
Summarizing the Content of Large Traces to Facilitate the Understanding
of the Behaviour of a Software System

Abdelwahab Hamou-Lhadj and Timothy Lethbridge

SITE, University of Ottawa
800 King Edward Avenue
Ottawa, Ontario, Canada

{ahamou, tcl}@site.uottawa.ca

Abstract

In this paper, we present a semi-automatic approach for
summarizing the content of large execution traces. Similar
to text summarization, where abstracts can be extracted
from large documents, the aim of trace summarization is to
take an execution trace as input and return a summary of its
main content as output. The resulting summary can then be
converted into a UML sequence diagram and used by
software engineers to understand the main behavioural
aspects of the system. Our approach to trace summarization
is based on the removal of implementation details such as
utilities from execution traces. To achieve our goal, we have
developed a metric based on fan-in and fan-out to rank the
system components according to whether they implement
key system concepts or they are mere implementation
details. We applied our approach to a trace generated from
an object-oriented system called Weka that initially contains
97413 method calls. We succeeded to extract a summary
from this trace that contains 453 calls. According to the
developers of the Weka system, the resulting summary is an
adequate high-level representation of the main interactions
of the traced scenario.

Keywords: Reverse engineering; Dynamic analysis; Design
recovery; Program comprehension

1. Introduction
Since the outset of our research, our goal has been to find

ways to make it easier for software engineers to understand
a program’s behaviour by exploring traces. This necessitates
simplifying views of traces in various ways – in other
words, reducing their size and complexity while keeping as
much of their essence as possible.

Most existing trace analysis tools such as the ones
presented in [3, 4, 6, 8, 15, 19, 20, 23] rely a set of fine-
grained operations that software engineers can use to go
from a raw sequence of events to a more understandable
trace content. But due to the size and complexity of typical
traces, this bottom-up approach can be difficult to perform
and requires a considerable intervention of the users.

However, when asked to describe their experience with
using traces, many software engineers of QNX Software
Systems, the company that supports part of this research,
argued that they almost always want to be able to perform
top-down analysis of a trace by having the ability to look at
the big picture first and then dig into the details [10]. Many
research studies in program comprehension have shown that
an adequate understanding of the system artefacts
necessitates both strategies (i.e. bottom-up and top-down)
[16].

In this paper, we present the concept of trace
summarization and define it as the process of taking a trace
as input and returning a summary of its main content as
output. Most of the steps involved in this process are
performed automatically. However, we anticipate that
software engineers will need to further manipulate the
resulting summary by adjusting its content to their specific
needs. The result of this step will depend on the knowledge
they have of the functionality under study, the nature of the
function being traced, and the type of problem the trace is
being used to solve (debugging, understanding, etc.).

This paper is based on previous work (see [13]), where
we presented a technique for recovering high-level
behavioural design models from traces. The new
contributions of this paper consist of:

• The concept of trace summaries.

• An improved metric for measuring the extent to
which a component can be considered a utility.

• A trace summarization algorithm

• A case study to validate the summarization
technique.

The traces we focus on in this paper are the ones based
on routine calls. We use the term ‘routine’ to refer to any
routine, function, or procedure whether it is a method of a
class or not.

The remainder of this paper is organized as follows: In
the next section, we define what we mean by a trace
summary. In Section 3, we discuss the concepts of utilities
and implementation details. A trace summarization

algorithm is presented in Section 4. In Section 5, we present
a case study where we evaluate the effectiveness of our
approach. In Section 6, we discuss related work.

2. What is a Trace Summary?
In general, a summary represents the main points of a

document while removing the details. The term ‘summary’,
as used here is effectively synonymous with the term
‘abstract’, discussed below in the context of text
summarization.

Jones defines a summary of a text as “a derivative of a
source text condensed by selection and/or generalization on
important content” [17]. Similarly, we define a summary of
a trace as an abstract representation of the trace that results
from removing unnecessary details by both selection and
generalization.

The study conducted in QNX, which is described in more
detail in [10], shows that when trying to understand the
content of large traces, most software engineers will likely
want to hide low-level implementation details such as
utilities. Our approach for summarizing the main content of
traces is therefore based on the successive filtering of traces
by removing such low-level implementation details. In other
words, the trace content selected to be part of the summary
consist of the routines that implement high-level domain
concepts.

In the next section, we present a metric based on fan-in
and fan-out that will help us detect the utility components of
a poorly documented system. However, we draw a
distinction by considering utilities to be a subset of the
concept of implementation details. A definition of what we
mean by an implementation detail is presented in the end of
the next section. In Section 4, we will present a trace
summarization algorithm that uses the detection of utilities
as its main mechanism.

