
University of Isfahan

Faculty of Computer Engineering

Department of Software Engineering

PhD Thesis

Techniques to Compact Model Execution Traces in Model
Driven Approach

Supervisor:
Dr. Bahman Zamani

Advisor:
Prof. Abdelwahab Hamou-Lhadj

By:
Fazilat Hojaji

July 2019

Techniques to Compact Model Execution Traces in Model Driven Approach

A Thesis

by

Fazilat Hojaji

Submitted to the Office of Graduate and Studies of
University of Isfahan

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN SOFTWARE ENGINEERING

Committee Members, Dr. Kamran Zamanifar
Dr. Shekofeh Kolahdooz Rahimi

Head of Department, Dr. Behroz Tork Ladani

July 2019

Faculty of Computer Engineering

Copyright 2019 Fazilat Hojaji

ABSTRACT

Model-Driven Engineering (MDE) is a development paradigm that aims at coping with the

complexity of systems by separating concerns using models. A model is a representation of a

particular aspect of a system, and defined using a Domain-Specific Modeling Language (DSML). A

subclass of DSMLs aim at supporting the execution of models, namely executable Domain-Specific

Modeling Languages (xDSMLs). An xDSML includes execution semantics that manipulate the

concepts of the considered domain. To ensure that an executable model is correct with regard to its

intended behavior, dynamic Verification and Validation (V&V) techniques are used to verify the

behavior of software systems early in the design process. Yet, existing V&V techniques mainly rely

on execution traces to model and analyze the behavior of executable models. An execution trace is

a sequence containing all the relevant information about an execution over time. Traces, however,

tend to be overwhelmingly large, making it difficult to analyze the recorded behavior. There exist

trace metamodels to represent execution traces, but most of them suffer from scalability problems.

Furthermore, existing model execution tracing approaches rely on their own custom trace formats,

hindering interoperability and sharing of data among various trace analysis tools. The goal of this

thesis is to fill this gap and provide a common trace exchange format for traces, designing scalable

trace representations that enables the construction and manipulation of execution traces, obtained

from executable models.

The first contribution of this thesis comprises a systematic mapping study on existing ap-

proaches for tracing executable models. With this study we aim at identifying and classifying

the existing approaches, thereby assessing the state of the art in this area, as well as pointing to

promising directions for further research in this area.

The second contribution consists in a generic compact trace representation format called Com-

pact Trace Metamodel (CTM) that enables the construction and manipulation of execution traces,

obtained from executable models. Compared to existing trace metamodels, the results show signif-

1

icant reduction around %59 in memory and %95 disk consumption. Also, the performance over-

head required to the CTM trace construction is small enough around %10 that makes it practically

applicable. Moreover, CTM offers a common structure, which allows interoperability between

existing trace analysis tools.

ii

Dedication

To my parents for their love, endless support and encourage-
ment.

iii

Acknowledgement

This work would not have been possible without the support and encouragement of the others.

I am extremely indebted to my supervisor, Dr. Bahman Zamani, for his teaching, supervision,

and patience during doing this thesis. I could not have imagined having a better mentor for my

Ph.D study.

I would like to express my sincere gratitude to my advisor Prof. Abdelwahab Hamou-Lhadj,

the associate professor in the Department of Electrical and Computer Engineering at Concordia

University of Montreal, for the continuous support of my PhD study and research.

Besides, I wish to thank Dr. Tanja Mayerhofer and Dr.Erwan Bousse, the members of Busi-

ness Informatics Group at the Vienna University of Technology, for their continued support, en-

couragement, and insightful comments during my sabbatical leave and after that.

I would like to thank my family: my parents for giving birth to me at the first place, and

supporting me spiritually throughout my life.

I would like thank my lab mates in our MDSE Research Group for their continued collabora-

tion and support.

Last but not least, deepest thanks go to all people who took part in making this thesis real.

iv

TABLE OF CONTENTS

Page

ABSTRACT . 1

Dedication . iii

Acknowledgement . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . ix

LIST OF TABLES. xi

1. Introduction . 1

1.1 Context . 1
1.2 Problem . 2
1.3 Aim of the Research . 3
1.4 Research Methodology . 4
1.5 Structure of the thesis . 5

I Foundations . 7

2. State of the Art . 8

2.1 Model-Driven Development . 8
2.1.1 Metamodel . 9
2.1.2 Model . 10
2.1.3 Model Transformation . 11

2.2 Model Execution . 12
2.2.1 Execution semantics . 12
2.2.2 xDSML . 13
2.2.3 Execution Metamodel . 14

2.3 Model Execution Tracing . 16
2.4 A Look at Execution Trace Structures . 18

2.4.1 Structures with Specific Concerns . 18
2.4.2 Generic Data Structures . 19
2.4.3 Self-defining Trace Formats . 19
2.4.4 Domain-Specific Trace Metamodel Definition Approaches . 20

2.5 Data Serialization Formats. 21

v

3. Abstraction and Compaction Techniques . 23

3.1 Trace Abstraction in Code-Centric Approaches . 23
3.1.1 Trace Visualization . 23
3.1.2 Trace Exploration. 24
3.1.3 Abstracting the History of Object Interactions . 24
3.1.4 Graph Reduction. 25
3.1.5 Partitioning and Clustering. 26
3.1.6 Program slicing . 27
3.1.7 Pattern Detection . 28
3.1.8 Hiding Components . 29

3.2 Trace Abstraction in Model-Driven Approaches . 29
3.2.1 Sharing Immutable Objects . 29
3.2.2 Avoiding Redundancy in Traces . 30
3.2.3 Recording Modifications of the Dynamic Model . 31

3.3 Data Compression Techniques in Database Domain . 31
3.3.1 Column-Oriented Database Systems . 31
3.3.2 Rainstor . 32

II Contributions . 35

4. A Taxonomy for Model Execution Tracing Approaches . 36

4.1 Introduction. 36
4.2 Research Method . 37

4.2.1 Review Planning . 38
4.2.2 Review Conduction. 40

4.2.2.1 Article Selection . 41
4.2.2.2 Data Extraction and Classification Scheme . 46

4.3 Results . 54
4.3.1 Types of Models (Q1) . 56
4.3.2 Semantics Definition Technique (Q2) . 56
4.3.3 Trace Data (Q3) . 57
4.3.4 Purpose (Q4) . 58
4.3.5 Data Extraction Techniques (Q5) . 59
4.3.6 Trace Representation Format (Q6) . 60
4.3.7 Trace Representation Method (Q7) . 61
4.3.8 Language Specificity of Trace Structure (Q8) . 61
4.3.9 Data Carrier Format (Q9) . 62
4.3.10 Maturity Level (Q10) . 62

4.4 Future Research Directions . 63
4.5 Limitations and Threats to Validity . 65
4.6 Related Work . 66
4.7 Conclusion. 70

vi

5. Generic Compact Trace Metamodel . 75

5.1 Motivation . 75
5.1.1 Requirements for an execution trace metamodel . 75
5.1.2 Limitation of existing trace structures . 76

5.2 Overview of the Approach . 78
5.3 Generic Compact Trace Metamodel. 80

5.3.1 Generic trace metamodel . 80
5.3.2 CTM Compaction . 83

5.4 Related Work . 98
5.4.1 Model execution tracing approaches . 98
5.4.2 Business process mining approaches . 102
5.4.3 Model persistence approaches . 103

5.5 Conclusion. 105

III Applications and Tooling . 106

6. Tool Support in the Context of Gemoc . 107

6.1 Gemoc Studio Execution Framework . 107
6.2 Implementation of CTM .. 110

6.2.1 Generation of proposed trace metamodels in EMF . 110
6.2.2 Creation of an xDSML . 112
6.2.3 Implementation of the Trace Constructor . 113
6.2.4 Implementation of the Trace Decompactor . 113

6.3 Applying Compaction Techniques to CTM .. 114
6.3.1 Implementation of Step Compaction . 114
6.3.2 Implementation of State Compaction. 118
6.3.3 Implementation of Objectstate Compaction. 120
6.3.4 Implementation of Parametervalue Compaction . 121

6.4 Evaluation of CTM.. 121
6.4.1 Overview on fUML . 122
6.4.2 Experiments on CTM . 122
6.4.3 Results of the Evaluation . 126

IV Conclusion and Perspectives . 134

7. Conclusion and Perspectives . 135

7.1 Conclusion. 135
7.2 Perspectives . 137

7.2.1 Extended pattern detection . 137
7.2.2 Further evaluation . 137
7.2.3 Combining compaction with compression techniques. 137

vii

7.2.4 Applying lens-like abstraction . 138
7.2.5 Applying process mining abstraction techniques. 138
7.2.6 A Tool Suite . 138

Bibliography . 140

Appendix A. CTM Application and Setup . 160

A.1 Introduction. 160
A.2 Install Eclipse Gemoc Studio . 160

A.2.1 Features in Gemoc Studio 2.3.0 . 162
A.3 Download and setup CTM .. 164

A.3.1 CTM Tool Overview . 164
A.3.2 Launch Configuration . 165
A.3.3 Trace Generation . 165

viii

LIST OF FIGURES

FIGURE Page

1.1 Graph of the outline of the thesis . 5

2.1 Petri net abstract syntax . 10

2.2 Example of Petri net model represented with concrete syntax . 11

2.3 Example of Petri net model represented as an object diagram . 11

3.1 Forest of binary trees compression . 34

4.1 Primary studies selection process . 42

4.2 Studies retrieved through online libraries . 43

4.3 Primary studies per year . 44

4.4 Primary studies per publication type . 44

4.5 Results of quality assessment of selected primary studies . 46

4.6 Total score for quality assessment questions. 46

4.7 Classification of model execution tracing approaches. 55

5.1 Approach overview . 78
5.2 CTM generic trace metamodel . 81

5.3 Excerpt of execution trace of the Petri net example . 82

5.4 Excerpt of CTM modeling concepts related to State . 85

5.5 Excerpt of execution trace (State with compaction) . 86

5.6 Excerpt of CTM with modeling concepts related to Step . 89

5.7 Excerpt of an execution trace (Step with compaction) . 91

5.8 Excerpt of execution trace (ObjectState without compaction) . 92

5.9 Excerpt of CTM with modeling concepts related to ObjectState . 94

ix

5.10 Excerpt of an execution trace (Objectstate with compaction). 95

5.11 Excerpt of CTM with modeling concepts related to ParameterList 97

6.1 overview of the Gemoc studio . 108

6.2 Screenshot of GEMOC language workbench . 109

6.3 Overview of the Gemoc modeling workbench execution framework 109

6.4 A sample tree (left) and its DAG (right) . 115

6.5 Number of objects used by both CTM traces and domain-specific traces 127

6.6 Number of references used by both CTM traces and domain-specific traces 128

6.7 Disk space used by both CTM traces and domain-specific traces . 128

6.8 Compaction rate of CTM trace elements. 129

6.9 Runtime overhead of the CTM and domain-specific trace construction, for each
executed model . 130

6.10 Time measurements for CTM trace compaction techniques . 132

6.11 Memory consumption measurements for CTM trace elements . 132

A.1 Gemoc Studio Installation details . 161

A.2 Screenshot of Gemoc Studio Modeling Workbench on the TFSM example 163

A.3 Screenshot of the CTM workspace . 166

A.4 An example of debug configuration for a TFSM model. 167

A.5 An excerpt of the trace of an fUML model serialized in XML . 169

A.6 An excerpt of the trace of an fUML model serialized in EXI . 169

x

LIST OF TABLES

TABLE Page

2.1 A selection of execution trace data structures . 21

3.1 Excerpt of order data of a retail system . 33

4.1 Quality assessment questionnaire . 45

4.2 Classification of model execution tracing approaches for Q1-Q3 . 72

4.3 Classification of model execution tracing approaches for Q4-Q5 . 73

4.4 Classification of model execution tracing approaches for Q6-Q10 . 74

5.1 Excerpt of ObjectState data for the Place objects . 93

6.1 Result of applying Valiente’s algorithm. 115

6.2 xDSMLs applied to test our prototype . 121

6.3 Time measurement, corresponding to each compaction technique . 132

6.4 Memory consumption measurement associated to compaction techniques (all mea-
surements are in KBs). 133

xi

Chapter 1

Introduction

1.1 Context

In software engineering, abstraction is a key enabler to deal with the complexity of software

systems. Model Driven Development (MDD) is a software development paradigm that aims to

decrease the complexity of software systems by raising the level of abstraction in the development

process through the use of models and well-defined modeling languages [1]. In this paradigm,

models are the key artifacts in the software development process, and are used to specify the

structure and behavior of the system to be built. One of the main purposes of models is to analyze

quality properties of complex systems, for instance to explore design alternatives or to identify

potentials for improving systems. The analysis includes functional and non-functional properties,

as well as structural and behavioral aspects of systems.

To ensure that behavioral models are correct concerning their intended behavior, early dynamic

Verification and Validation (V&V) techniques are required. These techniques are based on the

ability to execute models. To this end, efforts have been made to support the execution of models.

It can be achieved by defining execution semantics of Domain-Specific Modeling Languages

(DSMLs) precisely. Such languages are called executable DSMLs (xDSMLs) that support the

execution of models, and enable the use of dynamic V&V techniques. Moreover, providing exe-

cutability at the model level also gives the possibility to directly deploy an executable model to run

on a production system.

1

1.2 Problem

Defining execution semantics of modeling languages gives the possibility to execute mod-

els, and hence to use dynamic V&V to check the modeled behavior. Yet, many dynamic V&V

techniques require an analysis of behavior over time, which requires capturing execution traces.

Execution traces can be generated during the execution of a model, and provide information to

help reason about the model’s execution behavior. Traces can contain different kind of information

depending on the defined structure for execution traces and the purpose of the trace.

To support dynamic V&V for xDSMLs, a data structure is required to capture, store, and

analyze traces. However, the problem is that even with using an appropriate trace structure that

adequately represents the execution behavior of a model, executing a model might lead to a very

large execution trace, making it difficult to analyze the recorded behavior [2, 3, 4].

Furthermore, existing model execution tracing approaches rely on their own custom trace for-

mats, hindering interoperability and sharing of data among various trace analysis tools. Conse-

quently, there is a need to work towards a common format for exchanging model execution traces.

A common format must be generic, to be able to support a wide range of xDSMLs, independent

of the meta-programming approaches used for their implementation. It also must be scalable and

expressive enough to capture the required runtime information.

The first requirement, genericity, can be partly addressed using existing generic trace meta-

models such as the ones defined and presented by Hartmann et al. [5] and Langer et al. [6]. While

these formats allow interoperability between existing trace analysis tools and simplify analyzing

traces, they do not scale up to large traces efficiently. For example, the approach proposed by

Langer et al. [6] relies on a generic clone-based execution trace metamodel, which defines a trace

as a sequence of step and state elements. Such trace contains all the reached execution states as

a sequence of complete model clones, which yields poor scalability in memory. Only a few trace

structures, such as the ones proposed by Bousse et al. [7], consider scalability by providing some

sort of trace compaction. However, these techniques still require substantial memory usage due

to data redundancy. Also, they do not give a complete representation of a trace such as execution

2

states as well as input and output values, hindering expressiveness.

To summarize, the following are the two main inter-related challenges that should be consid-

ered for designing a new execution trace structure:

Ch#1: The structure of trace should be generic so that it can be supported by any possible

executable modeling language. Hence, it should capture all the necessary information during

execution of a model.

Ch#2 : The exploration and understanding a large execution trace can be difficult due to the

size of traces. This requirement consists of generating execution trace in a scalable format

when manipulating traces.

We tackle the aforementioned challenges by developing a new trace metamodel called Compact

Trace Metamodel (CTM) which 1) precisely captures the execution trace of models conforming to

any possible modeling language and 2) represents traces in a compact form without lossing data.

1.3 Aim of the Research

To tackle the aforementioned challenges, we investigate two complementary directions. we first

propose a generic trace metamodel which enables us to capture a complete trace of any xDSML.

It is defined by identifying a set of key generic concepts needed to express traces generated from

any xDSML. Such way of doing brings advantages regarding genericity (Ch#1), since the data

structure of the execution trace is simple and appropriate for generic manipulations. Moreover,

comparing to existing trace structures, a more expressive trace is generated, which captures the

required runtime information for any executable modeling language. This means, that traces are

expected to grow large, compromising the need for scalability in space (Ch#2). Thereby, scalability

should be considered as a key requirement when defining a common trace structure. To cope with

this problem, we propose a compact trace metamodel that is applicable to any executable modeling

language while reducing the size of traces. The key idea is to compact repetitive parts of a trace.

3

Therefore, to reduce vast size of traces, several compaction techniques are effectively applied to

the generic trace metamodel, tailored to compact the respective parts of the trace, which lead to

representation of the trace with minimal redundancy. The compaction is done so that the original

trace can be fully constructed from the compact one. Note that what we mean by compaction is

different from the common compression techniques found in the information theory. A compressed

file needs to be uncompressed before usage. A compacted file should never be “uncompacted”. In

other words, we need to find a way to represent trace information by changing the structure of the

data. An example of a trace format is CTF (Compact Trace Format) [4] which represents traces

of routine calls as directed acyclic graphs. In this research, we propose CTM as a metamodel for

representing lossless execution traces in a more scalable format.

1.4 Research Methodology

In this research, we have followed the design science research methodology (DSRM) presented

by Peffers et al. [8] align with the guidelines for design science defined by Hevner et al. [9]. The

DSRM approach consists of six main activities, which we present in each section of this thesis in

detail. From a top level methodological perspective, we utilize different research techniques at each

step, and perform some activities to appropriately support our overall objectives. The following

are the activities we have followed in this research, which form the structure of this thesis.

Problem identification and motivation: We focused on the problem space, provided a back-

ground around the target domain, and made an overview of the techniques used for the trace com-

paction as well. We also did a literature review on the existing approaches to find their strengths

and limitations.

Define the objectives of a new solution: We identified the main requirements for a trace meta-

model, and defined our overall objective for the design of a new trace metamodel.

Design and development: We designed CTM for tackling aforementioned challenges, and

based on the identified requirements.

4

Demonstration: We constructed a detailed implementation of CTM-enabling tools.

Evaluation: We evaluated the effectiveness of CTM to capture traces from models of five

different xDMSLs. We measured the gain obtained by storing CTM traces compared to the use of

the metamodel proposed by Bousse et al. [10, 7].

1.5 Structure of the thesis

Figure 1.1 shows an overview of the structure of the thesis. We present the different chapters

thereafter.

Ch1.Introduction

Ch2.State of the Art

Ch4.A Taxonomy For Model Execution Tracing Approach

Ch5.The Compact Trace Meta Model

 Ch7.Conclusion and Perspective

Ch6.Tool Support in the Context of Gemoc

Part I

Part II

Part III

Part IV

Ch3.Abstraction and Compaction Techniques

Figure 1.1: Graph of the outline of the thesis. Chapters in green contain the core of the scientific
contributions.

Part I - Foundations

Chapter 2 introduces the state of the art of MDD, executable metamodeling, model execution,

and execution trace. Finally, we focus more specifically on execution trace data structures, and

5

discuss the existing trace structures concentrating on compaction techniques.

Chapter 3 provides an overview of the techniques for dealing with the large size of data in three

domains containing code-centric development, model driven development, and data management.

Part II - Contributions

Chapter 4 presents our first contribution, which is a taxonomy for model execution tracing

approaches. We give a detail description about the systematic mapping study that we have done in

the literature, and provided a classification on the existing approaches.

Chapter 5 deals with the second contribution. We discuss the approach for designing our new

trace metamodels. Then, we introduce the generic trace metamodel supported by any xDSML.

