 
Q4 (Quality) 4 4 4 4 4 4 5 5 3 4.1 

Q5 (Diagram) 4 5 3 4 4 4 4 5 3 4 

Q6 (Effectiveness) 4 4 5 5 5 4 4 5 4 4.4 
 

to perform several queries. Our approach does not heavily 
rely on the user’s intervention. 

Systä presents a reverse engineering environment based 
on dynamic analysis to extract state machines from traces of 
object-oriented systems [19]. Her approach is based on the 
use of SCED [7], a software engineering tool that permits 
representing execution traces in the form of scenario 
diagrams – Scenario diagrams are similar in semantics to 
UML sequence diagrams. SCED has also the ability to 
extract state machines from scenario diagrams. Systä deals 
with the size explosion problem the same way as the other 
tools presented so far do, which consist of detecting patterns 
of repeated sequences of events. However, Systä’s approach 
considers exact matches only which limit her approach to 
small execution traces only.  

DynaSee is another reverse engineering tool, developed 
to support the analysis of traces of procedure calls of 
procedural software systems [23]. Besides the ability to 
detect patterns of procedure calls, the author noticed that not 
all procedures are equally important to the software 
engineer. Procedures at high level of the call tree are closer 
to application concepts, and those at bottom are 
implementation concepts. However, he did not develop this 
concept and his analysis tool does not focus on utility 
removal in order to help software engineers identify 
important content.  

Amyot et al. suggest tagging the source code at particular 
places in order to generate a trace that can later be 
represented using a use case map [1]. This approach has the 
obvious drawback that it requires from the software 
engineers to know, in advance, where to insert the tags. It 
also necessitates the usage of static analysis tools, which is 
not the case in our approach. 

7. Conclusion and Future Work 
In this paper, we presented a technique for summarizing 

the content of large traces. One direct application of this 
concept is to enable top-down analysis of traces. Another 
application would be to recover the behavioural design 
models of the system under study. Our approach consists of 
suppressing implementation details from traces. We 
presented a metric that can measure the extent to which a 
routine can be considered as a utility.  

In addition, we presented a trace summarization 
algorithm that uses the utilityhood metric as its main 
mechanism. This reduces the size of the trace, using the 
number of comprehension units metric, to below some 
threshold. Our approach also assumes that the users will 
adjust the algorithm’s parameters and re-run the algorithm if 
they wish to try to improve the summary. Users are also 
expected to be able to use tools that would allow further 
manipulation of the results. 

One direction for future work would be to have the 
system automatically or semi-automatically suggest 
appropriate settings for the trace summarization algorithm 
based on the nature of the trace, as well as the current goals 
and experience of the maintainer. A key setting to 
investigate is the exit condition (i.e. when to stop the 
summarization process).  

There is also a need for fundamental research in several 
areas: For example, we need to fine tune the concept of 
utilities and algorithms for detecting them. We also need to 
investigate ways of generalizing the content of traces and 
therefore lead to more compact summaries. Finally, the 
technique presented in this paper needs to be integrated with 
existing trace analysis techniques.  
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