Content generalization, an alternative approach to
content selection, consists of generalization of specific
content; i.e. replacing it with more general abstract
information [17]. When applied to execution traces,
generalization can be performed in two ways:

The first approach to generalization involves assigning a
high-level description to selected sequences of events. For
example, many trace analysis tools provide the users with
the ability to manually select a sequence of calls and replace
it with a description expressed in a natural language.
However, this approach relies on user input so would not be
practical to automate.

A second approach to generalization relies on treating
similar sequences of events as if they were the same. This
approach can be automated by varying a similarity function
used to compare sequences of calls. Other possibilities

include treating all subtrees that differ by only a certain edit
distance as the same.

In the remainder of this paper, we will focus on content
selection, leaving content generalization for consideration as
another line of research.

3. The Concept of Utilities and Implementation
Details

We define a utility as: Any element of a program
designed for the convenience of the designer and
implementer and intended to be accessed from multiple
places within a certain scope of the program. The rationale
behind this definition is as follows: the more calls a method
has from different places (i.e. the more incoming edges in
the static call graph), then the more purposes it likely has,
and hence the more likely it is to be a utility. Conversely,
we would expect a utility routine to be relatively self-
contained (i.e. to have low coupling and high cohesion); if a
routine has many calls (outgoing edges in the static call
graph), this is evidence that it is less likely to be considered
a utility. Also, routines that make many calls may be more
needed in a trace summary to understand the system.

In [13], we presented a metric for measuring the extent to
which a particular routine can be considered a utility that is
based on the fan-in metric. In this paper, we improve this
metric by considering fan-out as well as fan-in. We
therefore suggest the following utilityhood metric:

Given a routine r and the following:

• N = The number of routines in the routine call graph

• Fanin(r) = The number of routines in the graph, other
than r, that call r.

• Fanout(r) = The number of routines in the graph,
other than r, that r calls.

We define the utilityhood metric of the routine r, U(r), as:

)(

)
1)(

(
)(

)(
NLog

rFanout

N
Log

N

rFanin
rU

+
×=

U(r) has 0 (not a utility) as its minimum and approaches 1
(most likely to be a utility) as its maximum.

Explanation:

First, we want to note that Fanin(r) and Fanout(r) both vary
from 0 to |N|-1 (i.e. self dependencies are ignored).

This formula can be split into two parts. The first part

N

rFanin)(
 simply reflects the fact that the routines with

large fan-in are the ones that are most likely to be utilities.

For example, if the routine is called from all other routines

of the system then its
N

rFanin)(
 will be close to 1 (it will

never reach 1 since self dependencies are ignored, i.e.,
Fanin(r) < N).

However, as discussed earlier, it is also important to
consider the number of routines that are called by a
particular routine. Therefore, we multiply the first part

(i.e.
N

rFanin)(
) by a coefficient that takes into account fan-

out, although with lower emphasis. We achieve this using

)
1)(

(
+rFanout

N
Log . We use 1)(+rFanout for

convenience to avoid situations where Fanout = 0.

If a routine r does not call any other routine of the system

then Fanout (r) = 0, hence)()
1)(

(NLog
rFanout

N
Log =

+
,

which would be dependent on the size of the system under
study. We divide this result by Log(N) to ensure that both
this expression and the entire formula vary from 0 to 1. In
the case of r, its utilityhood metric will be equal

to
N

rFanin)(
.

On the other hand, a routine that has very large fan-out

will result in)
1)(

(
+rFanout

N
Log that tends to zero

cancelling the effect of fan-in. This is a routine that should
not be considered as a utility.

Figure 1. Example of a routine call graph

The result of applying the utilityhood metric to the static
call graph of Figure 1 is shown in Table 1 (in this table, the
base of the logarithm is 2). This table is sorted according to
the descending order of U. In this example, we can see that
the routine r2 is a candidate utility routine since it is called
by all other routines and does not call any other routine (its
U value is the highest).

Table 1. Utilityhood metric for the routine of Figure 1.

Routines Fanin Fanout U
r2 6 0 0.86
r5 3 1 0.27
r6 2 2 0.12
r3 1 2 0.06
r7 1 2 0.06
r4 1 4 0.02
r1 0 3 0.00

However, it is important to use a static call graph rather
than a dynamic call graph generated from the trace itself (or
a set of traces). The rationale is that the if we were to use the
dynamic call graph, we may find many cases where a
routine by chance has only one call to it (or just a few) and
hence would not be considered a utility merely because the
scenario that generated the graph did not result in calls from
any other places.

A tool using the utilityhood metric would need to select a
threshold above which to consider routines as utilities, and
therefore to suppress them from the trace. The exact
threshold will vary depending on the context; for example,
if there is a strong need to compact the trace further, then a
higher threshold can be picked. Alternatively, if the trace
has already been compacted too far, and the software
engineer finds that he or she would like to see more detail in
order to understand it, then the threshold can be reduced.