Continuing, we present the extension of the generic trace metamodel provided by using the com-

paction techniques incorporated in that. Lastly, we discuss related work.

Part III - Applications and Tooling

Chapter 6 deals with the implementation and evaluation of CTM in the context of Eclipse

Gemoc Studio1. We present an overview of the software development endeavor that was done

during this thesis, either to improve existing tools or to implement our approaches and applications.

In particular, it is concerned with the integration of our work within the Gemoc Studio, which is a

language and modeling workbench. We explain the generation of the trace metamodels in Eclipse

Modeling Framework(EMF), and construction of traces by applying the compaction techniques.

For each part of the trace, the corresponding techniques are applied. Continuing, we evaluate

CTM by defining several research questions, measuring evaluation criteria, and comparing the

results with the existing trace metamodels.

Part IV - Conclusion and Perspectives

Chapter 7 concludes the thesis by summarizing the advances that it brings to generate a more

scalable execution trace for any xDSMLs. We end by discussing the perspectives of future research

on the topic.

1http://gemoc.org/studio

6

Part I

Foundations

7

Chapter 2

State of the Art

This chapter introduces the basic background and related work that help the reader understand

the problem and the solution that are described in this thesis. We present the state of the art in the

different domains covered by our contributions and applications. In Section 2.1, we first introduce

MDD by defining a number of its fundamental concepts. Then, in Section 2.2, we provide the

definition of executable models, and focus more specifically on xDSMLs, and give an example of

an xDSML. In Section 2.3, we define the concept of execution trace, and describe the application

of model execution traces. Finally, in Section 2.4, we focus more particularly on execution trace

data structures, and discus the existing trace structures concentrating on compaction techniques.

2.1 Model-Driven Development

In most of the engineering disciplines, models are necessary specially for designing a complex

system. Nowadays, software systems are becoming more and more complex; hence, using models

for developing software systems is unavoidable [11].

MDD is a development paradigm that uses models as the main artifacts of the development

process [1]. For this purpose, two main kinds of modeling languages are used: General Purpose

Modeling Languages (GPMLs), such as UML, that can be used for modeling systems regardless

of the domain, and Domain-Specific Modeling Languages (DSMLs) that are each designed partic-

ularly for specific tasks in a given domain [1]. One main purpose of models is to analyze quality

properties of complex systems, for instance to explore design alternatives or to identify poten-

tials for improving systems. This includes checking both functional and non-functional properties,

8

which concerns both structural and behavioral aspects of systems. In the case of behavioral as-

pects, dynamic V&V techniques are used to check properties, which necessitate the ability to

execute models. To this end, many efforts have been made to support the execution of models,

such as methods to ease the development of executable DSMLs (xDSMLs)1 [12, 13, 14, 15, 16],

or to support the execution of UML models [17]. This endeavor includes both facilitating the def-

inition of the execution semantics of modeling languages, and the development of dynamic V&V

methods that can be used with these executable languages.

2.1.1 Metamodel

The standard way for specifying the syntax is by defining a metamodel. Many definitions of

metamodel can be found in the literature: “a model to model modeling” [18], “a textual, graphical,

and/or formal representation of the concepts and how they are linked” [1]. Therefore, a metamodel

is essentially composed of classes, each being composed of properties. In addition, a metamodel

possesses static semantics, which are additional structural constraints that must be satisfied by

conforming models. We consider a metamodel to be an object-oriented model composed of classes,

attributes, and relationships between these classes for defining the concepts of modeling [1].

Definition 1. A metamodel is compose of :

• A set of metaclasses that are used to define the concepts of a specific domain and the rela-

tionships between them.

• Static semantics that define the structural meaning of a language by using a set of OCL rules

and containment references.

As an example, the metamodel of the Petri net language is depicted in Figure 2.1. It consists

of three classes: Net, Transition, and Place. The metaclass Net is composed of a set of places

(metaclass Place) and transitions (metaclass Transition) by using containment references. The
1Note that techniques to develop executable DSMLs are applicable to executable modeling language in general,

including executable GPMLs. In the remainder of this report, we will use the term xDSML including both executable
modeling languages and executable GPMLs.

9

Abstract Syntax

Execution Metamodel

Net

Transition
+name: String
+initialTokens: int

Place
+name: String

input
1..*
output
1..*

places
*

transitions
*

Place
+tokens: int

run(Net): while there is an enabled transition, fire it.
fire(Transition): removes one token from each input Place, and adds one token to each output Place

merges

imports

Figure 2.1: Petri net abstract syntax

class Transition has two references input and output pointing to the class Place and an attribute

name. A place has an attribute name and an attribute tokens for specifying the number of

tokens.

2.1.2 Model

We consider a model as a set of objects (i.e., instances of metamodel classes) that represents

a system. The objects are instances of the classes defined in the metamodel, pointing to the con-

formity relationship between a model and its metamodel. A model is also static semantics of the

metamodel. Each object has a set of attributes that represent the values of the properties of the

corresponding class.

Figure 2.2 shows a concrete syntax of the model represented by the Petri net notation, which is

conformed to the metamodel shown in Figure 2.1. The model consists of one instance of the Net

class, four instances of the Place class, and two instances of the Transition class. The initial-

Tokens field of p1 and p2 is one and for p3, and p4 is zero, meaning that at the beginning of the

execution, there exists one token for each one of p1 and p2, and no token for p3 and p4. Figure 2.3

illustrates the object diagram that shows all objects of the model and their relationships.

10

p1 p3

p2

p4t1 t2

Figure 2.2: Example of Petri net model represented with concrete syntax

net:Net

 t1:Transition

 name="t1"

p3: Place

 name="p3"
 initalTokens=0

p2: Place

 name="p2"
 initalTokens=1

p1: Place

 name="p1"
 initalTokens=1

 t1:Transition

 name="t1"

p4: Place

 name="p4"
 initalTokens=0

input output input output

input

transitions

places

Figure 2.3: Example of Petri net model represented as an object diagram

2.1.3 Model Transformation

In MDD, models are not only used for describing a system, but also for analyzing static in-

consistencies or defects. In addition, there are several activities that can be performed in an auto-

mated way to change or create a model. This is accomplished by applying model transformations,

which are at the core of MDD [19]. Model transformation is the process of converting one or

more source models into one or more target models. Model transformations can be defined using

many paradigms, such as declarative programming (e.g., ATL [20]), imperative programming (e.g.,

Xtend/EMF, Kermeta [21]) or triple graph grammars (e.g., [22]). They are also used for defining

11

operational semantics. Model transformations are used for several purposes such as refactoring a

model, reverse engineering, and generation of a new model based on an existing one.

A model transformation is composed of transformation rules, each defining a subset of the

changes on the target model that provide the execution state of the model. Furthermore, there exist

several types of model transformations. If both source and target models are expressed in the same

metamodel, it is called Endogenous model transformation. Otherwise, it is named Exogenous. A

specific kind of Endogenous model transformation is in-place transformation that directly changes

source models without creating new target models.

An example of an in-place model transformation is the transformation rule fire defined by using

Kermeta depicted in Listing 2.1.1. For this transformation rule, the input is a specific Transition

object (line 1). It checks if there are sufficient tokens in all of its input Places, it removes one token

from all input Places (lines 4-5), and adds one token in its output Places (lines 7-8).
1def void fire() {
2 if (_self.isEnabled) {
3 // Removes a token from each input place
4 for (Place input : _self.input)
5 input.tokens = input.tokens - 1
6 // Adds a token to each output place
7 for (Place output : _self.output)
8 output.tokens = output.tokens + 1
9 }

10}

Listing 2.1.1: Definition of the execution metamodel of Petri net through a Kermeta aspect

2.2 Model Execution

2.2.1 Execution semantics

Execution semantics specifies the execution behavior of models. In MDE, there exist two

different approaches for defining the execution semantics of modeling languages: the translational

semantics approach and the operational semantics approach. These two approaches have similarity

with the denotational semantics approach, which is defined in the field of programming language

design for algebraic/mathematical terms. In the following, we define both approaches and explain

12

their advantages and disadvantages.

Operational approach [23, 24]. In this approach, the execution behavior of models conform-

ing to an executable modeling language is defined by an interpreter (a.k.a. virtual machine). Such

an interpreter is an endogenous in-place model transformation in which models are modified di-

rectly to carry forward their execution by performing transitions from one execution state to the

next one.

Translational semantics [25, 26]. In this approach, the model is translated into another exe-

cutable language for execution. In the translation, the concepts of the source language are trans-

lated into the concepts of the target language. Thereby, the translation from the source language

to the target language composes of the semantic mapping of the semantics definition. This can be

done through exogenous model transformation or through code generation if the target language

possesses a grammar.

In summary, the translational approach proposes the implementation of compilers while the

operational approach proposes interpreters for modeling languages. In this thesis, we only consider

operational semantics for the definition of the execution semantics of xDSMLs. Therefore, the term

xDSML only refers to xDSMLs defined using operational semantics.

2.2.2 xDSML

xDSMLs are a specific kind of DSMLs that support the execution of models, and enable the

use of dynamic V&V techniques, which involve controlling the execution of a model [10]. We call

executable model a model conforming to an executable modeling language, and we define such

models as follows.

Definition 2. An executable model is a model conforming to an xDSML. It defines an aspect of the

behavior of a system in sufficient detail to be executed.

To support the execution of models, an xDSML must provide execution semantics, which is

defined in two different ways: the translational semantics approach and the operational semantics

approach. Both of these approaches were defined in Section 2.2.1.

13

The execution state of a model is defined by extending the abstract syntax of the xDSML and

adding new properties and classes, which are so-called run-time concepts of the xDSML. The re-

sult of this extension is called execution metamodel [27]. We consider the additional properties and

classes included in the execution metamodel dynamic as they can be changed during the execution

of the model. The dynamic properties can be changed and new dynamic metaclasses can be instan-

tiated. These modified values represent the execution state of the model. The execution state of a

model changes over time by the definition of an in-place transformation, whose input and output

is a model conforming to the execution metamodel. The transformation is accomplished through a

set of transformation rules, each defining a subset of the changes performed on the execution state.

Finally, in order to execute a model, each object of the model should be translated into an

executable object in the execution metamodel. For this work, the initialization function transforms

the model to a model conforming to the execution metamodel.

Definition 3. An xDSML is defined by:

• An abstract syntax, which is a metamodel.

• An execution metamodel, which is an extension of the abstract syntax with additional classes

and properties by using package merge. This metamodel defines the execution state of exe-

cuted models.

• Operational semantics, which includes an execution transformation that modifies a model

conforming to the execution metamodel by changing values of dynamic fields and by creat-

ing/destroying instances of classes introduced in the execution metamodel.

• An initialization function, which is an in-line model transformation that transforms a model

conforming to the abstract syntax into a model conforming to the execution metamodel.

2.2.3 Execution Metamodel

The first part of an xDSML is the execution metamodel that defines the execution state of a

model conforming to the xDSML. “An execution state is the set of the values of all dynamic fields

14

of a model at a certain point in time of the execution” [27]. The definition of execution state is

related to the abstract syntax. For example, when an xDSML includes a variable as a concept in

its abstract syntax, an execution state can include the values of all variables of the model. In this

case, we can define a link from the variable of the abstract syntax to the value. In the literature,

there are several approaches which define execution states of an xDSML through the extension

of the abstract syntax. It can be accomplished by adding new properties and/or new classes to the

abstract syntax. The result is the execution metamodel. Using package merge, the two metamodels

are linked together.

Figure 2.1 shows an example of a Petri net xDSML. At the top left, its abstract syntax is shown

with three classes Net, Place and Transition. At the top right is the execution metamodel by

extending the class Place with a new property using package merge. The tokens property is

declared in the existing Place class which defines the current number of tokens of a Place during

an execution.

Two rules run and fire are defined in the operational semantics to change the execution state of

a model conforming to the execution metamodel of a Petri net. The rule run repeatedly checks for

an enabled Transition. In the fire rule, one token from each input Place of an enabled transition is

removed, and one token is added to each of its output Places.

Listing 2.2.1 shows the execution transformation for the Petri net xDSML using Kermeta as-

pects. It relies on the aspect presented in Listing 2.1.1 that defines the execution metamodel. The

first aspect (lines 1-16) defines two operations for the Transition class: isEnabled is a method that

checks whether a transition is enabled, and fire is transformation rule introduced in Listing 2.1.1

that fires a transition. The second aspect (lines 17-29) defines one transformation rule named Run

for the Net class that calls fire for all enabled transitions.

15

1@Aspect(className=Transition)
2 class TransitionAspect{
3 def boolean isEnabled(){
4 return _self.input.forall[place|place.tokens > 0]
5 }
6 @Step
7 def void fire() {
8 if (_self.isEnabled) {
9 // Removes a token from each input place

10 for (Place input : _self.input)
11 input.tokens = input.tokens - 1
12 // Adds a token to each output place
13 for (Place output : _self.output)
14 output.tokens = output.tokens + 1}
15 }
16 }
17 @Aspect(className=Net)
18 class NetAspect {
19 @Step
20 def void run() {
21 while (true) {
22 val enabledTransition = _self.transitions.findFirst[t|t.isEnabled]
23 if (enabledTransition != null)
24 enabledTransition.fire
25 else
26 return
27 }
28 }
29 }

Listing 2.2.1: Execution transformation for the Petri net xDSML, written in Kermeta

2.3 Model Execution Tracing

There are many definitions of the term tracing in the literature, such as the use of logging

mechanisms to record information about a program’s execution [28] or a protocol to capture the

behavior of a running program [29]. For this work, we define model execution traces as follows.

Definition 4. A model execution trace captures related information about the execution of an

executable model. This information may include execution states reached by the model, events that

occurred during the execution, execution state changes, processed inputs, and produced outputs.

Tracing an executable model is required for performing various kinds of dynamic V&V ac-

tivities on the model level. Performing such dynamic V&V activities in early stages of MDE

development processes is desirable to improve quality, and prevent rework at later stages.

16

Typical examples of dynamic V&V include debugging, testing, model checking, manual trace

analysis (i.e., trace visualization and exploration) and automated trace analysis (e.g., dynamic anal-

ysis). Some of these techniques rely heavily on execution traces as a representation of the analyzed

model’s behavior. For instance, dynamic analysis or run-time monitoring is commonly defined as

“the analysis of the properties of a running program” [30]. It comprises the analysis of the execu-

tion trace obtained during execution of a system, and provides a representation of system’s actual

behavior.

There exist many definitions of the concept of an execution trace in the literature. The con-

tent of traces mainly depends on the degree of abstraction required by the desired dynamic V&V

technique as well as the runtime concepts provided by the languages themselves. Alawneh and

Hamou-Lhadj [31] have categorized traces of code-centric systems into statement-level traces, rou-

tine call traces, inter-process traces, and system call level traces. In the case of executable models,

execution traces may contain different type of information depending on the underlying executable

modeling language. In addition, instead of tracing threads and function call stacks, which are com-

mon programming language constructs, in model execution, concepts like transitions, states, and

actions are often traced.

The information to be traced may be extracted from a model execution in different ways. For

instance, for executable modeling languages with operational semantics, the interpreter of the ex-

ecutable modeling language may provide facilities for recording execution traces. Also for exe-

cutable modeling language with translational semantics, additional elements may be inserted in the

target model/code that are responsible for producing traces.

An execution trace must conform to a trace format, which defines the concepts required for

representing execution traces. A trace format may be defined using different techniques, such as

XML schema, metamodels, and grammars. Furthermore, it may be specific to the considered exe-

cutable modeling language (e.g., specific to UML state machines) or generic and applicable to any

executable modeling language. Recorded execution traces may be stored on a disk using different

encodings, e.g., they may be recorded in databases, as simple text files or as XMI documents.

17

Thus, there are many different dimensions (trace purpose, trace content, trace data extraction

technique, trace format, etc.) that can be used to classify and compare existing model execution

tracing solutions. Our classification schema, which is developed as part of a conducted systematic

mapping study, is presented in Chapter 4.

2.4 A Look at Execution Trace Structures

To gain a better understanding of exactly what structures are mostly used to represent traces,

we have summarized several kind of data structures commonly used to construct and manipulate

execution traces. An initial list of the trace structures and the relevant approaches to design such

structures has been presented in [32]. We have completed this list by adding some other structures

and related approaches. Then, we have specified which one produces a scalable trace, and what

the respective technique is used. Table 2.1 shows a selection list of the trace structures and the

approaches of designing such structures. The table contains different kinds of trace data structures.

Some approaches propose a trace structure for a specific xDSML. Some other contain generic trace

formats that can be used for any xDSML. Self-defining is another trace format capable of defining

custom types for elements of the trace. Finally, in some cases, instead of a specific structure, a

execution trace metamodel is defined. We review each data structure in the following paragraphs.

2.4.1 Structures with Specific Concerns

A large number of existing trace data structures are provided for General Purpose Languages

(GPLs), because traces basically are used for debugging and analyzing programs conforming to

GPLs, such as Java, C or C++. Such data structures focus on the concepts of those languages.

An example is the Open Trace Format 2 (OTF2) [33] that contains the concepts such as “thread”,

“lock”, and “fork”, which provides a trace structure for parallel software. OTF2 is a scalable trace

format for representing of traces at run-time by removing unnecessary data, and storing the repet-

itive data (i.e., time stamp) only once. Another example is Whole Execution Traces (WET) [34],

18

which is an advance format to represent a compact and complete execution trace containing control

flow, variable values, variable memory addresses, and control and data dependencies. By applying

an effective two-tier compression strategy including timestamp compression and stream compres-

sion, WET reduces the memory size for storing traces.

Another kind of data structures are used for specific platform. KPTrace [35] and CUBE4 [36]

are two structures applicable for operating systems (with concepts such as “system call”, “memory

allocation” or “interrupt”) and distributed systems (with concepts such as “topology”, “call path”

or “system resources”) respectively.

Another proportions of trace data structures are specific to an xDSML. Such structures define

execution traces for models conforming to the xDSMLs. By scoping a trace structure to a specific

xDSML, it only focuses on the concepts of the xDSML. Thereby, the trace structure provides more

expressiveness to capture information for conforming models. We will describe the approaches

proposing such trace structures in Section 2.4.4. For instance, Timesquare [37] is a trace meta-

model, which defines execution traces for CCSL models. The metamodel represents both logical

clocks values and chronometric timestamps from real-world sources.

2.4.2 Generic Data Structures

As mentioned before, generic structures are independent from an xDSML, representing gen-

eral concepts, which are applicable to any xDSML. While such structures are very limited and

uncommon, they are more appropriate structures which allow interoperability between existing

trace analysis tools, and simplify analyzing traces. Examples of such trace structures include KMF

versioning [5] and semantic model differencing proposed by Langer et al. [6].

2.4.3 Self-defining Trace Formats

One specific kind of trace data structures are so-called self-defining trace formats, or meta-

formats. In these structures, a trace includes metadata, which defines the format of the trace itself.

This is similar to the definition of new types (Java class or a C struct) in programming languages.

19

The execution trace of such trace format can be adapted to any usage or context. Common Trace

Format (CTF) [38] is a known self-defining trace format that can be used for embedded systems or

operating systems tracing. CTF provides a compact execution trace, which is suitable for tracing

systems with limited resources. Self-defining formats allow us to define a wide range of potential

formats, each requires a specific tool for the analysis of the trace content.

2.4.4 Domain-Specific Trace Metamodel Definition Approaches

Recently, there exist some approaches that propose frameworks to define domain-specific exe-

cution trace metamodels. An example of a domain-specific trace metamodel is the trace metamodel

for fUML proposed by Mayerhofer et al. [39]. Another example is the TopCased project [40]

that provides facilities to define a trace metamodel applicable to discrete events system modeling.

Such trace metamodel defines a Trace object as a sequence of events. Few approaches proposed

the generation of domain-specific execution trace metamodels automatically. An example is the

PromoBox framework [41], which provides the ability to define an execution trace metamodel.

The authors extend a clone-based generic execution trace metamodel into a domain-specific meta-

model. Bousse et al. [10] proposes a similar approach, which automatically derives a domain-

specific trace metamodel for a given input xDSML, with the aim of reducing the semantic gap

between the trace and the domain, and improving usability as well.

20

Table 2.1: A selection of execution trace data structures

Type Content Compaction
Name

Compaction Technique

Open Trace Format 2 [33]

ASCII format Parallel software *

storing the time stamp only once for sequences of events

removing all higher value zero bytes from integer attributes

Traviando [42]
ASCII format simulation *

identifying and removing cycles from a simulation trace

UML Testing Profile [43] Metamodel Software (UML)

fUML [39] Metamodel fUML

Timesquare [37] Metamodel Time, Timesquare

MPI Trace Format [31, 44]
Metamodel HPC *

transforming a call tree into an ordered DAG where similar subtrees are represented only once.

Compact Trace Format [4]
Metamodel Software *

transforming a call tree into an ordered DAG where similar subtrees are represented only once

KPTrace [35]
ASCII format Operating systems *

time compression within the T-charts view

CUBE4 [36]
Binary format Distributed software *

creating call-path object and reducing repetitions

Scenario-Based Traces [45] ASCII format Sequence charts

Compact Sequence Diagram [46]
Graph Software *

abstracting repetition patterns and recursive calls included in the trace

cCCGs [47]
Complete Call Graph Software *

replacing repeated equal sub-trees with a reference to a single instance

WET [34]

Graph Software *

removing redundancy in the profile information

compressing streams of values corresponding to all

KMF Versioning [5]
other Generic *

sharing immutable objects between the original model and its clones

avoiding creation of temporary objects by reusing objects in memory

SOC-Trace project [48]
Metamodel Self-defining *

applying Best Cut Partition algorithm by using time slicing

Common Trace Format [38]
Metamodel Self-defining *

using compression scheme for the event packet content

Pablo SDDF [49] ASCII/ Binary Self-defining

Paje [50] ASCII/ Binary Self-defining

TopCased [51, 40] Approach Domain-specific

Hegedus et al. [13, 52] Approach Domain-specific

Promobox [41] Generative Approach Domain-specific

Filmstrip [53, 54] Generative Approach Domain-specific

Promobox [41] Generative Approach Domain-specific

Filmstrip [53, 54] Generative Approach Domain-specific

2.5 Data Serialization Formats

Data serialization is the process of converting structured data to a format for data sharing or

storage. In this section, we present an overview of the common serialization formats that are used

as a data carrier in the literature.

21

XML Metadata Interchange (XMI) [55] is an Object Management Group (OMG) standard

that allows to interchange streams or files of data in an XML format. Although XML is the most

widely data interchange format, it is not efficient in terms of data size and processing speed. How-

ever, XML files can be compressed using Gzip 2.

Flat text format [56] stores data (e.g., traces) in a simple flat file. In particular, the textual

logs produced by a program or a formal grammar fall into this category. Flat text format provides

a human-readable representation of data that is easy to understand. Therefore, no extra tools are

needed to read, debug and administer the serialized data. However, such format has certain limita-

tions and can make data files very big. furthermore, this is not a good solution for serialization of

the objects that are part of an inheritance hierarchy or contain pointers to other objects.

Efficient XML Interchange (EXI) [57] is an efficient compact XML representation, which

reduces the size of XML and improves processing speed. It is a specification for encoding XML

messages into a binary representation. EXI can compress between 1.4 and 100 times the docu-

ment’s original size and over ten times the document compressed with Gzip.

JavaScript Object Notation (JSON) [58] is a lightweight data-interchange format that stores

information in an organized, easy-to-access manner. The JSON is a popular alternative to XML

because it is more human-readable than XML.

Google’s Protocol Buffers (ProtoBuf) [59] is a flexible, efficient, extensible mechanism for

serializing structured data. While XML and JSON are text-based data formats, ProtoBuf uses a

binary encoding that makes serialized data more compact. Similar to EXI, the ProtoBuf messages

are not human-readable after encoding.

2http://www.gzip.org/

22

Chapter 3

Abstraction and Compaction Techniques

This chapter introduce the techniques that have been mostly used for the abstraction and com-

paction of traces. For each technique, we present several approaches proposed by researchers. In

Sections 3.1, 3.2 and 3.3, we introduce the techniques that are used to deal with the large size of

data in three different contexts containing code-centric development, model driven development,

and database domain, respectively.

3.1 Trace Abstraction in Code-Centric Approaches

3.1.1 Trace Visualization

Trace visualization is a technique concerned with the extraction of high level views of the run-

time information to support system comprehension. Most approaches (e.g., [60], [4], [61]) use a

UML sequence diagram to visualize interactions among grouped objects, and depict the behavior

of the program.

Sharp et al. [62] proposed several methods to explore a large-scale sequence diagram. They

applied some methods (e.g., filtering methods based on “the time” and zooming function) for

reducing the amount of run-time information.

Prada-Rojas et al. [63] provided a compact view from the information within execution traces.

The view is a small representation of the traces that provides a global view of the information and

a summary of the execution traces. The authors proposed a tool named OutlineView to present less

data but more useful information, by summarizing key features of large embedded traces. Using

this tool, user is able to select the trace events regarded to the global view, specify the functions to

23

apply to the selected events, and display and analyze the resulting view. In fact, this approach is a

visualization , and no compaction is applied to execution traces.

3.1.2 Trace Exploration

Trace exploration is concerned with techniques that allow browsing the content of traces, and

searching the trace content for specific components easily[3]. Such techniques can reduce the

amount of information displayed.

For example, SEAT (Software Exploration and Analysis Tool) [64] is a trace exploration tool

that provides various capabilities for the exploration of traces. Using SEAT, a software maintainer

can explore the trace by searching for specific components, filter the trace content using several

techniques such as pattern matching, sampling, and so on.

3.1.3 Abstracting the History of Object Interactions

This technique reduces the size of traces by abstracting the dynamic interactions among objects

of the system [65]. It can help software engineers to understand the system.

As an example, Hamou-Lhadj et al. [4] proposed a method for obtaining the summary of an

execution trace by removing utility objects which do not implement key system concepts. They

proposed a metmodel called the CTF (Compact Trace Format) which represents traces of routine

calls as directed acyclic graphs. This way, common subtrees are represented only once. They

showed that this native compaction can result in almost 90% compaction ratio.

Taniguchi et al. [46] proposed a method to extract compact sequence diagrams from dynamic

information of object-oriented programs. This method gets an execution trace of method calls of

the target program. They proposed four compaction rules to reduce the size of execution traces.

This compaction is performed by abstracting some repetition patterns and recursive calls appearing

in the trace. For compaction of repetitions, a repetition of similar sub-trees in a call tree are de-

tected, and replaced with one representative, which shows whole repeated structure and the number

of repetitions. The compacted execution trace is translated into a compact sequence diagram.

24

Noda et al. [66, 67] proposed a technique that generates abstracted sequence diagrams from the

information of applied GoF design patterns in a source code. To abstract an execution trace, the au-

thors defined some grouping rules for each design patterns. By applying static analysis, non-useful

objects and complex interactions are removed from the application, then the objects belonged to a

design pattern are grouped. The authors used a UML sequence diagram to visualize interactions

among grouped objects, and depict the behavior of the program. Similarly, another approach [66]

abstracts execution traces by identifying and grouping correlated objects. Therefore, the size of

execution traces are reduced due to the reduction in the number of objects in the execution trace.

In this approach, the object interactions are visualized with a sequence diagram.

3.1.4 Graph Reduction

Graph reduction techniques aim to reduce the generated graph of the trace to a smaller graph by

detecting, removing and replacing the similar graph nodes. Quante and Koschke [68] introduced a

technique to build an object process graph through dynamic analysis using run-time information.

In this approach, the behavior of different components of a program is extracted as dynamic object

process graphs. The size of graph can be reduced by removing branch nodes, unnecessary label

nodes, local loops ,and irrelevant subgraphs. These are repeatedly applied until the graph cannot

be simplified any more. The authors defined an object graph construction process to build an

object process graph through dynamic analysis using run-time information. The process includes

filtering mechanism to extract the related information for object trace. Using filtering method,

some parts of code are instrumented that deal with a certain type of expression. Then, a graph is

generated from the resulting object trace. The size of graph can be reduced by removing branch

nodes, unnecessary label nodes, local loops and irrelevant subgraphs. This is repeated until the

graph cannot be simplified any more. The process makes easier the analyzing and understanding

the program.

Hamou-Lhadj and Lethbridge [4] proposed an approach that represents trace as a tree structure,

and transforms into a more compact ordered directed acyclic graph (DAG) by representing similar

25

subtrees only once. For this work, the authors extended Valiente’s algorithm that traverses the

tree, and identifies trace patterns. By defining a set of matching criteria, the algorithm considers

detecting similar subtrees that are not necessarily identical. The technique is lossless, meaning that

the original trace can fully be reconstructed from the compact one.

Likewise, Alawneh et al. [31] applied a similar approach to represent run-time information

generated from HPC applications. They represented traces as an ordered directed acyclic graph

(DAG) by capturing common subtrees only once. The structure promotes to be adopted as a stan-

dard exchange format that is scalable to very large traces.

3.1.5 Partitioning and Clustering

Clustering is a data mining technique that is considered as a trace compaction technique to

reduce the size of traces. It provides the capability for identifying the specific parts of the trace

such as most related parts of the trace, frequent patterns or specific components. Dugerdil and

Repond [69] used a software clustering technique based on the dynamic analysis of method calls

while executing a scenario of a system. They implemented a clustering technique for identifying

the set of functional components by splitting the execution trace in contiguous segments, and

observe collaborating classes presented in each segment.

Zaidman and Demeyer [70] proposed a heuristic approach that reduces the large size of a trace

by finding frequent patterns within the trace. They analyzed consecutive samples of the trace to

identify recurring patterns of events having the same global frequencies. In other word, they finds

the events with similar frequency, and splits the trace into frequent event clusters. First, irrelevant

events (e.g., low-level method calls) from the trace is removed. Then, the program is executed

based on a specific scenario, and a file containing a sequence of all method calls is provided. After

counting number of events included in the trace, the euclidean distance is applied for the sequence

of events. Finally, the trace is analyzed for identifying regions including recurrent patterns that are

more interesting and more frequent.

Bose and Aals [71] proposed a technique for clustering event logs. This technique considered

26

sub-sequences of activities, which exist across multiple traces. This sub sequences are with differ-

ent lengths. The idea is finding similar regions (sequence of activities) within a trace, and sharing

high similarity regions between two or more processes. The similar regions across a set of traces

in an event log can be shared between two or more process instances. Such technique provides

ability to cluster traces so that the regions common between different parts of the trace are put in

the same cluster. For large data sets containing many repeats, a filtering mechanism for the repeats

is used.

Song at el. [72] presented an approach using trace clustering for event logs. The authors pro-

posed a format for information in an event log, and implemented divide-and-conquer approach in a

systematic manner. In this approach, traces are characterized by profiles, which are a set of related

items representing the trace from a specific perspective. The profile allows applying any clustering

algorithm that can be employed for the actual partitioning of the log. The event log is divided into

several subgroups, and constructs process models, each containing a list of elements.

3.1.6 Program slicing

Program slicing is a technique that splits the program in several slices, each one is the part of

the program that affects the value of a chosen variable during a program execution [73].

Smith and Korel [74] proposed a technique of slicing event traces to reduce the number of

events for analysis. This technique uses a slicing algorithm to identify several types of dependen-

cies between events. All events that are irrelevant or do not affect the starting event are removed

from the event trace that can further reduce the size of the sliced event trace. Dhamdhere et al. [75]

followed similar approach, and provided a compact execution history for dynamic slicing of pro-

grams by focusing on critical statements in a program. An instrumentation algorithm is used to

identify critical nodes and similar loops for the summarization. In this technique, only critical

statements appear more than once in an execution trace, and all other statements appear at most

once.

Zaidman et al. [70] proposed a technique that applies web mining techniques to execution

27

traces. This technique is based on the idea that a large trace contains many unimportant sections,

such as long loops in the execution. The trace can be divided to a number of slices using aspect

oriented programming (AOP). The approach includes several steps. First, a dynamic call graph

is built from the information contained in the trace. Then, web mining techniques (e.g., HITS

algorithm) are applied on the trace to identify irrelevant parts of the trace. Finally, a compacted

call graph is derived from the dynamic call graph by considering the interesting and relevant sec-

tions in program execution. The reduced size of the trace improve dynamic analysis and program

comprehension process.

3.1.7 Pattern Detection

Pattern detection is the ability to group similar sequences of events in the form of execution pat-

terns. Pattern matching is an efficient technique to reduce the size of traces by detecting execution

patterns, and representing the same patterns only once [60]. For this work, such technique often

uses a set of matching criteria to generalize the sequences of events so that they can be considered

as instances of the same pattern.

Pauw et al. [60, 76] proposed a tool called Ovation that visualizes traces using a tree view

based. This tool allows users to browse the trace at various levels of detail. It also provides

the ability to identify execution patterns, and to eliminate contiguous repetitions of sequences

of calls. To overcome the large size of the trace, similar sequences of events are considered as

instances of the same pattern. The authors used a generalization mechanism to identify repetitive

execution patterns. The patterns are included in loops and recursive functions. In this approach,

a set of matching criteria including namely, identity, repetition, and depth-limiting is defined for

the pattern detection. These matching criteria require to be set. For example, the depth-limiting

criterion involves setting the depth at which two sequences of events need to be compared. In some

case, the different combinations of matching criteria will result in different filtering of the content

of traces.

Sartipi and Safyallah [77] proposed a pattern discovery technique to extract frequent patterns

28

in the execution traces of a software system. The proposed approach uses dynamic analysis, data

mining technique sequential pattern discovery, and concept lattice analysis. The authors applied

three different techniques to deal with large execution traces. First, the the loop-based repetitions

are removed from the trace by using a top-down program analysis. Then, a data mining sequential

pattern discovery [78] algorithm is applied to extract frequent parts of the trace. Finally, the last

technique is based on string manipulation algorithms [79] that is used for identifying repetitive

patterns in a string of elements. All these techniques are performed in four different stages: trace

extraction, pattern mining, pattern analysis, and structural evaluation.

3.1.8 Hiding Components

This technique is used for removing some information (e.g., all invocations of a specific method)

from the trace that can reduce the trace size. For instance, using Program Explorer [80], an ana-

lyst is able to remove methods, specific objects or even classes. This can be done by pruning and

slicing of data. Similarly, Hamou-Lhadj et al. [4] reduced the trace size by filtering the content of

traces with removing implementation details including utilities. The authors used fan-in analysis

method to detect utility components. They identified categories of implementation details such

as the components that implement data structures, mathematical functions, and components that

implement input/output operations, and so on. Note that in this technique, the components that

have no effect on the comprehension of the trace should be considered to be removed.

3.2 Trace Abstraction in Model-Driven Approaches

3.2.1 Sharing Immutable Objects

Fouquet et al. [81, 82] developed the Kevoree Modeling Framework (KMF), which is an al-

ternative to EMF [83], specifically designed to support models at run-time in terms of memory

usage and run-time performance. KMF provides the same features than EMF for code generation

29

facilities and models (un)marshalling. To deal with the large size of the model during run-time,

the authors used a technique that duplicates only the mutable parts of a model, while applying a

flyweight pattern [84] to share the immutable objects between the original model and its clones.

KMF also used an additional technique for reducing the memory footprint by avoiding the cre-

ation of temporary objects. To this work, the objects are reused for loading and saving in memory

instead of creating temporary objects. Such mechanisms improve the memory usage.

Likewise, Bousse et al. [27] proposed a technique relying on data sharing among run-time

representations of model clones. As a metamodel contains both mutable and immutable run-time

data, their approach is based on the idea that the immutable run-time data can be shared between

run-time representations of a model and its clones. More precisely, such technique aims to avoid

duplicating immutable run-time objects which are the objects that cannot change during execu-

tion. These objects can be shared between the original model and its clones, then results reducing

memory used when generating the clone.

3.2.2 Avoiding Redundancy in Traces

Bousse et al. [27] presented a generative approach to automatically derive multidimensional

domain-specific trace metamodels that provide facilities for efficiently processing traces. Such

metamodels define Trace object as a sequence of execution steps and execution states. In this

approach, execution states contain the values of the mutable properties of a model. Thereby, the

trace metamodels reduce redundancy within traces when manipulating traces by creating a single

object per value change of a mutable field instead of storing the same value twice; hence improves

scalability in space. However, even the approach reduces the memory footprint of traces, the trace

still contains redundant patterns within execution steps, and repetition in states as well. Yet, this

technique still require substantial memory usage due to the redundant patterns and repetitions.

30

3.2.3 Recording Modifications of the Dynamic Model

Hegedus et al. [85, 52] proposed a generic execution trace metamodel that is manually ex-

tended into a domain-specific trace metamodel using inheritance relationships. The authors used

three different ways for representing dynamic information during a model execution. The first

method is Snapshot, a simple representation of the trace, which stores all dynamic information for

specifying the new state of the model element. Although this way is easy to implement, the trace is

complex and large. The second method is trigger, used by event-driven languages, when an event

is triggered. Instead of storing all relevant event dynamic information, only the event is recorded.

The third one is change, in which instead of storing all dynamic information of the new state of the

model, only the modification (delta) between two subsequent states of a dynamic model element is

represented. For this work, the approach stores both values of dynamic model elements before and

after the modification. Compared to the other methods, such method is more effective to reduce

the size of model execution traces.

3.3 Data Compression Techniques in Database Domain

Data compression is widely used in data management to save storage space and network band-

width. It is used to reduce the size of the data, improve performance, and save storage space and

network bandwidth as well [86]. Indeed, database performance strongly depends on the amount of

available memory. Therefore, it is required to reduce the size of data effectively by keeping and

manipulating data in memory in a compressed form. In the following, we introduce techniques to

allow data compression on data management.

3.3.1 Column-Oriented Database Systems

In-Memory Column Store is a technique for storing large amount of data in database. How-

ever, it has major effects on memory consumption and high speed in query. There are several

architectures for column store databases. The most important ones are presented in the following.

31

C-Store [87] is a column-oriented database management system that stores data by column and

not by row. The column is compressed using a column-specific compression method, and sorted

in the corresponding table. The compression method for each column depends on the data type,

the number of distinct values, and storing of data. Each column in C-Store may be stored several

times in several different sort orders. There are numerous possible compression schemes that can

be applied, i.e., run-length encoding, bit-vector encoding, dictionary compression and patching.

Run-Length Encoding (RLE) [88] is a simple form of lossless data compression that com-

presses runs of data in a column to a compact representation. Thus, it is appropriate for the columns

with the reasonable-sized runs of the same value. These runs are replaced with value, start position,

and run-Length, where each having a fixed number of bits.

Dictionary [89] is a class of lossless data compression algorithms, which creates a dictionary

table for an entire table column sorted on frequency, and represents values as the integer position

in this table.

3.3.2 Rainstor

RainStor [90] is a column store technique for storing data, in which every unique value in the

dataset is stored once (and only once). In this technique, every data row is represented as a binary

tree that the original record can be reconstructed by using a breadth-first traversal of the tree.

Unlike the column-store approaches that create dictionaries and search for patterns only within

individual columns, RainStor’s compression algorithm finds patterns across different columns.