We want to note that according to the above definition of
utilities, not all implementation details will be considered
utilities. Many routines that implement details in algorithms
might be designed to be called from one specific place.
Later on, when we examine the compacting of traces by the
removal of utilities, it may be necessary to consider the
removal of other implementation details as well.

We define an implementation detail as: Any element of a
program whose presence could be suppressed without
reducing the overall comprehensibility of the design of a
particular feature, component or algorithm.

This above definition is, of course, dependent on the
design component or algorithm being considered, which is
one of the reasons why the software engineer needs to be
given some control over the parameters of our algorithm,
such as the threshold mentioned above.

Utilities are clearly one kind of implementation details.
Other examples of implementation details include
constructors/destructors, accessing methods, etc. These
elements are used simply to support the implementation of
the system by performing functions that need to be
performed in any system, rather than to implement the
operations distinct to this particular system. A more detailed

discussion about the types of implementation details found
in an object-oriented system can be found in [14].

4. Trace Summarization Algorithm
In this section, we present the steps of the trace

summarization algorithm. The algorithm is deliberately
underspecified, since further research is needed to determine
the best settings of certain parameters (see Step 1 below)
and how to categorize and detect various other kinds of
implementation details in addition to utilities (Step 2). The
following are the steps of the algorithm:

Step 1: Set the parameters for the summarization process. A
key parameter is the Exit Condition (EC) that will be used
to determine when to stop summarizing. More details about
setting parameters are presented below.

Step 2: Remove various categories of known
implementation details such as accessing methods,
constructors and any methods the user manually wishes to
exclude from the result.

Step 3: Compute the utilityhood metric (U) for the routines
remaining after Step 2:

• While EC is False, remove the routines invoked in
the trace that have the highest remaining value of U.

Step 4: Evaluate the result of Step 3, adjust the parameters
and run the algorithm again if necessary, or manually
manipulate the output (e.g. using a trace analysis tool).

Step 5: Output the final result

A. Some details of Step 1: Setting the parameters

Step 1 of the algorithm sets certain parameters that will
guide the summarization process. The first of these is to
determine an exit condition (EC) that will be used to stop
the filtering process. There are several criteria that could be
considered for this purpose. Perhaps the simplest one might
be to compute the ratio of the size of the summary to the
size of the initial trace. However, due to the various types of
repetitions that exist in a trace, using a simple size ratio will
often not be useful. For example, simple elimination of the
large number of repeated calls in one loop may cut the trace
to 10% of its size, without improving our ability to
comprehend it very much.

In [11], we introduced a set of practical metrics for
measuring various properties of traces. One of these metrics
is the number of comprehension units (Scu), which we
defined as the number of distinct subtrees of the trace (i.e. a
comprehension unit is a distinct subtree of the call tree
representing a trace of routine calls). We have therefore
found it useful to base the exit condition, EC, on
comprehension units. In particular we can define a ratio R
that compares the number of comprehension units contained

in the summary to the number of comprehension units of the
initial trace.

More formally, let:

• Scu(T) = Number of comprehension units of a trace T

• Scu(S) = Number of comprehension units of the
summary S extracted from the trace T

Then we define this ratio as R = Scu(S)/Scu(T)

Another parameter to set in Step 1 of the algorithm is the
matching criteria used to compute Scu; choosing appropriate
criteria allows one to vary the degree of generalization of
the trace content. In other words, two sequences of calls that
are not necessarily identical can be grouped together as
instances of the same comprehension unit if they exhibit
certain similarities. In this paper, the grouping we use is of
the simplest kind: we ignore the number of contiguous
repetitions when computing the number of comprehension
units. A more discussion about other possible criteria can be
found in [3].

B. Explanation of the remaining steps

Step 2 of the algorithm proceeds by removing any known
implementation details from the source trace. Examples of
implementation details were presented in the previous
subsection and include accessing methods, methods that
override the methods contained in the language library (e.g.
Java.util), constructors, etc.

The software engineers can, as one of the parameters set
in step 1, manually specify a list of components to be
considered implementation details; these will be removed at
this step.

We considered omitting Step 2, and letting Step 3 so all
the summarization work is done automatically. However,
we found in early trials that better results are obtained by
incorporating Step 2 as described here.

Step 3 takes the traces resulting from Step 2 and
proceeds by iteratively removing the routines with the
highest value of U (utilityhood) until the exit condition is
satisfied.

The application of the above steps is mainly automatic.
However, there is a need to account for the following
situations:

• Situation 1: The resulting summary still contains too
much information for the users.

• Situation 2: The resulting summary is too abstract for
the users to develop a sufficient understanding of the
system behaviour. For example, the removal of a
certain widely-used utility might cause the number of
comprehension units to drop considerably below the
designated threshold.