Consider a simple example to understand how this technique works. Table 3.1 contains 15

records with four attributes, and represents a subset of Order data from a particular retail enterprise

that sells bicycles and related parts. As presented in the table, there is dependency between some

of the columns. In particular, the value of Shipdate is usually 1 or 2 days after the Orderdate,

and the value of Price for different products are usually consistent across orders, but there may be

slight variations in the price value. Figure 3.1 represents a forest of binary trees, the compressed

view of data of the Table 3.1 using RainStor technique. For the records of Orders, we have 15

32

Table 3.1: Excerpt of order data of a retail system (taken from [90])

Id Orderdate Shipdate Productname Price

1 03/22/2015 03/23/2015 “bicycle” 300
2 03/22/2015 03/24/2015 “lock” 18
3 03/22/2015 03/24/2015 “tire” 70
4 03/22/2015 03/23/2015 “lock” 18
5 03/22/2015 03/24/2015 “bicycle” 250
6 03/22/2015 03/23/2015 “bicycle” 280
7 03/22/2015 03/23/2015 “tire” 70
8 03/22/2015 03/23/2015 “lock” 18
9 03/22/2015 03/24/2015 “bicycle” 280
10 03/23/2015 03/24/2015 “lock” 18
11 03/23/2015 03/25/2015 “bicycle” 300
12 03/23/2015 03/24/2015 “bicycle” 280
13 03/23/2015 03/24/2015 “tire” 70
14 03/23/2015 03/25/2015 “bicycle” 250
15 03/23/2015 03/25/2015 “bicycle” 280

relevant binary trees, each are shown using the green circles at the top of the figure. For instance,

the binary tree corresponding to the first record is depicted on the left side of the figure. The root

of the tree has two children: the intermediate nodes “A” and “E”. Node “A” points to 03/22/2015

(related to the Orderdate of record 1), and to 03/23/2015 (related to the Shipdate of record 1).

Node “E” points to 300 as the price of the record 1 and “bicycle” as the Productname of the record

1. Three other root nodes point to the node “A” that are corresponding to the records 4, 6, and 7

due to the same values for the Orderdate (03/22/2015) and the Shipdate (03/23/2015). Likewise,

for the node “E”, there is an additional arrow from the root tree corresponding to record 11 as it

contains the same values with record 1 for the Productname (bicycle) and the price ($300).

RainStor structure yields a data reduction rate of 40:1, i.e., it requires 40 times less storage.

The shared internal nodes are the main difference between RainStor’s compression algorithm and

a column-store technique. RainStor provides more capability to search for the similar patterns

existed in the dataset, and compresses data by pointing the roots of the tree to the shared nodes

related to the patterns.

33

Figure 3.1: Forest of binary trees compression for the order records depicted in Table 3.1 (taken
from [90])

34

Part II

Contributions

35

Chapter 4

A Taxonomy for Model Execution Tracing

Approaches

In this chapter, we present our first contribution, which is a taxonomy for model execution

tracing approaches, obtained from a systematic mapping study. In Section 4.1, we introduce the

context of our contribution and our proposal. In Section 4.2, we describe the research method

used for conducting the mapping study and the classification scheme applied for the research.

Continuing, Section 4.3 reports the main findings. In Section 4.4, we present identified open

challenges and present future research directions. In Section 4.5, we evaluate our approach and

findings by discussing limitations and threats to validity. Section 4.6 outlines the main related

work. Section 4.7 summarizes the results and concludes.

4.1 Introduction

In the last decade, there has been a noticeable increase in the number of papers on tracing tech-

niques for executable models, but without a clear direction where the field is heading. Furthermore,

it is not clear what the advantages and limitations of the proposed techniques are. We believe this

is due to the lack of a survey on the state of the art and of a classification of existing work.

To fill the aforementioned gap, we conducted a systematic mapping study on the existing pro-

posals for model execution tracing solutions following the guidelines presented by Kitchenham

and Charters [91] and Petersen et al. [92]. We examined 64 research studies from an initial set

of 645 and classified them based on the following facets: (1) the types of models that are traced,

36

(2) the supported execution semantics definition techniques, (3) the traced data, (4) the purpose of

model execution tracing, (5) the used data extraction technique, (6) the used trace representation

format, (7) the used trace representation method, (8) the language specificity of the trace structure,

(9) the data carrier format used for storing traces, and (10) the maturity level of model execution

tracing tools. Using this classification, we evaluated the state of the art of solutions for model

execution tracing, and pointed to promising future research directions in this area.

The main contributions of this mapping study are (i) a framework for classifying and comparing

solutions for model execution tracing, (ii) a systematic review of the current state of the art in model

execution tracing, and (iii) an exploration of open research challenges in model execution tracing.

The study targets researchers who want to contribute further to the area of model execution tracing,

as well as practitioners who want to gain insight on existing model tracing solutions.

It is worth noting at this point that the conducted study focuses on approaches for tracing

executable models. Thus, other tracing techniques employed in MDE, such as maintaining trace-

ability links between source and target models of model transformations, and tracing the execution

of model transformations, are out of the scope of this survey. Also, we exclude tracing techniques

for programs written in general-purpose programming languages.

4.2 Research Method

To conduct the systematic mapping study, we followed the guidelines presented by Kitchenham

and Charters [91] and Petersen et al. [92] in order to identify, evaluate, and present existing research

studies around our topic. The goal of this survey is to answer the following research questions.

Q1 (Type of Model): Which executable modeling languages are targeted by model execution

tracing approaches?

Q2 (Semantics Definition Technique): Which techniques are used to define the execution se-

mantics of executable modeling languages targeted by model execution tracing approaches?

37

Q3 (Trace Data): What kind of data is captured in model execution traces?

Q4 (Purpose): For what purposes is model execution tracing used?

Q5 (Data Extraction Technique): Which techniques are used for extracting run-time infor-

mation from model executions in order to construct execution traces?

Q6 (Trace Representation Format): Which data representation format is used for defining

the trace data structure?

Q7 (Trace Representation Method): How is the trace data structure defined?

Q8 (Language Specificity of Trace Structure): Is the data structure specific to the considered

executable modeling language, specific a particular kind of executable modeling language,

or considered independent of any executable modeling language (i.e., generic)?

Q9 (Data carrier format): Which data carrier format is used for storing traces?

Q10 (Maturity Level): How mature are available tools for model execution tracing?

The study protocol includes three phases, namely planning, conducting, and reporting. In the

following, we discuss the planning and conducting of the study. The study results are reported in

Section 4.3.

4.2.1 Review Planning

The first phase of our survey process is planning, which consists of defining the search strategy

and review process. In the following, we explain the search strategy. The review process is outlined

as part of the discussion of the review conduction in Section 4.2.2.

We used the following online libraries to find research studies related to model execution trac-

ing. With this list of online libraries, we aimed at achieving a comprehensive coverage of publica-

tion venues from all major publishers in the field of software engineering.

38

• ACM Digital Library (http://dl.acm.org)

• IEEE Xplore (http://ieeexplore.ieee.org)

• ScienceDirect (http://www.sciencedirect.com)

• Springer Link (http://www.springer.com)

• Scopus (http://www.scopus.com)

The terms we used to select relevant research studies are as follows. Each term includes several

keywords meaning that at least one of the keywords has to be present in a paper.

A = model tracing, model-based trace, execution trace, tracing, trace

B = MDE, model-driven, model-level, model-based

C = meta-model, metamodel, modeling language

D = model execution, model verification, dynamic analysis, executable model, xDSML

The overall search string can be combined in the following way:

Search String = (A ∧ (B ∨ C ∨D)) (4.1)

The rationale behind using this search string is to identify the largest number of research studies

related to model execution tracing. We performed an advanced search in the aforementioned online

research databases and search engines using this search string.

Furthermore, we defined two types of inclusion and exclusion criteria to decide whether a

publication found in the search should be included in the study or excluded. The first type is a

set of format-related criteria, such as publication language and publication type. The second type

is a set of content-related criteria. The selection criteria used in this study are given bellow. The

39

publications have been selected on the basis of these criteria through a manual analysis of their

titles, abstracts, and keywords. when in doubt, also the conclusions of a publication have been

considered.

Inclusion Criteria:

1. Publications in peer-reviewed journals, conferences, and workshops

2. Publications that address problems in the field of model execution tracing

3. Publications dealing with recording execution traces for models or designing execution trace

formats for executable modeling languages

Exclusion Criteria:

1. Books, web sites, technical reports, dissertations, pamphlets, and white-papers (based on the

guidelines suggested by Adams et al. [93] and Petersen et al. [92]).

2. Summary, survey, or review publications

3. Non peer-reviewed publications

4. Publications not written in English

5. Publications after February 2018, the time the final search for primary studies was conducted

6. Publications on traceability in model transformation

7. Publications that do not consider executable models

8. Publications not focusing on MDE (e.g., execution tracing in code-centric approaches)

4.2.2 Review Conduction

The second phase of our study process, review conduction, consists of three main activities:

article selection, data extraction, and article classification, which are elaborated in the following.

40

4.2.2.1 Article Selection

The article selection comprised a pilot study, the actual selection of primary studies, and the

assessment of the quality of the selected primary studies.

Pilot study Before the actual selection of articles, we performed a pilot study as suggested by

Kitchenham and Charters [91] and Petersen et al. [92] to confirm the reliability of our selection

criteria.

In this pilot study, a set of ten articles was preselected from different sources and publishers.

This list was defined based on the bibliography of one of our earlier papers [94]. This selection

included seven articles that should be included in the study as primary studies and three articles

that should be excluded.

The selected articles were then given to a domain expert who was not involved in the planning

phase of the study process. Therefore, he was not biased by the search process. He was asked to

decide based on the defined inclusion and exclusion criteria which of the selected articles should

be considered as primary studies and which ones should be excluded from the mapping study.

The results were then cross-checked against the initial classification of the preselected articles in

primary studies and non primary studies.

Pilot study results: The first execution of the pilot study failed. Out of the ten articles, only six

were correctly classified. In particular, five articles were correctly identified as primary studies and

one was correctly identified as non primary study. Based on these results, the selection criteria were

refined and the pilot study re-executed. After the second execution, the results were acceptable:

Seven articles were correctly identified as primary studies and one was correctly identified as non

primary study. The two articles that were assessed differently focused on dynamic analysis in

code-centric approaches, which is beyond the scope of this mapping study. This led us to add an

extra exclusion criterion excluding tracing approaches not focusing on MDE (exclusion criterion

8).

41

Primary studies selection This step comprised the search for relevant publications using the

search string introduced in Section 4.2.2, the elimination of duplicate publications found in multi-

ple online libraries, and the filtering of the publications by applying the aforementioned selection

criteria.

Initial Search

Removing
Duplicates

First Filtering
(Abstract, Title,
keywords, Intro,

Conclusion)

Snowballing

Applying
Inclusion/Exclusion

Criteria

Finalizing Primary
Studies

942 studies found

297 studies removed
645 studies remained

506 studies removed
139 studies remained

68 studies removed
71 studies remained

18 studied removed
53 studies remained

11 new studies added

64 final primary studies

Detailed Filtering

Figure 4.1: Primary studies selection process

Figure 4.1 shows the primary studies selection process along with the obtained results of the

tasks. The initial search process returned 942 results including 297 duplicates. For the studies

that were identified in more than one online library, we considered their original publisher. In

order to assess the relevance of the found studies to our topic, we reviewed their titles, abstracts,

keywords, introduction sections, and if needed conclusion sections. In this step, 506 studies were

rejected, while 139 moved on to the next step. Next, we applied the inclusion and exclusion

42

criteria. The result was a set of 71 studies. In the next step, a more detailed filtering was applied

by inspecting the entire content of the remaining 71 studies. Most of the studies eliminated in this

step were related to traceability in model transformation, and also dynamic analysis in code-centric

approaches. The filtering yielded 53 remaining studies. In order to minimize the risk of missing

any relevant studies, we performed a snowballing step by checking the references of the remaining

53 studies and identified 11 more studies fulfilling the inclusion criteria. Hence, these studies were

added to the primary studies. The final set of primary studies investigated in this mapping study

consists of 64 studies.

183
174

165

102

21
16

42

31 35

15
10

15

2

21

5

0

20

40

60

80

100

120

140

160

180

200

ACM Springer ScienceDirect IEEE Scopus

Initial studies Potential studies Primary studies

Figure 4.2: Studies retrieved through online libraries

Publication trends: Figure 4.2 shows for each used online library the total number of studies

that were retrieved using the defined search string (initial studies), the number of studies remaining

after the removal of duplicates and first filtering (potential studies), and the number of studies

finally included in the mapping study after applying inclusion and exclusion criteria and detailed

43

1 1 1

4

5

6

4

6

8

4

11

7

3

2

1

0

2

4

6

8

10

12

1999 2001 2004 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Figure 4.3: Primary studies per year

40

14
10

0
5

10
15
20
25
30
35
40
45

Conference Journal Workshop

Figure 4.4: Primary studies per publication type

filtering (primary studies). Figure 4.3 shows the publication years of the primary studies. As can

be seen in this figure, first publications on the topic of model execution tracing appeared around

the year 2000, but only in 2007, the topic gained more interest by the scientific community leading

to an increase in publications on this topic per year with the highest number of publications in the

year 2014.

Finally, Figure 4.4 presents the distribution of the selected primary studies based on the pub-

lication type. We only included studies published in peer-reviewed workshops, conferences, and

journals. Please note that we considered symposia and congresses also as conferences. From the

40 primary studies shown in Figure 4.4 as conference papers, 4 have been presented at symposia

44

and 1 at a congress.

The figure shows that studies in the field of model execution tracing have been mostly published

in conference proceedings.

Quality assessment We also evaluated the quality of the selected primary studies as suggested

by Kitchenham and Charters [91] and Petersen et al. [92] to make sure that they are of sufficient

quality to be included in a systematic mapping study. For this, we developed a checklist containing

five quality assessment questions as presented in Table 4.1. The questions are based on the sug-

gestions given in [95, 91] and [92], as well as the questions used in a study by Santiago et al. [96].

The questions have been answered for all primary studies by Fazilat Hojaji and Bahman Zamani.

Thereby, the score values were ‘Yes’ = 1, ‘Partly’ = 0.5 or ‘No’ = 0.

Table 4.1: Quality assessment questionnaire

Topic Question

Objective Did the study clearly define the research objectives?
Related work Did the study provide a review of previous work?
Research methodology Was the research methodology clearly established?
Validity and reliability Did the study include a discussion on the validity

and reliability of the procedure used?
Future work Did the study point out potential further research?

Figure 4.5 shows the percentages of primary studies assigned ’Yes’, ’Partly’, or ’No’ on the five

quality assessment questions. It shows that for each of the five questions, most of the studies (%83-

%100) score ’Yes’ or ’Partly’, which confirms that the selected primary studies are of sufficient

quality to be included in this mapping study. We also calculated (“% total score”) for each quality

assessment question, which shows the percentage of scores obtained by all the primary studies

assigned for a given quality assessment question over sum of the scores obtained by all primary

studies for all QA1 to QA5. The arithmetic mean of the scores is 3.77 and the standard deviation

0.95. Figure. 4.6 shows a pie chart depicting the distribution of scores for the assessment questions.

It illustrates that QA1 obtained the highest score (%23) over the total score, while QA5 has the

45

72%

53%

61%
64%

38%

28%

36% 38%
33%

45%

0%

11%

2% 3%

17%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Objective Related work Research
methodology

Validity and
reliability

Future work

Yes Partially No

Figure 4.5: Results of quality assessment of selected primary studies

QA1
23%

QA2
19%

QA3
21%

QA4
21%

QA5
16%

Figure 4.6: Total score for quality assessment questions

least (%16).

4.2.2.2 Data Extraction and Classification Scheme

In this section, we describe how we classified the selected primary studies. We developed a

classification scheme by inspecting the content of all 64 selected primary studies with the goal of

addressing our research questions. In particular, for each research question, we assigned keywords

to the primary studies, which provide answers to the research question. For example, we assigned

the keyword “interactive model-level debugging” for research question Q4 if the purpose of the

46

model execution tracing approach presented in a primary study was to realize this type of dynamic

V&V technique. Subsequently to this keywording phase, the keywords assigned for each research

question were clustered and for each cluster, a keyword encompassing all clustered keywords was

assigned. The result was a set of attributes for each research question that was used to classify the

primary studies for this research question. The attribute sets are described in the following.

Types of Models (Q1) This attribute set is used to characterize model execution tracing ap-

proaches concerning supported executable modeling languages. For this, we defined the following

attributes.

• Any: refers to approaches that can be applied to any executable modeling language, i.e.,

approaches that can be used to trace the execution of models conforming to any executable

modeling language.

• UML models: refers to approaches that have been specifically designed to trace the execution

of models conforming to UML or a subset of UML.

• Workflow models: refers to approaches that have been specifically designed to trace the

execution of workflow models that define the flow of work in processes. Workflow models

can be expressed in executable modeling languages like Petri nets and BPMN.

• Other: refers to approaches to which the other attributes do not apply, i.e., approaches that

are designed to trace the execution of models conforming to particular executable modeling

languages or kinds of executable modeling languages other than UML and workflow mod-

eling languages. Note that approaches in this category are applicable to a restricted set of

executable modeling languages, while approaches in the category Any can be applied to any

executable modeling language.

Semantics Definition Techniques (Q2) This attribute set refers to the way execution seman-

tics are defined for the executable modeling languages supported by a model execution tracing

47

approach. As introduced in Section 2.2, we distinguish translational and operational semantics.

Hence, the attributes are defined as follows.

• Translational: refers to approaches applicable to executable modeling languages whose ex-

ecution semantics are defined in a translational way.

• Operational: refers to approaches applicable to executable modeling languages whose exe-

cution semantics are defined in an operational way.

• Other: refers to approaches applicable to executable modeling languages whose execution

semantics are neither defined translational nor operational, but with some other kind of se-

mantics definition technique, such as denotational semantics.

• Unknown: refers to approaches where no information about the kind of supported execution

semantics is provided in the associated primary studies.

Trace Data (Q3) With this attribute set, we characterize model execution tracing approaches

concerning the data recorded in execution traces. In particular, we used the following attributes.

• Event: refers to approaches that trace events occurring during the execution of a model.

• State: refers to approaches that trace information about the evolution of the execution state

of a model.

• Parameter: refers to approaches that trace inputs processed by the execution of a model or

outputs produced by the execution of a model.

Purpose (Q4) This attribute set is concerned with the purpose of the investigated model execu-

tion tracing approaches, in particular, the purpose of execution traces produced by the individual

approaches. We determined the purposes from the primary studies by considering the applications

of execution traces mentioned or explicitly presented by the authors as part of their contribution.

48

This way, we identified the following purposes of model execution traces that serve as attributes

for this research question.

• Debugging: refers to techniques to interactively control and observe the execution of a model

in order to find and correct defects. Model execution traces can be utilized in different ways

for the purpose of debugging executable models. For instance, execution traces can be used

in omniscient debugging to travel back in time in the execution to visit previous execution

states, to replay past executions, or to retrieve the run-time information about the execution

of a model that should be shown to a user.

• Testing: refers to techniques for testing models concerning functional or non-functional

properties or for testing applications with the help of models concerning functional and non-

functional properties. Execution traces can be used in testing, for instance, as oracles or as

basis for evaluating test cases providing the necessary run-time information to determine the

success or failure of a test case.

• Manual analysis: refers to techniques for manually analyzing the execution behavior of a

model or the modeled system. Such techniques are mostly concerned with the visualization

and querying of model execution traces.