If either of these situations occurs, the maintainer will
find the summary to be uninformative, and will have to
adjust the exit condition and re-run the algorithm (Step 4 of
the algorithm). The maintainer might alternatively further
process the result using a trace analysis tool.

Step 5 is simply a presentation step where the final
summary is turned into a visual representation such as a
UML sequence diagram and given to the users as output.

5. Case Study
In this section, we present a case study in order to

evaluate the effectiveness of the trace summarization
approach by applying it to a trace generated from the
execution of a Java-based system called Weka (ver. 3.0)
[21]. Weka has 10 packages, 147 classes, 1642 public
methods, and 95 KLOC.

We do not only apply the algorithm, but also the manual
steps involved in its use such as manipulating the results
(i.e. Step 4). We then evaluate the overall approach by
asking the developers of the system to provide feedback on
the final results.

5.1 Usage Scenario
The software feature we selected to analyze is the Weka

implementation of the C4.5 classification algorithm, which
is used for inducing classification models, also called
decision trees, from datasets [22]. Weka proceeds by
building a decision tree from a set of training data that will
be used to classify future samples. It uses the concept of
information gain to determine the best possible way of
building the tree. The information gain can be described as
the effective decrease in entropy resulting from making a
choice as to which attribute to use and at what level of the
tree.

Another important step Weka performs is pruning the
decision tree. This is done by replacing a whole subtree by a
leaf node to reduce the classification error rate. Weka
supports various techniques that can be used to evaluate the
learning results using the same dataset. In our usage
scenario, we chose to apply the cross-validation technique,
which is a procedure that involves splitting the training data
into equally sized mutually exclusive subsets (called folds).
Each one of the subsets is then used in turn as a testing set
after all the other sets combined have been the training set
on which a tree has been built.

5.2 Process Description
To perform trace summarization on runs of the Weka

system, we performed the following activities:

a) We instrumented the Weka source code, using our own
instrumentation tool based on the BIT framework [9] to
insert probes at the entry and exit points of each

system’s non-private methods. Constructors are treated
in the same way as regular methods.

b) We generated a trace of method calls by exercising the
target system according to the functionality under study
(i.e. C4.5 algorithm): The trace was generated as the
system was running, and was saved in a text file
containing raw lines of events, where each line
represents the full class name, method name, and an
integer indicating the nesting level. For simplicity
reasons, in the rest of this paper, we refer to the
generated trace as The C45 Trace.

c) We built the static call graph of the Weka system that is
needed for our trace summarization algorithm: One of
the most difficult aspects of this step is resolving
polymorphic calls. There are several techniques to
accomplish this task including Class Hierarchy
Analysis (CHA) [2, 5], Rapid Type Analysis (RTA) [2],
and Reaching-Type Analysis [18], which differ mainly
in the way they estimate the run-time types of the
receiver objects. In this case study, we used RTA for its
simplicity, efficiency, and tool support [2].

d) Finally, we applied the trace summarization algorithm
described earlier to the C45 trace. The results are
discussed in the next subsections.

5.3 Quantitative Results
In this section, we present the gain in terms of size

achieved by filtering the C45 trace using the trace
summarization algorithm.

Step 1: Setting the parameters:

The most important parameter we set is the exit
condition, EC. We randomly chose a threshold R = 10%
(future research needs to investigate adequate thresholds).
That is, we stop the algorithm when the ratio of the number
of comprehension units of the resulting trace to the number
of comprehension units of the initial trace drops just below
10%.

We also specified the methods to be manually removed
in Step 2. We specified that the following methods were to
be removed prior to the automatic detection of utilities:

• Methods found in the java.lang.Object class (usually
overridden by user-defined classes)

• Methods in the classes of the java.util package (e.g.
methods of the Enumeration interface, etc)

• Methods in a class called weka.core.Utils that contains
general purpose methods such as grOrEq, etc. We were
able to easily see that these are utilities from a quick
scan of the Weka documentation.

Step 2: Removing implementation details

Step 2 of the algorithm deals with removing various
categories of implementation details. The implementation
details removed in this case study include methods of inner
classes, accessing methods, constructors/finalizers, etc. A
more complete list of implementation details and the
rationale behind considered these components as low-level
details are discussed in [14].

As shown in Table 2, The C45 trace, referred to it as T in
the table, contains initially 97413 calls (S = 97413), 275
comprehension units (Scu = 275), and invokes 181 distinct
methods (Nm = 181).

The removal of the above implementation details results
in a trace Timpldetails whose size, S, is 31102 calls (i.e. 32% of
the size of the initial trace). Its number of comprehension
unit is 120 (44% of Scu of the initial trace) and the number
of distinct methods is 95.

Table 2. Quantitative results

 T Timpldetails Tutilities

S 97413 31102 32% 3219 3%
Scu 275 120 44% 67 24%
Nm 181 95 52% 51 28%

Step 3: Detecting utilities

Step 3 aims to improve the results obtained in the
previous step by detecting and removing utilities. For this
purpose, the utilityhood metric was computed for the
methods that are invoked in the C45 trace using the Weka
static call graph. We proceeded by removing the routines
that have high utilityhood value (the ones that are ranked
first in the ranking table). After each iteration, we checked
whether the exit condition, R = 10%, holds or not. This
process continued until the algorithm hit a method called
weka.j48.J48.buildClassifier.

The removal of this method resulted in a trace that
contains 156 calls (0.2% of the size of the initial trace), 20
comprehension units (7% of the number of comprehension
units of the initial trace), and 20 routines (11% of the
number of routines of the initial trace). Note that this trace
contains considerably fewer comprehension units than the
threshold (7% compared to 10%). Based on that, we decided
to reverse the removal of this method and stop this step at a
higher EC threshold.

The resulting trace is called Tutilities and it contains S =
3219 calls (3%), Scu = 67 comprehension units (24%), and
51 methods (28%) as shown in Table 2.

Step 4: Further Manipulation of the Results

Our initial objective was to have a summary that contains
just below 10% of the total comprehension units of the
initial trace. However, the algorithm in Step 3 overshot this,
so as mentioned we backed up and stopped at 24% (i.e. we
are in Situation 1 as described in Section 4). Therefore, we
decided to further explore the content of the final trace,
Tutilities, in order to make some further adjustments. This
process was done using a trace exploration tool called SEAT
(Software Exploration and Analysis Tool) [12] that we have
developed to support fast analysis of large traces.

Exploration using the tool showed that the method called
buildTree generates three additional levels of the tree
representation of the trace and most of the methods that
appear in these levels have small fan-in (1 or 2) and small
fan-out (1 or 2). The role of the buildTree method is to build
the decision tree that is used by the C4.5 algorithm. At this
point, we thought that the details of how the tree is built
might be something that can be hidden and that it is
sufficient for a summary to have an indication that a tree is
being built. Therefore, we decided to remove the methods
generated from the buildTree method from the summary.
The whole process took no more than fifteen minutes and
involved expanding and collapsing the tree along with
displaying statistics about the content of the trace – these
operations are efficiently supported by SEAT. Whether the
content of the buildTree method should be kept in the
summary or not is something that we will discuss in the next
section in the context of evaluating the content of the
summary. The resulting trace is called Tadjust and contains
453 calls (0.5% of the initial size), 26 comprehension units
(10% of the initial number of comprehension units), and 26
methods (14% of the initial total of methods).

Finally, the trace was converted into a UML sequence
diagram (Figure 2) where the contiguous repetitions have
been collapsed (some additional notations have been used to
show repeated sequences such as the Loop and (*)
constructs). The sequence diagram and the tree
representation of the final trace were presented to the Weka
software developers for evaluation.

5.4 Questionnaire Based Evaluation
 We designed a questionnaire that aims to evaluate

various aspects of the extracted summary (in this paper, we
only report on the main findings). The questionnaire was
given to nine software engineers who have experience with
using the Weka system: Either they were part of the Weka
development team or they added new features to the system.

Background of the Participants:

We designed three questions to enable us classify our
participants according to their expertise in the domain

represented by Weka (i.e. machine learning algorithms) as
well as their knowledge of the system structure. For each
question, the participants selected from fixed values ranging
between ‘Very poor’ (score of 1) and ‘Excellent’ (score of
5). The questions are:

Q1. My knowledge of the Weka system (i.e. classes,
methods, packages, etc.) is:

Q2. My knowledge of the domain represented by Weka
(i.e. machine learning algorithms) is:

Q3. My experience in software development is:

Table 3 shows the answers of the participants (P1 to P9),
which can be divided into three groups according to the
knowledge they have of the Weka structure (Q1) as well as
the knowledge they have of the domain (Q2). The first
group consists of participants P1 and P2 and can be
qualified as intermediate users since they have an average
knowledge of the Weka internal structure (score of 3)
although they have good knowledge of the domain (score of
4). The second group consists of participants P3, P4, and P5
and we refer to them as experienced users (they all scored 4
out of 5 in both questions Q1 and Q2). Finally, the last
group includes participants P6, P7, P8, and P9 and we call
them experts since their knowledge of the internal structure
of Weka as well as the domain is excellent (score of 5 for
Q1 and Q2). These are also the users who contributed to the
original development of Weka.

In addition, all participants except P1 have good to
excellent experience in software development. Presuming
that they were also involved in maintaining software, their
feedback will certainly help us evaluate the overall
effectiveness of a trace summary in performing software
maintenance tasks.