• Dynamic analysis: refers to the analysis of run-time information gathered from the execution

of a model, similar to the definition of dynamic analysis of programs given in [97]. Thereby,

gathered run-time information can be analyzed for different properties, including general be-

havioral properties like deadlock-freeness, functional properties, and non-functional proper-

ties. Execution traces have a natural application in dynamic analysis as they record run-time

information about a model or program execution.

• Model checking: refers to techniques in which all the possible execution states of a model

are checked with respect to some property. Model checking may rely on execution traces for

representing the state space of model or for representing counter examples found for violated

properties.

49

• Semantic differencing: refers to techniques that compare execution traces of models to un-

derstand the semantic differences between them.

Data Extraction Techniques (Q5) This attribute set focuses on the techniques used for the ex-

traction of the traced run-time information during model execution. We categorized the data ex-

traction techniques identified in the investigated primary studies using the following attributes.

• Source instrumentation: Elements are added to the executable model, which are responsible

for the construction of execution trace.

• Target instrumentation: This data extraction technique only concerns model execution trac-

ing approaches considering executable modeling languages with translational semantics. In

this technique, elements are added to the target model or target code generated from a model

for its execution. These introduced elements are responsible for the construction of execution

traces.

• Interpreter: This data extraction technique only concerns model execution tracing approaches

considering executable modeling languages with operational semantics. In this technique,

execution traces are constructed by the interpreter of an executable modeling language (i.e.,

by the executable modeling language’s operational semantics), or by the execution engine

responsible for executing the operational semantics of an executable modeling language.

• External tool: The information to be recorded in an execution trace is provided by an external

tool. Such an external tool could be, for instance, a model checker.

• Other: This attribute is assigned to approaches that use none of the data extraction techniques

represented by the other attributes.

Trace Representation Format (Q6) This attribute set refers to the kind of format used for the

representation of execution traces. We categorized the trace representation formats of model exe-

cution tracing approaches using the following attributes.

50

• Metamodel: the data structure for representing traces is defined using a metamodel.

• Text format: the data structure for representing traces is defined through some well-defined

text format. In particular, approaches defining a formal grammar for representing traces or

producing traces in the form of well-structured log outputs fall into this category.

• Other: this attribute is assigned to model execution tracing approaches that use trace repre-

sentation formats other than the ones captured by the attributes given above.

• Unknown: this attribute is assigned to approaches where the associated primary studies do

not mention the used trace representation format.

Trace Representation Method (Q7) This attribute set refers to the method used for defining the

trace representation format. It includes the following attributes.

• FR (framework): refers to approach that provide a framework for defining custom trace

representation formats.

• AG (automatically generated): refers to approach that automatically generate a trace repre-

sentation format for a given executable modeling language.

• MD (manually developed): refers to approaches that use a trace representation format man-

ually developed for the respective approach.

• AE (already existing): refers to approaches that rely on some existing trace representation

format.

• Unknown: refers to approaches where the associated primary studies do not mention the

used trace representation method.

Language Specificity of Trace Structure (Q8) This attribute set categorizes model execution

tracing approaches concerning the language-specificity of the used trace data structure. For this

categorization, we defined the following attributes.

51

• Language-independent: refers to approaches that either rely on generic data structures for

representing execution traces, i.e., data structures that can be used to represent execution

traces of models conforming to any executable modeling language, or approaches that sup-

port the creation of executable modeling language-specific trace data structures but for any

executable modeling language.

• Language-specific: refers to approaches that rely on a data structure specific to the tracing

of models conforming to a particular executable modeling language.

• Specific to a certain kind of language: refers to approaches that rely on a data structure that

is specific to the tracing of models conforming to a particular kind of executable modeling

languages, i.e., trace data structures that do not only support the tracing of models conform-

ing to a single executable modeling language but that are not general enough to trace models

of any executable modeling language.

Data carrier format (Q9) This attribute set refers to the format used to store execution traces.

Based on the investigated primary studies, we identified the following used data carrier formats.

• Text: refers to approaches storing execution traces in simple text files.

• XML: refers to approaches storing execution traces in XML syntax, which includes, for

instance, XMI files.

• Database: refers to approaches storing execution traces in databases.

• Unknown: refers to approaches where the associated primary studies do not discuss the

supported data carrier formats.

Maturity Level (Q10) With this attribute set, we capture whether model execution tracing ap-

proaches offer tool support and how mature this tool support is. To measure the maturity level of

approaches, we used the four-level scale proposed by Cuadros Lopéz et al. [98] defined as follows:

52

• Level 1 (not implemented): The approach is not implemented in a tool.

• Level 2 (partially implemented): The approach is implemented in a prototype tool but not all

features are supported.

• Level 3 (fully implemented): The approach is completely implemented in a tool. The tool

has been used for several applications to validate the approach.

• Level 4 (used in industrial practice): The approach is completely implemented in a tool and

the tool has been used in industrial practice.

4.2.2.3 Article Classification

This step comprised the assignment of attributes to the selected primary studies, the summa-

rization of primary studies into distinct model execution tracing approaches, and the analysis of

the resulting classification of investigated approaches to summarize the research body.

Attribute Assignment We classified the selected primary studies based on the attribute sets de-

fined above. We achieved this by reading the complete content of the primary studies. In partic-

ular, each primary study was thoroughly reviewed by one of the authors, who also assigned the

attributes to the respective primary study. At least one of the other authors reviewed the resulting

classification. Whenever there was a disagreement, an in-depth discussion was done to reach a

consensus among the authors and make sure the classification is correct. In some cases, we had to

review the same primary study several times to make sure that we interpret its content correctly.

The classification was done in a spreadsheet that was shared among the authors and also used to

keep notes about additional details of the primary studies and exchange comments on individual

classifications.

Summarization of primary studies There are cases where multiple primary studies present the

same model execution tracing approach but on different levels of detail or in different development

stages. For instance, some journal articles selected as primary studies are extensions of earlier

53

work of the authors published in the proceedings of conferences or workshops, which were also

selected as primary studies. Thus, we decided to summarize such tightly related primary studies as

one approach and analyze the classification of approaches instead of the classification of primary

studies. Thereby the classification of an approach is the union of the attributes assigned to all

primary studies summarized in this approach. This summarization step yielded 33 approaches

from the 64 selected primary studies.

Classification results The attribute assignment and summarization of the 64 selected primary

studies resulted in a classification of 33 approaches, which can be regarded as the body of knowl-

edge in model execution tracing. The results of the classification are presented in Figure 4.7, which

shows the frequency in which the individual attributes have been assigned to the investigated model

execution tracing approaches per research question. These results are discussed in detail in Sec-

tion 6. The attributes assigned to each individual approach are shown in Table 4.2 (for Q1-Q3),

Table 4.3 (for Q4-Q5), and Table 4.4 (for Q6-Q10), which are given in the end of this chapter. In

these tables, the investigated approaches are numbered from A01 to A33.

All artifacts prepared for this work including the spreadsheet containing the classification of

the selected primary studies and bibliographic information have been collected in a replication

package that has been made publicly available1.

4.3 Results

In this section, we discuss the classification results of the investigated approaches per research

question as given in Figure 4.7 and Table 4.2-4.4.

1https://drive.google.com/drive/folders/1wX1xu10bd5vmXp_UDIjRFB2_WhmFBx5-?
usp=sharing

54

https://drive.google.com/drive/folders/1wX1xu10bd5vmXp_UDIjRFB2_WhmFBx5-?usp=sharing
https://drive.google.com/drive/folders/1wX1xu10bd5vmXp_UDIjRFB2_WhmFBx5-?usp=sharing

33%

36%

9%

21%

52%

42%

3%

6%

97%

58%

12%

15%

33%

24%

30%

21%

9%

3%

30%

36%

27%

6%

45%

18%

6%

30%

12%

15%

36%

12%

24%

30%

39%

30%

24%

24%

3%

48%

6%

12%

73%

9%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Any

UML

Workflow models

Other

Translational

Operational

Other

Unknown

Event

State

Parameter

Debugging

Testing

Manual analysis

Dynamic analysis

Model checking

Semantic differencing

Source instrumentation

Target instrumentation

Interpreter

External tool

Other

Metamodel

Text format

Other

Unknown

FR

AG

MD

AE

Unknown

XML

Text

Database

Unknown

Not implemented

Partially implemented

Fully implemented

Used in industry

Language‐independent

Language‐specific
Specific to a kind of language

Figure 4.7: Classification of model execution tracing approaches

55

4.3.1 Types of Models (Q1)

We discovered that concerning the targeted executable modeling languages, the investigated

model execution tracing approaches can be classified into three categories where each category

comprises around one third of the approaches: 36% of the approaches target UML models, 30%

target workflow models or models conforming to other executable modeling languages, and 33%

are independent of any executable modeling language.

Most of the approaches targeting UML models consider specifically UML activity diagrams or

UML state machines. Other behavioral diagrams, such as UML sequence diagrams, have been a

target only by a few approaches in this category.

Only a minority of the approaches, namely 9%, is devoted to workflow models. Three ap-

proaches fall into this category. Other executable modeling languages are targeted by 21% ap-

proaches: MCSE description models [99] are targeted in A01 [100], stochastic discrete event

simulation models in A10 [101, 42], COLA models [102] in A12 [103, 104], CCSL clock con-

straint specifications in A16 [105, 106, 37], story diagrams in A18 [107], live sequence charts in

A28 [108], and Event-B models in A30 [109]. It is worth noting that each of these executable

modeling languages is targeted by exactly one of the investigated approaches, i.e., none of them is

addressed in two or more approaches.

Especially in recent years it seems that more attention is directed towards approaches that

provide generic tracing mechanisms that can be applied on models conforming to any executable

modeling language: 64% of these approaches (seven out of eleven) appeared in the last five years

(publication dates from 2013 to 2018), while only 36% (four out of eleven) occurred between 2008

and 2011.

4.3.2 Semantics Definition Technique (Q2)

Concerning the semantics definition technique, we discovered that about one half of the in-

vestigated model execution tracing approaches assume that the execution semantics of supported

executable modeling languages are defined in a translational way (52%), while the other half of the

56

approaches rely on operational semantics (42%). Only one approach, approach A07 [51, 110, 12],

supports both translational and operational semantics. However, the authors introduce only a very

abstract pattern of how to design executable modeling languages as well as tracing infrastructures

for such executable modeling languages, rather than providing a concrete tracing infrastructure or

tooling that could be directly used.

Approach A26 [111, 112] falls into the category “Other”, because it considers denotational se-

mantics. For two approaches, we could not identify the supported semantics definition techniques

from the related primary studies, which is why they were assigned the category “Unknown”.

From this data we conclude that the majority of existing model execution tracing approaches

supports executable modeling languages with either operational semantics or translational seman-

tics, while there are no concrete solutions for offering model execution tracing capabilities to

executable modeling languages irrespectively of how their execution semantics are defined.

Another interesting finding is that the majority of approaches applicable to any executable mod-

eling language, namely 64%, rely on operational semantics. In contrast, 67% of the approaches tar-

geting UML rely on translational semantics. The latter confirms the finding by Ciccozzi et al. [17]

that translational semantics are predominantly used for the execution of UML models—in 85% of

the investigated solutions—rather than operational semantics.

4.3.3 Trace Data (Q3)

All of the investigated approaches except one (97%) trace events that occur during the execution

of a model. Thereby, 42% of all approaches do only trace execution events and not any further

information, i.e., these approaches produce traces that are basically sequences of events that occur

during a model execution. Equally many approaches (again 42%) do trace besides execution events

also information about the evolution of the execution state of models. Only a very small fraction

of the investigated studies, namely 12% capture rich traces that record execution events, execution

states, as well as inputs and outputs.

57

4.3.4 Purpose (Q4)

Most of the investigated model execution tracing approaches have been applied for realizing

either testing techniques or dynamic analysis techniques with 33% and 30% of approaches, re-

spectively. They are followed by 24% of approaches applied for manual analysis and 21% of

approaches applied for model checking. Only few approaches have been applied for debugging

and semantic model differencing, namely 15% and 9%.

The low number of approaches applied for debugging and semantic model differencing can be

explained with two reasons: First, only specific kinds of debugging techniques actually require

traces with omniscient debugging and debugging previous execution (i.e., replaying executions)

being the most prominent examples. Second, semantic model differencing is a rather young re-

search area with only few proposals made so far.

Interestingly, most of the investigated approaches, namely 70%, have been applied on one kind

of model analysis technique only, whereas only 27% of approaches have been applied to realize

two different kinds model analysis techniques. The most common combination of model analysis

techniques is the combination of manual analysis and dynamic analysis, which is reported by

15% of the investigated approaches (or 56% of the approaches applied on a combination of two

analysis techniques). All other combinations are only reported for one approach each. It is also

worth mentioning that manual analysis is the model analysis technique that has been most often

combined with other model analysis techniques (in 21% of all approaches or 78% of approaches

applied on a combination of two analysis techniques).

There is only one approach, A20 [39, 14, 113, 114, 115], which uses traces recorded with the

proposed model execution tracing approach for realizing three different kinds of model analysis

techniques, namely testing, dynamic analysis, and debugging.

Another interesting finding is that more than half of the investigated model execution trac-

ing approaches that are applicable to any executable modeling language have been applied for

model checking, namely 55%. The other model analysis techniques are only considered by 1-2

approaches each. In contrast, half of the approaches targeting UML have been applied for model

58

testing, followed by 33% of approaches applied for manual analysis, and 25% of approaches ap-

plied for dynamic analysis. Only two of the approaches targeting UML have been applied for

debugging, and one each for model checking and semantic model differencing.

4.3.5 Data Extraction Techniques (Q5)

The most common data extraction techniques used by the investigate model execution tracing

approaches are tracing by an interpreter (36%), tracing through target instrumentation (30%), and

tracing by an external tool (27%).

As already discussed in Section 4.2.2.2, tracing by an interpreter only concerns executable

modeling languages with operational semantics. From the model execution tracing approaches

supporting operational semantics, 86% rely on this data extraction technique. The other 14% rely

on external tools for extracting the runtime data to be traced.

Similarly, tracing through target instrumentation is only applicable for approaches supporting

translational semantics. From the approaches supporting translational semantics, 59% rely on tar-

get instrumentation for data extraction. The majority of the remaining model execution tracing

approaches supporting translational semantics extract runtime data through external tools, namely

29%. Only one approach supporting translational semantics, approach A02 [116], relies on source

instrumentation for data extraction, and one approach, approach A12 [103, 104], relies on a mid-

dleware that is part of the targeted execution platform for data extraction and is hence classified as

“Other” for the data extraction technique.

It is also worth mentioning that approach A07 [51, 110, 12], which supports both translational

and operational semantics (cf. Section 4.3.2), uses a model checker (i.e., an external tool) for

constructing traces when execution semantics are defined in a translational way, and construct

traces through the interpreter when the execution semantics are defined in an operational way.

Looking at the “External Tool” category, 44% of the approaches assigned to this category sup-

port only translational semantics, 22% support only operational semantics, and 11% (1 approach)

support both translational and operational semantics. For 22% of the approaches extracting data

59

through external tools, the supported semantics definition technique is unknown.

For the “Other” category, we already mentioned approach A12 [103, 104], which supports

translational semantics and relies on a middleware for extracting the runtime information to trace.

The second approach assigned to this category, approach A26 [111, 112], supports denotational

semantics and traces are directly constructed through the denotational semantics implemented in

Haskell.

From this data, we conclude that for model execution tracing approaches supporting opera-

tional semantics, runtime data is extracted primarily by the interpreter, while for approaches sup-

porting translational semantics, runtime data is extracted primarily through target instrumentation

or external tools.

4.3.6 Trace Representation Format (Q6)

Our results on trace representation formats clearly indicate that metamodels are most frequently

used to define the data structure for representing model execution traces. In particular, 45% of the

investigated approaches rely on metamodels. This result was expected, since we study execution

tracing approaches for executable models and executable models commonly instantiate metamod-

els as well.

More surprisingly, only 18% of model execution tracing approaches define textual trace rep-

resentation formats and from these approaches, only one approach, approach A26 [111, 112],

actually defines a grammar for representing traces while the others use a less formal trace format,

such as structured logs.

Approach A10 [101, 42] directly uses an XML format for representing traces and approach A31 [117,

118] uses a graph-based representation. These two approaches (6%) have been classified as

“Other”.

For almost one third of the investigated approaches (30%), we could not identify the used trace

representation format. Hence, these approaches have been assigned to the category “Unknown”

for Q6.

60

4.3.7 Trace Representation Method (Q7)

Our classification results show that nearly half of the investigated model execution tracing ap-

proaches (48%) use a selected trace representation format. In particular, more than one third of

the approaches (36%) use trace representation formats that were manually developed particularly

for the respective approach, while only 12% rely on existing trace formats. An example of the

latter case is approach A30 [109] which reuses event trace diagrams (ETDs) proposed by Rum-

baugh et al. [119]) as trace format.

In contrast, 27% of approaches support custom trace representation formats that are tailored

towards the executable modeling language used to define the traced executable models. In particu-

lar, 15% of approaches automatically generate trace representation formats for executable model-

ing languages, while 12% of approaches provide a framework for manually defining custom trace

representation formats. However, it has to be noted that this kind of approaches are a minority. An

example of an automated approach is the generative approach A23 [10, 120, 121, 7, 122], which

automatically derives multidimensional domain-specific trace metamodels for xDSMLs. Approach

A22 [123, 124, 125, 126] is an example of a framework for manually defining custom trace for-

mats. In particular, it allows the definition of textual trace formats for UML models using so-called

trace directives.

For the last category of approaches comprising 24%, the trace representation method is un-

known, i.e., not mentioned by the associated primary studies.

4.3.8 Language Specificity of Trace Structure (Q8)

Concerning the language specificity of the used trace data structure, the investigated approaches

can be categorized into three groups of almost equal size: 39% of the approaches use a trace data

structure that includes concepts specific to a certain executable modeling language, 30% of the

approaches use a trace data structure that can be reused for executable modeling languages of a

specific kind, and 30% of the approaches use a trace data structure that is independent of any

executable modeling language. This applies to the approaches A09 [127, 128, 45], A12 [103, 104],

61

A20 [39, 14, 113, 114, 115], and A21 [61, 129]. Approach A02 [116] is the only one that does not

trace execution events but only execution st

The majority of the approaches using a trace data structure specific to a particular executable

modeling language target the UML language, namely 61%. In contrast, no particular trend could

be observed for the approaches using trace data structures specific to a certain kind of executable

modeling language. The approaches using a language-independent trace format target no particular

executable modeling language or type of executable modeling language but support any executable

modeling language.

4.3.9 Data Carrier Format (Q9)

Only little information could be extracted form the primary studies concerning used data carrier

formats for storing execution traces: For almost half of the approaches (48%), no data carrier

formats have been mentioned.

The other half of the investigated approaches either uses an XML format or plain text format

for storing execution traces, namely 24% each. Only one approach, approach A19 [130], persist

execution traces in a database.

n this approach, a UML profile is generated for tracing system executions using a UML state

machines. A persistence component transmits the runtime data obtained from the execution to a

trace database.

4.3.10 Maturity Level (Q10)

Our results for the classification of model execution tracing approaches concerning maturity

level show that the majority of investigated approaches (73%) is fully implemented. From this

we conclude that the field of model execution tracing has reached a moderate level of maturity.

However, among the investigated approaches, only three (9%) have been subjected to an empirical

validation in industrial settings. In fact, the most common method used to validate the investigated

approaches is through case studies. While the majority of the case studies demonstrate the com-

62

plete implementation of the approaches, they fail to show the approaches’ usefulness in industrial

settings. Hence, little is known about the value of existing model execution tracing approaches for

industry and evaluations of this aspect are hence needed to further mature this research field.

4.4 Future Research Directions

In the following, we discuss directions for future work on model execution tracing, building

upon our research results presented in Section 4.3. In our opinion, it is necessary to address the

following topics not only from a research perspective, but in collaboration with tool vendors and

end users to ensure widespread tool support and to achieve industry adoption.

Scalable trace data structure: From the results obtained for research question Q3 on the kind

of traced data, we can see that in fact a lot of data is recorded by existing model execution tracing

approaches: Almost all approaches record information about occurred execution events and more

than 40% keep detailed execution state information. This means, however, that traces are expected

to grow large, which may cause scalability issues in both memory needed for storing traces and

time needed for processing them. Nevertheless, we could only identify three of the investigated

approaches that aim at addressing these scalability issues. In particular, Bousse et al. aim to address

this issue in their approach A23 [10, 120, 121, 7, 122] by sharing data among captured states so that

only changes in data are recorded. Similarly, Hegedus et al. propose in their approach A14 [52]

to reduce traced state information by only capturing state modifications and events related to state

modifications.

In contrast, Kemper and Tepper propose in their approach A10 [101, 42] to remove repetitive

fragments from traces using heuristic methods, such as cycle reduction. While the aforementioned

approaches consider some sort of trace compaction, they utilize different optimization potentials

and leave open whether the achievable compaction is sufficient for industry applications. Thus, we

see the need for more detailed studies on scalable model execution tracing solutions.

Common trace exchange format: The results obtained for research question Q7 on trace

63

representation methods clearly shows that existing model execution tracing approaches rely on

their own custom trace formats being either defined manually or generated automatically. Only

four of the investigated approaches reuse some already existing trace format.

Giving this large variety of used trace formats, it seems apparent that a common format for

exchanging model execution traces is needed. Such an exchange format, however, has to support

the representation of executable modeling language-specific concerns in different levels of detail.

This is indicated by the results obtained for the research questions Q8 and Q3 that show that

existing model execution tracing approaches record information specific to particular executable

modeling languages or kinds of executable modeling languages, and that besides execution events,

information about execution states and processed inputs are also relevant to be traced in specific

contexts. A common trace format should be expressive enough to capture the required runtime

information for any executable modeling language. Also, it should represent traces in a compact

form to enable scalability of the analysis tools. Thereby, scalability should be considered as a

key requirement when defining a common trace format. Examples of trace formats for traces

generated from code-centric approaches are Compact Trace Format(CTF) proposed by Hamou-

Lhadj and Lethbridge [150, 151] and Message Passing Interface Trace Format (MTF) proposed

by Alawneh and Hamou-Lhadj [152]. These trace formats model traces of routine calls and inter-

process traces, respectively, in a compact way, in order to facilitate efficient interchange of traces

among trace analysis tools. A similar effort should be invested in defining standard trace formats

for traces of model executions that would facilitate interoperability among V&V tools and hence

make V&V tools available to a broader user base.

Extended support for semantics definition techniques: Our results for research question Q2

show that all approaches except one support either translational semantics or operational seman-

tics but not both. Executable languages use many different techniques for defining operational

semantics/ interpreters (e.g., programming languages, action languages, and model transformation

languages) and translational semantics/ compilers (e.g., model-to-model transformation languages,

target modeling languages, code generators, target programming languages) [14]. Model execution

64

tracing approaches focus on one of these techniques (either translational or operational). There-

fore, they are applicable in a very narrow scope. By supporting different semantics definition

techniques, we can reuse the same model tracing approach in more scenarios. It is based on the

separation of concerns principle in order to separate the concern of how to implement an executable

language (i.e., semantics definition technique) from how to trace model executions.

This would also enable the application of V&V tools for executable modeling languages de-

fined with either semantics definition technique.

Empirical validation: While the majority of investigated model execution tracing approaches

has been implemented in prototype tools, there exists very little empirical evidence about the use-

fulness of these approaches. Even with complete demonstrations, a considerable amount (more

than 90%) of the approaches lack any empirical validation in industrial settings, as shown by our

results obtained for research question Q10. To mature the field of model execution tracing, em-

pirical validations of existing solutions need to be performed. We intend in the future to work on

investigating the state of adoption of model execution tracing in industry. We also intend to work

with developers of model-driven systems to understand the state of practice of model execution

tracing and what the challenges developers face when using the related techniques.

4.5 Limitations and Threats to Validity

Despite the care taken in the definition of the research method, our mapping study is subject

to known threats and limitations. The most serious threats to the validity of our research results

are researchers’ bias in searching, selecting, and classifying studies. To mitigate this risk, we

applied and strictly followed the guidelines suggested by Kitchenham and Charters [91] and Pe-

tersen et al. [92].

To mitigate the risk of missing relevant studies, we have performed automated searches in the

most popular digital online libraries in the field of software engineering. The search strings used

for this have been derived from the defined research questions. Furthermore, we have performed a

65

forward snowballing step to identify additional studies that could be relevant for our research.

To ensure the reliability of our selection criteria for primary studies as well as ensure the qual-

ity of selected primary studies, we have also performed a pilot study and a quality assessment.

Through the pilot study, we could improve the original selection criteria and the quality assess-

ment showed that the selected primary studies are of good quality.

In order to reduce the threat of misclassifying the selected primary studies, we reviewed their

full texts thoroughly instead of reviewing only abstracts, introductions, and conclusions. Further-

more, the classification of each primary study was reviewed by at least one of the authors that was

not involved in the original classification. Any discrepancies were resolved by reading the affected

primary study again and discussing its classification in detail.

4.6 Related Work

There exist several systematic review studies that have been conducted in the context of MDE.

However, none of these studies target approaches for model execution tracing approaches. To the

best of our knowledge, this is the first study that aims to survey the state of the art in this area. In

this section, we summarize recent surveys in the domain of MDE that are related to our study.

Ciccozzi et al. [17] conduced a systematic review of research studies and tools concerned with

the execution of UML models, which is also considered in 36% of model execution tracing ap-

proaches investigated in our work. The authors analyzed the identified research studies on UML

model execution concerning publication trends, technical characteristics, and evidence provided

on industry adoption. Tools were analyzed concerning technical characteristics only, which in-

clude among others UML modeling (required diagrams, use of action languages, etc.), execution

strategy (translation, interpretation, execution tools and technologies, etc.), intended benefits, and

readiness level. The findings show a growing scientific interest in UML model execution starting

from 2008, which is consistent with our findings for model execution tracing, which show an in-

crease in publications on the topic from 2007. Furthermore, the study revealed that translational

66

semantics has been predominantly used for the execution of UML models rather than operational

semantics. Also this finding is consistent with the results of our study. As intended benefits of

UML model execution, the study identified reducing the effort for producing executable artifacts

and improving the functional correctness of models as the main benefits targeted, the latter being

highly related to model execution tracing as it provides the basis for many dynamic V&V tech-

niques used for ensuring functional correctness. However, the study does not investigate in detail

the types of V&V techniques provided or applied by the identified research studies and tools. It

only investigates whether model-level interactive debugging, model simulation (i.e., execution of

models for analysis rather than execution on the target platform), and formal specification lan-

guages (e.g., for the purpose of model checking) are supported with the result that model-level

interactive debugging and formal specification languages are only supported by few approaches

while model simulation is supported by half of the approaches letting the authors suggest that

model execution is considered beneficial for early design assessment. In contrast, we investigate in

more detail which kinds of dynamic V&V techniques are realized based on model execution trac-

ing. Interestingly, the authors identify the need to further enhance the observability of execution

models, which includes the ability to record, play back, and analyze execution traces of system

operation on the target platform or in a simulation. The last finding that we want to highlight is

that most of the analyzed UML model execution solutions have a low technology readiness level

and that only a few of the investigated research studies provide evidence through experimentation

in industrial settings and based on empirical evaluations. This is also true for the model execution

tracing approaches studied in our work.

Szvetits and Zdun [153] applied a systematic literature review for the purpose of classifying

and analyzing existing approaches for using models at runtime for self-adapting systems. The ex-

isting approaches have been classified concerning objectives, techniques, architectures, and kinds

of models used. The authors revealed the usage of different kinds of models at runtime to achieve

various objectives, such as adaptation, policy checking, and error handling. Related to our study,

the authors identified monitoring as one objective of models at runtime defining monitoring as

67

the activity of monitoring “the system by using models which help to trace application behavior”.

However, other than model execution tracing targeted in this study, models at runtime trace the

execution of an application rather than the execution of models. As discussed by the authors,

this distinction becomes blurry when executable models are in fact the executable application, i.e.

when there is no other implementation-level artifact manually or automatically generated from ex-

ecutable models. The authors point out that in such scenarios, it is not clear how model execution

fits into the models at runtime paradigm. However, model execution in general definitely has a

role in the models at runtime paradigm, as it facilitates the analysis of model-based representa-

tions of application behavior to, for example, simulate the consequences of runtime adaptations or

to predict system properties influencing runtime adaptation. Nevertheless, we do not see a direct

relationship between model execution tracing and models at runtime.

Dias Neto et al. [154] conducted a systematic review of Model-Based Testing (MBT) ap-

proaches. The reviewed approaches have been categorized concerning testing level, tool support,

application scope, kind of models used for test case generation, used test coverage criteria, used

test case generation criteria, and level of automation. Among other findings, the study revealed

that there is a need for providing MBT solutions for testing non-functional requirements, such as

usability, security, and reliability, and that most MBT approaches have not been evaluated empiri-

cally or transferred to industry. Recently, Gurbuz and Tekinerdogan [155] conducted a systematic

mapping study to identify and analyze the state of the art in MBT for software safety. The study

revealed that 42% of the investigated primary studies were validated using industrial evidence but

that they nevertheless provide no strong evidence of positive effects of MBT for software safety.

Related to these findings, we have identified two model execution tracing solutions applied for

MBT: In [108], MBT is used for testing functional requirements, while in [133], security testing is

considered. Furthermore, we have found most existing model execution tracing approaches to also

lack an empirical evaluation in industrial settings.

Nguyen et al. [156] conducted a systematic literature review on Model-Driven Security (MDS),

which is the application of MDE techniques and technologies to the development of secure sys-

68

tems. The authors categorized the identified MDS approaches concerning considered security

concerns, applied modeling approach, used model-to-model and model-to-text transformations,

application domains, and evaluation methods. The results revealed the need for addressing several

security concerns that have been mostly neglected by existing approaches, as well as multiple se-

curity concerns simultaneously and in a systematic manner. Furthermore, they discovered a lack

of tool support and empirical evaluations. Related to our work, the authors identified that DSMLs

play a key role in MDS but that most of the currently existing security DSMLs lack semantic

foundation required for automated analysis. They also point out that behavioral models are rarely

used but most approaches employ structural models only, which hampers the ability to deal with

multiple security concerns simultaneously.

Nascimento et al. [157] conducted a systematic mapping study on Domain Specific Languages

(DSLs) to identify existing DSLs, their application domains, tools for their development and usage,

as well as techniques, methods, and processes for creating, applying, evolving and extending DSLs.

The study surveys DSLs on a high level of abstractions and provides only a high-level overview of

existing DSLs and DSL engineering approaches. While DSMLs are identified as one specific kind

of DSLs, no investigations targeting specifically executable modeling languages, model execution,

or model execution tracing have been performed.

Giraldo et al. [158] conducted a systematic review to identify definitions of quality in MDE.

The authors discovered that only 16 out of 134 reviewed studies provide explicit definitions of

quality and that these definitions mostly concern the quality of models or the quality of modeling

languages. The remaining studies do not provide such an explicit definition. Among them, 40%

of the studies propose solutions for quality assurance, such as behavioral verification of models,

performance models, and model metrics. This study is related to our work in the sense that model

execution tracing approaches in general aim at enabling the performance of dynamic V&V for

ensuring the quality of models or modeled systems in terms of functional or non-functional quality

properties. To investigate this aspect, we review in this study the objectives of existing model

execution tracing solutions.

69

Santiago et al. [96] conducted a systematic literature review to analyze the current state of the

art in the management of traceability in MDE approaches. However, other than in our work, the

considered notation of traceability refers to the establishment of relationships between products of

the development process and is hence unrelated with the tracing of model executions.

4.7 Conclusion

In this chapter, we presented a systematic mapping study on existing approaches for the tracing

executable models. With this study we aim at identifying and classifying the existing approaches,

thereby assessing the state of the art in this area, as well as pointing to promising directions for

further research in this area.

From 645 research studies found through automatic searches in popular academic online li-

braries, we finally selected and analyzed 64 primary studies that present 33 unique model exe-

cution tracing approaches. These 33 identified approaches were classified concerning supported

types of models, supported execution semantics definition technique, traced data, purpose, data ex-

traction technique, trace representation format, trace representation method, language specificity,

data carrier format, and maturity.

Our findings show that (i) the majority of approaches target specific executable modeling lan-

guages with UML being the most popular one; (ii) model execution tracing approaches either

support exclusively executable modeling languages with operational semantics or executable mod-

eling languages with translational semantics; (iii) besides execution events traced by almost all

approaches, a significant amount of approaches also record detailed information about execution

states; (iv) the majority of model execution tracing approaches has been applied on one kind of

model analysis technique only with testing and dynamic analysis being the most frequently used

ones; (v) approaches supporting operational semantics rely mainly on executable modeling lan-

guage interpreters for extracting tracing information, while approaches supporting translational

semantics rely mostly on target instrumentation; (vi) metamodels are most frequently used for

70

defining the trace representation format; (vii) thereby, trace representation formats are mostly spe-

cific to the respective approach with only a minority of approaches that reuse existing formats;

(viii) trace representation formats are mostly dependent on the supported executable modeling lan-

guage or specific to a certain kind of executable modeling languages; (ix) traces are serialized

either in XML format or as plain text; and (x) only a small minority of approaches have been

empirically validated in industrial settings.

The results suggest that more research work is needed particularly on suitable trace representa-

tions and broad applicability of approaches with scalability and interoperability being two concerns

that have been mostly neglected so far. Furthermore, empirical validations of the usefulness of ap-

proaches in real application scenarios are needed to foster the adoption of model execution tracing

approaches in practice.

71

Table 4.2: Classification of model execution tracing approaches for Q1-Q3

Approach

Types of Models
(Q1)

Semantics
Definition
Technique

(Q2)

Trace Data
(Q3)

A
ny

U
M

L
m

od
el

s

W
or

kfl
ow

m
od

el
s

O
th

er

Tr
an

sl
at

io
na

l

O
pe

ra
tio

na
l

O
th

er

U
nk

no
w

n

E
ve

nt

St
at

e

Pa
ra

m
et

er

A01 [100] ∗ ∗ ∗
A02 [116] ∗ ∗ ∗
A03 [131, 132] ∗ ∗ ∗ ∗
A04 [133] ∗ ∗ ∗
A05 [134, 135, 136, 137] ∗ ∗ ∗ ∗
A06 [138] ∗ ∗ ∗ ∗
A07 [51, 110, 12] ∗ ∗ ∗ ∗
A08 [139] ∗ ∗ ∗
A09 [127, 128, 45] ∗ ∗ ∗ ∗ ∗
A10 [101, 42] ∗ ∗ ∗ ∗
A11 [140] ∗ ∗ ∗
A12 [103, 104] ∗ ∗ ∗ ∗ ∗
A13 [13] ∗ ∗ ∗
A14 [52] ∗ ∗ ∗
A15 [141] ∗ ∗ ∗
A16 [105, 106, 37] ∗ ∗ ∗
A17 [142, 143] ∗ ∗ ∗
A18 [107] ∗ ∗ ∗ ∗
A19 [130] ∗ ∗ ∗ ∗
A20 [39, 14, 113, 114, 115] ∗ ∗ ∗ ∗ ∗
A21 [61, 129] ∗ ∗ ∗ ∗ ∗
A22 [123, 124, 125, 126] ∗ ∗ ∗ ∗
A23 [10, 120, 121, 7, 122] ∗ ∗ ∗ ∗
A24 [53, 54] ∗ ∗ ∗ ∗
A25 [144] ∗ ∗ ∗ ∗
A26 [111, 112] ∗ ∗ ∗
A27 [41, 145] ∗ ∗ ∗ ∗
A28 [108] ∗ ∗ ∗ ∗
A29 [6, 146] ∗ ∗ ∗ ∗
A30 [109] ∗ ∗ ∗
A31 [117, 118] ∗ ∗ ∗
A32 [147, 148] ∗ ∗ ∗
A33 [149] ∗ ∗ ∗ ∗

72

Table 4.3: Classification of model execution tracing approaches for Q4-Q5

Approach

Purpose
(Q4)

Data Extraction
Technique

(Q5)

D
eb

ug
gi

ng

Te
st

in
g

M
an

ua
la

na
ly

si
s

D
yn

am
ic

an
al

ys
is

M
od

el
ch

ec
ki

ng

Se
m

an
tic

di
ff

er
en

ci
ng

So
ur

ce
in

st
ru

m
en

ta
tio

n

Ta
rg

et
in

st
ru

m
en

ta
tio

n

In
te

rp
re

te
r

E
xt

er
na

lt
oo

l

O
th

er

A01 [100] ∗ ∗
A02 [116] ∗ ∗
A03 [131, 132] ∗ ∗ ∗
A04 [133] ∗ ∗
A05 [134, 135, 136, 137] ∗ ∗
A06 [138] ∗ ∗ ∗
A07 [51, 110, 12] ∗ ∗ ∗ ∗
A08 [139] ∗ ∗
A09 [127, 128, 45] ∗ ∗ ∗
A10 [101, 42] ∗ ∗ ∗
A11 [140] ∗ ∗ ∗
A12 [103, 104] ∗ ∗
A13 [13] ∗ ∗
A14 [52] ∗ ∗
A15 [141] ∗ ∗
A16 [105, 106, 37] ∗ ∗
A17 [142, 143] ∗ ∗
A18 [107] ∗ ∗
A19 [130] ∗ ∗
A20 [39, 14, 113, 114, 115] ∗ ∗ ∗ ∗
A21 [61, 129] ∗ ∗
A22 [123, 124, 125, 126] ∗ ∗
A23 [10, 120, 121, 7, 122] ∗ ∗ ∗
A24 [53, 54] ∗ ∗ ∗
A25 [144] ∗ ∗
A26 [111, 112] ∗ ∗
A27 [41, 145] ∗ ∗
A28 [108] ∗ ∗
A29 [6, 146] ∗ ∗
A30 [109] ∗ ∗
A31 [117, 118] ∗ ∗ ∗
A32 [147, 148] ∗ ∗
A33 [149] ∗ ∗

73

Table 4.4: Classification of model execution tracing approaches for Q6-Q10

Approach

Trace Rep-
resentation

Format
(Q6)

Trace
Representation

Method
(Q7)

Language
Speci-
ficity
(Q8)

Data
Carrier
Format
(Q9)

M
et

am
od

el

Te
xt

fo
rm

at

O
th

er

U
nk

no
w

n

FR A
G

M
D

A
E

U
nk

no
w

n

L
an

gu
ag

e-
in

de
pe

nd
en

t

L
an

gu
ag

e-
sp

ec
ifi

c

Sp
ec

ifi
c

ki
nd

of
la

ng
ua

ge

Te
xt

X
M

L

D
at

ab
as

e

U
nk

no
w

n

M
at

ur
ity

(Q
10

)

A01 [100] ∗ ∗ ∗ ∗ 3
A02 [116] ∗ ∗ ∗ ∗ 2
A03 [131, 132] ∗ ∗ ∗ ∗ 3
A04 [133] ∗ ∗ ∗ ∗ 1
A05 [134, 135, 136, 137] ∗ ∗ ∗ ∗ 4
A06 [138] ∗ ∗ ∗ ∗ 3
A07 [51, 110, 12] ∗ ∗ ∗ ∗ 3
A08 [139] ∗ ∗ ∗ ∗ 3
A09 [127, 128, 45] ∗ ∗ ∗ ∗ 3
A10 [101, 42] ∗ ∗ ∗ ∗ 3
A11 [140] ∗ ∗ ∗ ∗ 2
A12 [103, 104] ∗ ∗ ∗ ∗ 3
A13 [13] ∗ ∗ ∗ ∗ 3
A14 [52] ∗ ∗ ∗ ∗ 3
A15 [141] ∗ ∗ ∗ ∗ 3
A16 [105, 106, 37] ∗ ∗ ∗ ∗ 3
A17 [142, 143] ∗ ∗ ∗ ∗ 3
A18 [107] ∗ ∗ ∗ ∗ 1
A19 [130] ∗ ∗ ∗ ∗ 2
A20 [39, 14, 113, 114, 115] ∗ ∗ ∗ ∗ 3
A21 [61, 129] ∗ ∗ ∗ ∗ 3
A22 [123, 124, 125, 126] ∗ ∗ ∗ ∗ 3
A23 [10, 120, 121, 7, 122] ∗ ∗ ∗ ∗ 3
A24 [53, 54] ∗ ∗ ∗ ∗ 3
A25 [144] ∗ ∗ ∗ ∗ 2
A26 [111, 112] ∗ ∗ ∗ ∗ 3
A27 [41, 145] ∗ ∗ ∗ ∗ 3
A28 [108] ∗ ∗ ∗ ∗ 3
A29 [6, 146] ∗ ∗ ∗ ∗ 3
A30 [109] ∗ ∗ ∗ ∗ 3
A31 [117, 118] ∗ ∗ ∗ ∗ 4
A32 [147, 148] ∗ ∗ ∗ ∗ 3
A33 [149] ∗ ∗ ∗ ∗ 4

74

Chapter 5

Generic Compact Trace Metamodel

In this chapter, we present our second contribution, which is the generic Compact Trace Meta-

model (CTM) supported by any given xDSML. In Section 5.1, we introduce the context of our

contribution and our proposal, and motivate the problem by presenting the requirements for defin-

ing CTM. Then, Section 5.2 gives our research approach. Section 5.3 presents our generic trace

metamodel, and explain the intuition of our idea regarding the compaction techniques. Continu-

ing, we present CTM and explain how it is provided by applying a set of compaction techniques.