Quality of the Summary:

The objective of this category of questions is to assess
whether the extracted summary captures the main
interactions that implement the traced scenario.

Question Q4 asked:

Q4. How would you rank the quality of the summary with
respect to whether it captures the main interactions
of the traced scenario?

The participants were asked to select from fixed values
ranging between ‘Very poor’ (score of 1) and ‘Excellent’
(score of 5).

Table 4 shows that intermediate and experienced
participants all agree that the summary captures the most
important interactions of the trace. Two experts added that it
is actually an excellent representation of the main
interactions.

Table 3. Background information about the participants

 Intermediate Experienced Experts

 P1 P2 P3 P4 P5 P6 P7 P8 P9 Average

Q1 (System) 3 3 4 4 4 5 5 5 5 4.2

Q2 (Domain) 4 4 4 4 4 5 5 5 5 4.4

Q3 (Experience) 3 4 4 4 4 4 4 5 5 4.1

Participant P9 (an expert) commented that the overall

summary is good but he would have preferred to see more
details about way the decision tree is built and therefore
ranked it as an average (score of 3) representation of the
main events. These are the routines we removed manually
using SEAT in order to reach a threshold of 10%. This
confirms the fact that any tool that would support trace
summarization will need to allow enough flexibility so as
the users vary the amount of information displayed.

Question Q5 asked:

Q5. If you designed or had to design a sequence diagram
(or any other behavioural model) for the traced
feature while you were designing the Weka system,
how similar do you think that your sequence diagram
would be to the extracted summary?

The participants were asked to select from fixed values
ranging between ‘Completely different’ (score of 1) and
‘Very similar’ (score of 5)

Most participants including three experts answered that
the sequence diagram they would have designed would most
likely be similar (sometimes even very similar) to the
summary extracted semi-automatically from the trace.
However, participants P3 (experienced) and P9 (expert)
commented that their design would have been slightly more
concise than the summary. They mostly refereed to the fact
that the summary lacks details about building the decision
tree.

Question Q6 asked:

Q6. In your opinion, how effective can a summary of a
trace be in software maintenance?

The participants were asked to select from fixed values
ranging between ‘Very ineffective’ (score of 1) and ‘Very
effective’ (score of 5).

All participants agreed that a trace summary can be
effective in software maintenance. Many of them added that
this is a very good way to understand what the system is
doing when the documentation is out of date or simply

inexistent. They also said that recovering the system
behavioural design models can be made easier if trace
summarization is applied. Indeed, design recovery has
always been a challenging task, and when it is done it
usually focuses on the system architecture. The techniques
for recovering dynamic models are also needed just like in
forward engineering where engineers focus on developing
both static and dynamic views of the system.

6. Related Work
Although, there are many tools that manipulate execution

traces of object oriented systems, they are either tuned to
analyze performance problems [4] or they rely heavily on
specific visualization techniques [3, 6, 8, 15, 19, 20, 22].

ISVis is a visualization tools that supports analysis of
execution traces [6]. ISVis is based on the idea that large
execution traces are made of recurring patterns and that
visualizing these patterns is useful for reverse engineering.
The execution trace is visualized using two kinds of
diagrams: the information mural and message sequence
charts. The two diagrams are connected and presented on
one view called the scenario view. The information mural
uses visualization techniques to create a miniature
representation of the entire trace that can easily show
repeated sequences of events. Message sequence charts are
used to display the detailed content of the trace.

Given a trace pattern, the user can search in the trace for
an exact match, an interleaved match, a contained exact
match (components in the scenario that contain the
components in the pattern) and a contained interleaved
match. The authors do not really motivate why these criteria
are useful to understanding the trace.

Richner and Ducasse present a tool, called Collaboration
Browser that is used to extract collaboration patterns from
traces of method calls [15]. A collaboration pattern consists
of a repeated sequence of method calls. Additionally,
Collaboration Browser provides a query mechanism that
allows the user to search for interesting collaborations. In
order to understand the main content of a trace, a user needs

Table 4. Evaluating the quality of the summary

 Intermediate Experienced Experts
Questions P1 P2 P3 P4 P5 P6 P7 P8 P9 Average
Q4 (Quality) 4 4 4 4 4 4 5 5 3 4.1

Q5 (Diagram) 4 5 3 4 4 4 4 5 3 4

Q6 (Effectiveness) 4 4 5 5 5 4 4 5 4 4.4

to perform several queries. Our approach does not heavily
rely on the user’s intervention.