Finally, Section 5.4 discuss related work. Section 5.5 concludes the chapter.

5.1 Motivation

In this section, we first give requirements for our approach to define a new trace metamodel,

and then we explain the limitations of existing approaches.

5.1.1 Requirements for an execution trace metamodel

In previous chapter, we conducted a systematic survey on model execution tracing approaches

and highlighted challenges that need to be addressed when constructing and manipulating execu-

tion traces.

The first challenge is that existing model tracing approaches use different formats for represent-

ing traces, which hinders interoperability. Having a common exchange format for model execution

traces would allow better synergy among V&V tools that rely on execution traces, and hence makes

V&V tools available to a broader user base.

75

Such an exchange format, however, has to support the representation of xDSML-specific con-

cepts at different levels of detail. In other words, a common trace format should be expressive

enough to capture the required runtime information for any xDSMl. Traces are known to be large,

which cause scalability problems. A large amount of data generated from the execution of a model

complicates the process of applying dynamic V&V techniques.

A common trace format must represent traces in a compact form to enable scalability of the

analysis tools. Therefore, scalability is of primary importance and calls techniques for a compact

representation of traces when defining a common trace format. The preservation of the original

information in a trace is also important when applying compaction techniques.

In summary, we considered the following requirements in the design of CTM.

Genericity: CTM should support a wide range of xDSMLs, independent of the meta-programming

approaches used for their implementation.

Scalability in space: CTM should handle large execution traces.

Information preservation: CTM should provide a lossless representation of traces.

Performance overhead: The performance overhead caused by using CTM to construct an exe-

cution trace should be an acceptable overhead during the execution of a model.

5.1.2 Limitation of existing trace structures

Techniques exist for defining data structures to represent execution traces of models conform-

ing to a given xDSML. For instance, a trace structure may be described using an XML schema

as proposed by Kemper and Tepper [101], a text format as proposed by Maoz et al. [45, 127],

or metamodels such as the one’s proposed by Hegedus et al. [85]. However, the results of our

survey on trace representation formats [159] indicate that metamodels are most frequently used to

define the data structure for representing model execution traces. In this work, we focus on traces

for executable models. As executable models commonly instantiate metamodels, we discuss the

limitations of current trace metamodels.

76

Existing generic trace metamodels. A very few studies (e.g., [5], [6]) propose generic trace

metamodels, independent from an xDSML. Although they allow interoperability between existing

trace analysis tools, they do not scale up to large traces efficiently. Also, these trace metamodels

only capture events that occur during an execution, and lack a complete representation of a trace

such as execution states as well as inputs and outputs values.

Existing domain-specific trace metamodels. There exist studies that define trace metamodels

including concepts specific to a given xDSML. They rely on their own custom trace formats being

either defined manually or generated automatically. This lack of genericity hinders interoperabil-

ity and the sharing of data among tools that support multiple xDSMLs. Moreover, according to

our survey [159], a large number of these techniques record information about occurred execution

events and keep detailed execution states information, resulting in scalability problems. For exam-

ple, in the ProMoBox approach proposed by Meyers et al. [41], a domain-specific trace metamodel

is automatically generated for a given xDSML, but such metamodel defines a trace as a sequence

of snapshots of the complete executed model to capture execution states.

We identified three approaches that aim at addressing the scalability issue. In particular, Hege-

dus et al. propose in their approach [85] to reduce traced state information by only capturing

state modifications and events related to state modifications. Similarly, Bousse et al. [7] propose a

technique to reduce the impact of this problem by sharing data among captured states so that only

changes in the data are recorded. Kemper and Tepper [101] use heuristics such as cycle reduction

to remove repetitive fragments from traces. While these approaches consider some sort of trace

compaction, they still suffer from scalability problems due to the repetitions in the data, question-

ing whether the achievable compaction is sufficient. In addition, none of these approaches provide

a generic exchange format.

We see the need for more scalable generic model execution tracing solutions. The contribution

presented in this chapter aims at addressing this need, defining a generic trace metamodel that

not only provides a detailed representation of trace but also scales up to large traces by applying

77

Compact Trace
Constructor

Regular Trace
Constructor

Compact
Execution Trace

Compaction
Techniques

Regular
Execution Trace

Executable Model
 Execution
 Engine

Abstract
syntax

Execution
metamodel

Execution
transformation

Trace
decompactor

Compact
Execution Trace

Regular
Execution Trace

 Reads/Produces

 Conforms to

Uses/
depends on

Artifact

CTM
Module

modifies

Generic Compact
Trace Metamodel

(CTM)

Generic Trace
Metamodel

xDSML

Trace Construction

Trace decompaction

Generic Trace
Metamodel

Component

 Model

Figure 5.1: Approach overview, with our contributions highlighted in gray

compaction techniques.

5.2 Overview of the Approach

To overcome the limitations observed in existing trace formats, and to better comply with

the requirements mentioned in section 5.1.1, we propose a new trace format that can be use to

represent traces in a generic and scalable fashion. Our idea relies on the fact that there might be a

lot of repetitions in traces. Thereby, we apply a set of compaction techniques to store the repetitive

information contained in a trace only once, leading to reduce the size of traces effectively.

Figure 5.1 presents a complete overview of our approach with our contributions highlighted in

gray.

For the execution of models, the first step is the definition of an xDSML a including the ab-

stract syntax, execution metamodel, and execution transformation. Then, an executable model b

78

conforming to the execution metamodel of the xDSML can be executed in an execution engine c .

The execution transformation is applied to modify the execution state of the model.

There exist two trace constructors in our approach, each generating execution traces of a model.

The first one is the regular trace constructor d that allows constructing traces without com-

paction. The result is a regular execution trace g conforming to our proposed generic trace

metamodel h .

Using a set of compaction techniques j , the compact trace constructor e creates traces in

a compact representation form. Note that the compact trace constructor contains several units,

each dealing with the compaction of a part of traces concerning to evolution of the execution state

of a model, parameter values as well as loop detection within traces, which will be described

in Sec. 5.3.2. Finally, the result of using the compact trace constructor is a compact execution

trace f conforming to the generic compact trace metamodel p .

The second part of our approach consists of a trace de-compactor k that takes a compact

execution trace, and generates a regular trace by decompressing the trace. The trace de-compactor

contains several modules, each reconstructing the corresponding part of a trace and generating a

regular trace from the compact one without losing data. The result is a regular execution trace g

conforming to our generic trace metamodel h .

It is worth noting that both trace metamodels marked by h and p support genericity, while

CTM takes into account scalability criterion as well. Besides the construction of regular traces,

the generic trace metamodel is used for evaluating information preservation of CTM, so that the

traces reconstructed after the de-compaction process with the traces generated from the generic

trace metamodel is compared to indicate whether these two traces do match, i.e., CTM provides a

lossless representation of traces.

In the next section, we present the gray elements in more detail.

79

5.3 Generic Compact Trace Metamodel

This section explains a two-step process for designing CTM with the aim of supporting the

genericity and scalability criteria described in Section 5.1. In the first step, to address the genericity

criterion, we identified runtime concepts required for expressing model execution traces that are

common to existing executable modeling languages. The result is a generic trace metamodel,

which is explained in Section 5.3.1. In the second step, we enhance this generic metamodel with

compaction techniques in order to fulfill the scalability prerequisite. The result is CTM, which is

described in Section 5.3.2.

5.3.1 Generic trace metamodel

In order to define a generic trace metamodel, we identify all runtime concepts that are required

for expressing the trace of executing models that are common in all executable modeling languages.

After that, we define their relationships, and create a metamodel.

Figure 5.2 shows our proposed generic trace metamodel. The root class of the metamodel

is Trace, which contains a sequence of states of the model under execution (State) as well as a

sequence of events related to the states (Step). Step is a class used for representing execution steps.

Using a tree structure, a Step can include other steps represented by the reference children. The

reference state between State and Step is used to specify the starting and ending state of a step.

A state contains the states of all dynamic objects (ObjectState) at a given point in time of the

execution. Thereby, the state of a dynamic object is given by the current values of all its dynamic

fields. An ObjectState represents the state of a specific object, whereas a State represents the state

of all objects of a model. At any given point in the execution, the state of an object of the executed

model is defined by the values of all its dynamic fields (e.g., tokens values in a Petri net).

An ObjectState object is related to a TransientObject, which corresponds to an object of the

executed model. We distinguish between StaticTransientObject and DynamicTransientObject.

The StaticTransientObject class refers to objects that are defined in the executed model, while

80

GenericTraceMetamodel

StepType

+stepName: EString Trace TransientObject

DynamicTransientObjectStaticTransientObject

ObjectState

 Value

 RefValue LiteralValue

 State Step

ParameterKindEnum

 IN
 OUT
 INOUT
 RET

ParameterValue

+Directionkind
 :ParameterKindEnum

parent
0..1

{ordered=true}
children
*

parametervalue
*

state
*

steptype
1..1

state
*

step
*

objectstate
*

value
*

value
*

objectstate
1..1

transientobject
*steptype

*

Ecore

EObject

EClass

originalobject
*

type
0..1

originalobject
0..1

LiteralString

+svalue: String(0..*)

LiteralInteger

+ivalue: Int(0..*)

LiteralBoolean

+bvalue: Boolean(0..*)

LiteralFloat

+fvalue: Float(0..*)

Figure 5.2: CTM generic trace metamodel

the DynamicTransientObject class refers to objects that are only created during execution.

When creating an execution trace, one StaticTransientObject is created for each object ex-

isting in the model. The relationship between the StaticTransientObject and the original model

object is stored with the reference originalobject to Ecore’s metaclass EObject. Note that all ob-

jects contained in a model, which have been defined by an Ecore metamodel, inherit from EObject.

Similarly, one DynamicTransientObject is created for each dynamic object created during the ex-

ecution. The type of the object is stored using the reference type to Ecore’s metaclass EClass to

represent the objects created only during execution.

For example, in a Petri net model, each StaticTransientObject object is linked to the Place

object whose states is captured. Besides, no object is created during the execution of a Petri net

model. Therefore, the trace does not contain any DynamicTransientObject objects.

Similarly, one DynamicTransientObject is created for each dynamic object created during the

81

net:Net

output

input

:Trace

 :Step

 :Step

S0:State
S1:State

S2:State

p1:StaticTransientObject

p3:StaticTransientObject

p2:StaticTransientObject

p1-0:ObjectState

v1:RefValue

v0:LiteralInteger

 val=3

:StepType

 stepName="Run"
:StepType

 stepName="fire"

 :Step

v1:LiteralInteger

 val=2

p1:ParameterValue

p0:ParameterValue

v0:RefValue

originalobject

originalobject

originalobject
p1-1:ObjectState p1-2:ObjectState

p2-0:ObjectState p2-1:ObjectState p2-2:ObjectState

p3-0:ObjectState p3-1:ObjectState p3-2:ObjectState

output

v1:LiteralInteger

 val=1

 :Step

Containment ref.
Normal ref.
Executed model

v1:LiteralInteger

 val=1

v1:LiteralInteger

 val=1

v1:LiteralInteger

 val=1

S3:State

.....

originalobject

originalobject

p2:ParameterValue

v2:RefValueoriginalobject

.....

.....

 t1:Transition

 name="t1"

p3: Place

 name="p3"
 initalTokens=0

p2: Place

 name="p2"
 initalTokens=1

p1: Place

 name="p1"
 initalTokens=3

Figure 5.3: Excerpt of execution trace of the Petri net example that conforms to the proposed
generic trace metamodel

execution. The type of the object is stored using the reference type.

The values of dynamic fields are stored as elements typed by the abstract class Value, which

can either be a LiteralValue or a RefValue. The class LiteralValue is an abstract class for defining

literal values; each containing an attribute referring to a sequence of values of a particular primitive

type. For example, the class LiteralBoolean is for the specification of either a Boolean value or

a sequence (array) of Boolean values. Similarly, the class RefValue represents references among

objects.

The inputs and outputs of an execution step are recorded using the ParameterValue class con-

taining the Enum field directionkind representing the parameter type (input, output, input-

output, return) and the value reference pointing to the Value class. The StepType class is used

to represent the type of each step, which is recorded only once in a trace, instead of storing it for

each step instance.

Example: To show how this metamodel can be used to capture trace elements of an executable

82

model, we consider the previous Petri net example model shown in Figure 2.2. Figure 5.3 illus-

trates an excerpt of the trace obtained from the execution of the Petri net model. Using an object

diagram, we show the content of the executed model at the left of the figure, and the generated

trace of the model at the right of the figure. The Trace root contains one root Step for the ap-

plication of the execution rule run, which itself contains three nested Step elements representing

the firing of transition t1. Thus, the trace contains four Step elements. One Step is linked to

StepType Run representing the complete Petri net run, and three steps are linked to the StepType

fire representing the firing of the transition t1. The excerpt of the trace also shows three of the

recorded StaticTransientObject objects, one per Place object p1, p2, and p3. Note that no object

is created during the execution of a Petri net model. Therefore, the trace does not contain any

DynamicTransientObject objects.

The trace contains four State objects with three ObjectState objects; each representing the

current value of the tokens field of the respective Place object. The tokens value is represented

by using LiteralInteger objects.

To represent the ParameterValues of steps, four ParameterValue objects are created, one

pointing to the Net object provided to the run rule and three pointing to transition t1 provided to

the fire rule. The Net and Transition are referenced using RefValue objects.

Overall, using our metamodel, we needed 46 objects and 70 references to represent the trace

generated during the execution of the Petri net example model. As shown in Figure 5.3, there exist

many repetitions in the trace, particularly in the ObjectState, State, ParameterValue and Value.

Additionnally, there are repetitions of Steps due to the existence of a loop in the model, causing the

Transition t1 to be fired three times. We show in the next subsection how this generic metamodel

is enhanced with compaction techniques in order to reduce the size of the trace model.

5.3.2 CTM Compaction

To reduce the size of CTM traces, we propose a multi-part compaction strategy by applying

customized compaction techniques to different parts of the generic trace metamodel defined in the

83

previous section. The key idea is to compact repetitive parts of a trace.

5.3.2.1 Dealing with Repetitions in State

The first part of our compaction strategy focuses on execution states. As explained previously,

each State contains the states of all objects in the executed model after each execution step. Since

it is likely to have unchanged dynamic properties of objects in a given step, there might be a lot of

repetitions in State objects.

As an example, to represent the states of the trace from the example model (Figure 5.3), we

needed 31 objects (4 State, 12 ObjectState, 12 Value, 3 StaticTransientObject) and 64 references (4

state, 24 objectstate, 24 value, 12 transientobject). After firing t1 for the first time, the state of p1

and p3 changes but the state of p2 remains unchanged. Similarly, the state of p2 remains unchanged

after firing t1 for the second time. Instead of storing all ObjectState objects that represent a new

state of the executed model, we can design a technique that captures only the modification (delta)

between two states. For the example model shown in Figure 5.3, this means storing only the

ObjectState for p1 and p3 at each execution step.

Figure 5.4 shows the excerpt of the adapted trace metamodel dealing with the compaction of

State information. The new concepts and relationships in comparison to the generic trace meta-

model (shown in Figure 5.2) are highlighted in blue. First, the redundancies of ObjectState objects

are reduced by adding a containment reference objectstate to the class Trace which allows

to create ObjectState objects that are equivalent only once. Moreover, an ObjectState might be

the same for different objects, meaning that the values of their corresponding fields are the same.

To support this, we add the class TransientObjectState between the class State and the class Ob-

jectState and a reference transientobject to the class TransientObject. More precisely,

instead of having a reference from the class ObjectState to the class TransientObject, the class

TransientObjectState defines the relationship between these two classs. Such structure allows

to use an ObjectState object for different TransientObject objects. The TransientObjectState

objects are only created for the TransientObject objects that have changed in the current state.

84

TransientObject
ObjectState

 State

Trace

TransientObjectState

StaticTransientObject DynamicTransientObject

newobject
*

deletedobject
*

transientobject
*

state
*

changedobjectstates
*

objectstate
*

objectstate
1..1

transientobject
1..1

basestate
0..1

 Value

value
*

Ecore

EObject

EClass

 RefValue LiteralValue

value
*

originalobject
0..1

type
0..1

Figure 5.4: Excerpt of CTM modeling concepts related to State with the changes highlighted in
blue

The changes of objects can be obtained by comparing their respective ObjectState objects in the

current State with the ObjectState objects belonging to the previous State. However, instead of

the previous State, we can inspect the most similar State within the execution trace to obtain delta

State objects. To do this, we add a reference basestate to the class State, specifying the State

object that is the closest to the current State object (which can be achieved by comparing their

ObjectState objects).

For the compaction of States, we used a notification framework to track the changes that are

made to the dynamic objects of a model during an execution. This helped us to represent only

the modifications between states.Note that we implemented an additional procedure that gives the

same functionality as the notification framework. The procedure is independent of the execution

environment, and can be used for the State compaction (instead of the notification framework) in

the case of not using Gemoc Studio. The value of basestate reference is determined by using

an algorithm that compares the current State with other existing States in the trace, and finds

the closest one to the current State object. The algorithm scans State objects within the trace,

85

net:Net
P0:Step

S0:State

p1:StaticTransientObject

p3:StaticTransientObject

p2:StaticTransientObject v0:LiteralInteger

 val=2

v1:LiteralInteger

 val=1

originalobject

originalobject

originalobject

P1:Step P2:Step

S1:State
S2:State

.....