Systä presents a reverse engineering environment based
on dynamic analysis to extract state machines from traces of
object-oriented systems [19]. Her approach is based on the
use of SCED [7], a software engineering tool that permits
representing execution traces in the form of scenario
diagrams – Scenario diagrams are similar in semantics to
UML sequence diagrams. SCED has also the ability to
extract state machines from scenario diagrams. Systä deals
with the size explosion problem the same way as the other
tools presented so far do, which consist of detecting patterns
of repeated sequences of events. However, Systä’s approach
considers exact matches only which limit her approach to
small execution traces only.

DynaSee is another reverse engineering tool, developed
to support the analysis of traces of procedure calls of
procedural software systems [23]. Besides the ability to
detect patterns of procedure calls, the author noticed that not
all procedures are equally important to the software
engineer. Procedures at high level of the call tree are closer
to application concepts, and those at bottom are
implementation concepts. However, he did not develop this
concept and his analysis tool does not focus on utility
removal in order to help software engineers identify
important content.

Amyot et al. suggest tagging the source code at particular
places in order to generate a trace that can later be
represented using a use case map [1]. This approach has the
obvious drawback that it requires from the software
engineers to know, in advance, where to insert the tags. It
also necessitates the usage of static analysis tools, which is
not the case in our approach.

7. Conclusion and Future Work
In this paper, we presented a technique for summarizing

the content of large traces. One direct application of this
concept is to enable top-down analysis of traces. Another
application would be to recover the behavioural design
models of the system under study. Our approach consists of
suppressing implementation details from traces. We
presented a metric that can measure the extent to which a
routine can be considered as a utility.

In addition, we presented a trace summarization
algorithm that uses the utilityhood metric as its main
mechanism. This reduces the size of the trace, using the
number of comprehension units metric, to below some
threshold. Our approach also assumes that the users will
adjust the algorithm’s parameters and re-run the algorithm if
they wish to try to improve the summary. Users are also
expected to be able to use tools that would allow further
manipulation of the results.

One direction for future work would be to have the
system automatically or semi-automatically suggest
appropriate settings for the trace summarization algorithm
based on the nature of the trace, as well as the current goals
and experience of the maintainer. A key setting to
investigate is the exit condition (i.e. when to stop the
summarization process).

There is also a need for fundamental research in several
areas: For example, we need to fine tune the concept of
utilities and algorithms for detecting them. We also need to
investigate ways of generalizing the content of traces and
therefore lead to more compact summaries. Finally, the
technique presented in this paper needs to be integrated with
existing trace analysis techniques.

Acknowledgements
We would like to thank the software developers of the

Weka system for creating and maintaining this great tool
and making it open, and for evaluating the results presented
in this paper.

References
[1] D. Amyot, G. Mussbacher, and N. Mansurov,

“Understanding Existing Software with Use Case Map
Scenarios”, In Proc. of the 3rd SDL and MSC
Workshop, LNCS 2599, pp. 124-140, 2002

[2] D. F. Bacon and P. F. Sweeney, “Fast static analysis of
C++ Virtual function calls”, In Proc. of the 10th
Conference on Object-Oriented Programming Systems,
Languages, and Applications, ACM Press, pp. 324-341,
1996

[3] W. De Pauw, D. Lorenz, J. Vlissides, M. Wegman,
“Execution Patterns in Object-Oriented Visualization”,

In Proc. of the 4th USENIX Conference on Object-
Oriented Technologies and Systems, pp. 219-234, 1998

[4] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J.
M. Vlissides, J. Yang, “Visualizing the Execution of
Java programs”, In Proc. of the International
Seminar on Software Visualization, LNCS 2269,
Springer-Verlag, pp. 151-162, 2002

[5] J. Dean, D. Grove, and Chambers, “Optimization of
Object-Oriented Programs using Static Class
Hierarchy Analysis”, In Proc. of the 9th European
Conference on Object-Oriented Programming,
LNCS 952, Springer-Verlag, pp. 77-101, 1995

[6] D. Jerding, S. Rugaber, "Using Visualisation for
Architecture Localization and Extraction", In Proc.
of the 4th Working Conference on Reverse
Engineering, IEEE Computer Society, pp. 56-65,
1997

[7] K. Koskimies, T. Männistö, T. Systä, and J. Tuomi,
“SCED: A Tool for Dynamic Modeling of Object
Systems”, University of Tampere, Dept. of Computer
Science, Report A-1996-4, 1996

[8] D. B. Lange., Y. Nakamura, “Object-Oriented
Program Tracing and Visualization”, IEEE
Computer, Volume 30, Issue 5, pages 63-70, 1997

[9] H. B. Lee, B. G. Zorn, “BIT: A tool for
Instrumenting Java Bytecodes”. USENIX Sympo-
sium on Internet Technologies and Systems, 1997, pp.
73-82.

[10] A. Hamou-Lhadj, T. C. Lethbridge, “Reasoning
about the Concept of Utilities”, In Proc. of the 1st
ECOOP Workshop on Practical Problems of
Programming in the Large, Oslo, Norway, June 2004

[11] A. Hamou-Lhadj and T. Lethbridge, “Measuring
Various Properties of Execution Traces to Help Build
Better Trace Analysis Tools”, In Proc. of the 10th
International Conference on Engineering of Complex
Computer Systems, IEEE Computer Society, pages
559–568, 2005

[12] A. Hamou-Lhadj, T. Lethbridge, and L. Fu,
“Challenges and Requirements for an Effective Trace
Exploration Tool”, In Proc. of IWPC, pp. 70-78,
2004

[13] A. Hamou-Lhadj, E. Braun, D. Amyot, and T.
Lethbridge, “Recovering Behavioral Design Models
from Execution Traces”, In Proceedings of the 9th
European Conference on Software Maintenance and
Reengineering, IEEE Computer Society, pp. 112-
121, 2005

[14] A. Hamou-Lhadj and T. Lethbridge, “Techniques for
Reducing the Complexity of Object-Oriented
Execution Traces”, In Proc. of VISSOFT, 2003, pp.
35-40

[15] Richner T. and Ducasse S., “Using Dynamic
Information for the Iterative Recovery of
Collaborations and Roles”, In Proc. of the 18th
International Conference on Software Maintenance,
IEEE Computer Society, pages 34-43, 2002

[16] M. A. Storey, K. Wong, and H. A. Muller, “How do
Program Understanding Tools Affect how
Programmers Understand Programs?”, In Proc. of the
4th Working Conference on Reverse Engineering,
IEEE Computer Society, pages 183-207, 1997

[17] K. Sparck Jones, “Automatic summarising: factors
and directions”, In Advances in Automatic Text
Summarization, MIT Press, pp. 1-14, 1998

[18] V. Sundaresan, L. Hendren, C. Razafimahefa, R.
Vallée-Rai, P. Lam, E. Gagnon, and C. Godin,
“Practical virtual method call resolution for Java”, In
Proc. of OOPSLA, pp. 264-280, 2000

[19] T. Systä, “Understanding the Behaviour of Java
Programs”, In Proc. of the 7th Working Conference
on Reverse Engineering, IEEE Computer Society,
pages 214-223, 2000

[20] R. J. Walker, G. C. Murphy, B. Freeman-Benson, D.
Swanson, and J. Isaak, “Visualizing Dynamic
Software System Information through High-level
Models”, In Proc. of the Conference on Object-
Oriented Programming, Systems, Languages, and
Applications, ACM Press, pages 271-283, 1998

[21] WEKA: http://www.cs.waikato.ac.nz/ml/weka/

[22] I. H. Witten, E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations, Morgan Kaufmann, 1999

[23] I. Zayour, Reverse Engineering: A Cognitive
Approach, a Case Study and a Tool. Ph.D.
dissertation, University of Ottawa,
http://www.site.uottawa.ca/~tcl/gradtheses/, 2002

http://portal.acm.org/results.cfm?query=author%3AP291148&querydisp=author%3AVijay%20Sundaresan&coll=GUIDE&dl=GUIDE&CFID=43137085&CFTOKEN=74793664
http://portal.acm.org/results.cfm?query=author%3AP169484&querydisp=author%3ALaurie%20Hendren&coll=GUIDE&dl=GUIDE&CFID=43137085&CFTOKEN=74793664
http://portal.acm.org/results.cfm?query=author%3AP46443&querydisp=author%3AChrislain%20Razafimahefa&coll=GUIDE&dl=GUIDE&CFID=43137085&CFTOKEN=74793664
http://portal.acm.org/results.cfm?query=author%3AP237929&querydisp=author%3ARaja%20Vall%26%23233%3Be%2DRai&coll=GUIDE&dl=GUIDE&CFID=43137085&CFTOKEN=74793664
http://portal.acm.org/results.cfm?query=author%3AP237929&querydisp=author%3ARaja%20Vall%26%23233%3Be%2DRai&coll=GUIDE&dl=GUIDE&CFID=43137085&CFTOKEN=74793664
http://portal.acm.org/results.cfm?query=author%3AP220444&querydisp=author%3APatrick%20Lam&coll=GUIDE&dl=GUIDE&CFID=43137085&CFTOKEN=74793664
http://portal.acm.org/results.cfm?query=author%3AP79420&querydisp=author%3AEtienne%20Gagnon&coll=GUIDE&dl=GUIDE&CFID=43137085&CFTOKEN=74793664
http://portal.acm.org/results.cfm?query=author%3AP43451&querydisp=author%3ACharles%20Godin&coll=GUIDE&dl=GUIDE&CFID=43137085&CFTOKEN=74793664
http://www.cs.waikato.ac.nz/ml/weka/
http://www.site.uottawa.ca/~tcl/gradtheses/