T2-1:TransientObjectState

T2-2:TransientObjectState

newobjects

newobjects

newobjects T1-2:TransientObjectState

O1:ObjectState

O2:ObjectState

T1-1:TransientObjectState

P4:Step

S3:State

basestate basestate

v2:LiteralInteger

 val=3

O3:ObjectState

v3:LiteralInteger

 val=0

O4:ObjectState

T3-1:TransientObjectState T3-2:TransientObjectState

p2: Place

 name="p2"
 initalTokens=1

p1: Place

 name="p1"
 initalTokens=3

p3: Place

 name="p3"
 initalTokens=0

:Trace

Figure 5.5: Excerpt of execution trace of the Petri net example (State with compaction)

compares the ObjectStates and Values contained in the chosen State with those of the current

State, and find the closet State object.

Finally, a State object stores the objects newly created in the state, as well as the objects

deleted in the state, using the new references newobjects and deletedobjects pointing

to the class TransientObject. Therefore, instead of creating ObjectState objects referenced by

respective State object, new objects can be simply specified using the reference newobjects.

The direct benefit of this structure is that we avoid redundancies by creating a single Object-

State per value change. Another benefit is that the ObjectState objects can be shared between

different TransientObjects. It also supports exploring previous states of an executed model.

Figure 5.5 shows an excerpt of the trace of the Petri net example model, conforming to the part

of the CTM shown in Figure 5.4. The trace illustrated in Figure 5.5 is a compact version of the

trace that was presented in Figure 5.3. The blue elements denote the elements used for represent-

ing states in a compact form. Four references are used to represent the new objects referencing

to the first State object at the beginning of the execution. As compared to Figure 5.3, the first

state is represented by using four newobjects references, and no ObjectState objects are cre-

86

ated. To represent the second State object, two TransientObjectState objects, one referring to

the ObjectState of p1 and the other one referring to the ObjectState of p3 are linked to the state

S1. Similarly, two TransientObjectState objects are used to represent the ObjectState for p1 and

p3 after executing the next two execution steps. As shown in the figure, ObjectState objects are

shared between different State objects. For instance, the ObjectState O2 is shared between two

State objects by using the object T1-2 referring to p3 for the first State (S1) and the object T2-1

referring to p1 for the second State (S2).

In total, the new compact structure reduces the number of objects from 46 objects to 21, and

the number of references from 70 references to 30.

5.3.2.2 Dealing with Repetitions in Step

The next part of our compaction strategy focuses on repetitions appearing due to the existence

of loops and patterns of identical sequences of events, and recurring patterns. For our Petri net

example, as we can see in Figure 5.3, there are three repetitions, caused when the transition t1 is

fired.

To achieve this, we adopted the Flyweight design pattern [160] and the Composite design

pattern [160] to implement a hierarchical structure for Step objects in terms of a directed-acyclic

graph with shared leaf nodes. The idea is to remove the repetitions by collapsing repeated nodes

into one node, and storing the repeated parts only once. To better present our technique, we use

the following definitions:

Step patterns (i.e., sequences of execution steps repeated consecutively in a trace) are repre-

sented using the StepPattern class. Two sequences are considered as instances of the same pattern

if they contain the same steps in the same order.

RepeatingStep: A StepPattern includes a sequence of Step objects, named RepeatingSteps. We

differentiate RepeatingStep from the Step class. A Step (as shown in Figure 5.2) represents its

StepType, State and ParameterValue as well. In contrast, for a RepeatingStep, only its Step-

Type is represented. In fact, because a RepeatingStep might be included in several StepPattern

87

objects, it can occur in different parts of an execution; each containing different State objects and

ParameterValue objects. Therefore, to represent a Step, which belongs to a StepPattern, we use

RepeatingStep (instead of Step).

PatternOccurrence: This class represents the instances of a step pattern. A StepPattern can

occur more than once in a trace. PatternOccurrence objects are instances of StepPattern objects,

which are the occurrences of the patterns invoked in the trace.

We introduced these concepts to act as a basis for supporting patterns in a trace. Indeed, a trace

might include several PatternOccurrence objects; each referring to a StepPattern object. The

instance of PatternOccurrence shows part of a trace that the pattern occurs as well as the starting

point of the pattern. In each StepPattern object, there might exist several RepeatingStep objects.

In the following, we briefly discuss how to apply the new concepts in the generic trace metamodel:

As shown in Figure 5.6, we define a new class StepPattern pointing to repeating patterns as a

sequence of RepeatingStep objects repeated consecutively in the trace. We also add a new class

RepeatingStep, referring to the Step objects included in a StepPattern. Similar to Step, Repeat-

ingStep is a tree-like structure, which implies having a composite reference to represent parent

and children references. In addition, we rely on the containment reference steppattern of

the Trace class to remove redundancy in StepPattern objects. A RepeatingStep can be shared

between several StepPattern objects by adding the containment reference repeatingstep to

the Trace class.

The reference repeatingstep between the StepPattern and the RepeatingStep classes

represents which RepeatingStep objects are included in each StepPattern object.

To support repetitive patterns within an execution trace, we need to distinguish between a

normal step from a step that refers to an occurrence of a step pattern. We do this by extending the

Step class with two subclasses, NormalStep and PatternOccurrence. The PatternOccurrence

class represents occurrence of the patterns, and contains an attribute rept that is used to specify

the number of repetitions of a pattern.

Each PatternOccurence object is related to a StepPattern object using the reference pat-

88

PatternOccurrence

+rept: EInt

{ordered=true}
children
*

parent
0..1

repeatingstep
*

pattern
1..1

repeatingstep
*steppattern

*

steptype
*

StepType

+stepName: EString

 Step

 NormalStep

RepeatingStep State

ParameterValue

+Directionkind

 Trace
 StepPattern

step
*

parametervalue
*

parent
0..1

{ordered=true}
children
*

steptype
1..1

state
0..1

state
*

parametervalue
*

StepSpec

ParameterList

parameterlist
0..1

PatternOccurrenceStepData
step
0..1

{ordered=true}
parameterlists
* {ordered=true}

states
*

stepdata
0..*

parameterlist
*

Figure 5.6: Excerpt of CTM with modeling concepts related to Step, with the changes highlighted
in blue

89

tern. Besides, there is a reference state between the Step and State classes, pointing to the

state of the model at any point in time for the respective NormalStep.

Despite the similarity of Step objects in a loop, they could lead to different states (State ob-

jects) and process/produce different parameters (ParameterValue objects). Because each Step

might include more than one ParameterValue, we need a new class ParameterList, which refers

to a list of corresponding ParameterValue objects. This class is used to merge ParameterList

objects of Step objects included in a loop. Similar to the technique used by Taniguchi et al. [161]

for abstracting repetition patterns, in order to replace the whole repetition, we make a representa-

tive by unifying Step objects (by adding a reference to the RepeatingStep class), and storing the

corresponding States and ParameterValues in chronological order sequences. More precisely, a

PatternOccurrence object points to a specific StepPattern object, which contains a set of Repeat-

ingStep objects. In subsequent iterations of the pattern, a sequence of State objects and a sequence

of ParameterList objects are obtained for each RepeatingStep object. This data is represented

by using the class PatternOccurrenceStepData, having a reference to the RepeatingStep class,

an ordered unbounded reference state to the State class, and an ordered unbounded reference

parameterlist to the ParameterList class as well. All associated States and ParameterLists

are stored chronologically for a single RepeatingStep. Using this structure, we replace multiple

redundant instances of steps by the references to a single step. By storing repeated steps only once,

we are able to eliminate all repetitions of steps within the trace.

Since both NormalStep and RepeatingStep have a reference to the StepType class, we add

the StepSpec superclass, which inherits either NormalStep or RepeatingStep. We also add the

reference steptype from the StepSpec class to the StepType class.

Figure 5.7 presents part of the compact version of the trace of the Petri net example model

that makes use of the introduced compaction of Step information. In this example, we make use

of one RepeatingStep referring to the firing of t1, which is repeated three times. There is an

instance of the StepPattern class that contains only one RepeatingStep object. We replace all

Step objects representing the firing of t1 with one instance of PatternOccurrence that refers to

90

net:Net

 :Step

:StepType

 stepName="Run"

:StepType

 stepName="fire"

:StepPattern

:RepeatingStep

PatternOccurrence

 repet:3

:PatternOccurrenceStepData
states

p1:StaticTransientObject

p2:StaticTransientObject

 t1:Transition

 name="t1"

p3: Place

 name="p3"
 initalTokens=0

p2: Place

 name="p2"
 initalTokens=1

p1: Place

 name="p1"
 initalTokens=3

p3:StaticTransientObject

input
output

output

originalobject

originalobject

originalobject

S0:State S1:State
S2:State

p1-0:ObjectState

v0:LiteralInteger

 val=3

v1:LiteralInteger

 val=1
originalobject

p1-1:ObjectState p1-2:ObjectState

p2-0:ObjectState p2-1:ObjectState p2-2:ObjectState

p3-0:ObjectState p3-1:ObjectState p3-2:ObjectState

p1-3:ObjectState

p2-3:ObjectState

p3-3:ObjectState

S2:State

v2:LiteralInteger

 val=2
v3:LiteralInteger

 val=0

P0:ParameterList

p1:ParameterList

p2:ParameterList

p3:ParameterList

Pv1:ParameterValue

.....
v1:RefValue

.....

Pv0:ParameterValue

v0:RefValue

originalobject originalobject

.....

...

.....
.....

:Trace

Figure 5.7: Excerpt of an execution trace of the Petri net example model including a loop (Step
with compaction)

the StepPattern object, and stores the value 3 in the rept attribute. After each iteration, a State

object and a ParameterList object are created (i.e., S1 and P1 after the first iteration, S2 and

P2 after the second iteration, etc.). The PatternOccurrenceStepData object represents an order

sequence of the State objects (i.e., S0, S1, S2, S3), an order sequence of the ParameterList objects

(i.e., P0, P1, P2, P3) as well as the corresponding RepeatingStep.

Compared to the original version of the trace (Figure 5.3), the resulting compact trace requires

only five objects and six references to represent the trace as opposed to four objects and 12 refer-

ences when compaction is not used.

5.3.2.3 Dealing with Repetitions in ObjectState

Our third compaction strategy targets attributes of ObjectState objects. There may be re-

dundancies among ObjectState objects regarding the values taken by different attributes of each

object.

91

t1
t2

net:Net

:Step
S0:State

S1:State

originalobject

originalobject

originalobject

p1:Place

name="p1"
RedTokens:1
GreenTokens:1
BlueTokens:1

p2:Place

name="p2"
RedTokens:3
GreenTokens:1
BlueTokens:0

P3:Place

name="p3"
RedTokens:0
GreenTokens:1
BlueTokens:0

P4:Place

name="p4"
RedTokens:2
GreenTokens:0
BlueTokens:0

:LiteralInteger

 val=1(Blue)
:LiteralInteger

 val=1(Red)

:LiteralInteger

 val=1(Green)

.....

originalobject

Run()

fire(t1) fire(t2)

p1-0:ObjectState

p3-0:ObjectState

p2-0:ObjectState

p1-1:ObjectState

p4-0:ObjectState

:LiteralInteger

 val=2(Red)

S2:State

Containment ref.
Normal ref.
Executed model

R
P1 P3

P2

P4

(B,G,R) (B,G)

(G)

(R,R)
t1

t2

RP1 P3

P2

P4

(B,G)

(G)

(R,R) t1
t2

RP1 P3

P2

P4

(B,G,R) (B,G)

()

(B,G,R,R)

B

G (G,R)
G

B B

G

R: RedToken
G: GreenToken

B: BlueToken

p1:StaticTransientObject

p2:StaticTransientObject

p3:StaticTransientObject

p4:StaticTransientObject

:LiteralInteger

 val=1(Blue)

:LiteralInteger

 val=1(Green)

:LiteralInteger

 val=1(Green)

:LiteralInteger

 val=1(Blue)

:LiteralInteger

 val=1(Green)

:LiteralInteger

 val=1(Green)

p2-1:ObjectState

p3-1:ObjectState

.....

.....

.....

P4-1:ObjectState

.....

:LiteralInteger

 val=2(Red)

:Trace

Figure 5.8: Excerpt of execution trace of the colored Petri net example model (ObjectState without
compaction)

As an example we use a trace of a colored Petri net, shown in Figure 5.8. A colored Petri net

is an extension of a Petri net in which each token carries a data value called the token color. For

simplification reasons, in the figure, we considered both color and value in one object. The Place

objects are specified with colour set stating the type of tokens. In this example, there are three

tokens colors: Red (R), Green (G) and Blue (B). We use a simple representation of the concrete

syntax of a colored Petri net to show its execution. The names of Place objects are represented

inside the circles and the current number of tokens in a Place object are shown below the circle

by specifying the color of the held tokens. As an example Place p1 holds in the first state one

92

Blue, one Green, and one Red token. The Transitions among Places state which kind of tokens

are required at the input Places to enable the Transitions. In our example model, t1 is fired if p1

contains a token with red color. In this case, when t1 fires, it consumes one token with Red color,

and adds one Red token to its output places.

Table 5.1: Excerpt of ObjectState data for the Place objects captured during the execution of the
colored Petri net model shown in Figure 5.8

Id BlueToken GreenToken RedToken

P1-0 1 1 1
p2-0 0 1 0
p3-0 1 1 0
p4-0 0 0 2
p1-1 1 1 0
p1-1 1 1 0
p2-1 0 1 0
p3-1 1 1 1
p4-1 0 0 2
p1-2 1 1 0
p2-2 0 0 0
p3-2 0 1 1
p4-2 1 1 2

Table 5.1 shows the partial data from the execution of the example model related to the Place

object that includes three attributes. The first column (Id) shows the step of the execution and the

respective Place. For instance, P1-0 refers to the ObjectState p1 at the beginning of the model

execution. The second to forth columns present the value of different tokens. The rows represent

ObjectState objects of the corresponding Place objects with slight differences. Regardless of the

similar rows (e.g., P2-0 and P2-1), there exists rows in the table that are partially similar. For

instance, two values of P1-0, P3-0 and P4-2 (BlueToken and GreenToken) are identical. They

are different in RedToken value. It is very likely that only a subset of the attributes of an object

changes from one execution step to another. Also, there might exist ObjectState objects that are

identical in two or more values during an execution. Therefore, we can identify frequent values in

93

ObjectState objects that can be shared and represented only once.

At the bottom of Figure 5.8, we show the content of the executed model and the generated

trace, which conforms to our generic trace metamodel. The model is executed in three Steps, each

providing a State object that contains four ObjectStates reached by p1 to p4. Since each Place

object contains three attributes, 36 objects are required to represent Value objects. For simplicity

reasons, some parts of the trace are not shown in Figure 5.8, e.g., the IntegerValue objects with

“zero” value and the links between State and StaticTransientObject. In total, 52 objects (12

ObjectState, 36 Value, 4 StaticTransientObject) and 64 references (24 objectstate, 36 value, 4

transientobject) are used for representing this part of the trace.

ObjectState Value

CompositeObjectState

+objectstateorder : EInt(0..*)
 LeafObjectState

value
*

objectstate
*

Trace

value
*objectstate

*

Figure 5.9: Excerpt of CTM with modeling concepts related to ObjectState, with the changes
highlighted in blue

Figure 5.9 shows our solution for improving CTM generic metamodel by compacting repetitive

values of ObjectState objects. Our solution was inspired by the Rainstore approach [90], intro-

duced in Section 3.3. As explained in Section 3.3, every unique value in the Rainstor approach is

stored only once, and each row of data is shown as a binary tree that allows rebuilding the origi-

nal data using a breadth-first traversal of the tree. Following the Rainstor method, we decompose

the class ObjectState into the class CompositeObjectState and the class LeafObjectState, each

94

having reference to the class Value. More precisely, an ObjectState object might consist of a

subset of existing ObjectState objects or a set of Value objects. We model this using the Compos-

ite design pattern [160]. Each ObjectState can be constructed with little effort, by traversing the

corresponding ObjectState and retrieving its contained ObjectStates recursively. Finally, instead

of using the containment reference from CompositeObjectState to ObjectState, the containment

reference objectstate of the class Trace provides the ability to reuse the existing ObjectState

objects.

t1
t2

net:Net

:Step
S0:State

S1:State

p1:StaticTransientObject

p3:StaticTransientObject

p4:StaticTransientObject

p2:StaticTransientObject

originalobject

originalobject

originalobject

p1:Place

name="p1"
RedTokens:1
GreenTokens:1
BlueTokens:1 :LiteralInteger

 val=1(Blue)

:LiteralInteger

 val=1(Red)

:LiteralInteger

 val=1(Green)

.....

originalobject

Run()

fire(t1) fire(t2)

L1:LeafObjectState

L2:LeafObjectState

:LiteralInteger

 val=0(Red)

:LiteralInteger

 val=0(Green)

:LiteralInteger

 val=0(Blue)

C2:CompositeObjectState
C1:CompositeObjectState

L4:LeafObjectState

L3:LeafObjectState

L5:LeafObjectState

:LiteralInteger

 val=2(Red)

S2:State

Containment ref.
Normal ref.
Executed model

R
P1 P3

P2

P4

(B,G,R) (B,G)

(G)

(R,R)
t1

t2

RP1 P3

P2

P4

(B,G)

(G)

(R,R) t1
t2

RP1 P3

P2

P4

(B,G,R) (B,G)

()

(B,G,R,R)

B

G (G,R)
G

B

B

G

R: RedToken
G: GreenToken

B: BlueToken

p2:Place

name="p2"
RedTokens:3
GreenTokens:1
BlueTokens:0

P3:Place

name="p3"
RedTokens:0
GreenTokens:1
BlueTokens:0

P4:Place

name="p4"
RedTokens:2
GreenTokens:0
BlueTokens:0

:Trace

Figure 5.10: Excerpt of an execution trace of the colored Petri net example model (Objectstate
with compaction)

95

Note that while two ObjectStates may have the same set of values, the order of the values may

differ. As an example, consider an ObjectState A with values (c1, c2, c3), and an ObjectState

B with values (c3, c1, c4) in a trace. (c1, c3) are common between A and B but because of the

different orders in which they appear, A and B cannot be considered as a shared ObjectState.

This can be handled by adding a new attribute to the class CompositeObjectState named ob-

jectstateorder defining the actual position of each value, which is obtained after exploring

the corresponding CompositsObjectState. In our example, A can be represented by a Composi-

teObjectState that consists of a LeafObjectState containing (c1, c3) and Value c2. In this case,

the resulting sequence of values for A is (c1,c3,c2) and the corresponding values taken by the

objectstateorder attribute are (0,2,1) meaning that c1 in the position 0, c3 in the position

2, and c2 in the position 1 leading to the value order (c1,c2,c3). Similarly, B is represented by a

CompositeObjectState, having a reference to the same LeafObjectState containing (c1, c3) and

a reference to Value c4. The resulting sequence of values for B is (c1,c3,c4) and the corresponding

values of the objectstateorder attribute are (1,0,2) meaning that c1 in the position 1, c3 in

the position 0, and c4 in the position 2 leading to the value order (c3,c1,c4). To provide better

compaction, we do not store any value for the objectstateorder attribute in the case that

the order of values in the value sequence is the same as the order of values in the corresponding

ObjectState. This means that in a CompositeObjectState object with empty objectstate-

order, the order of values is the same as the order in which they are retrieved from the contained

ObjectStates.

Figure 5.10 shows the compact version of the trace of the colored Petri net example model

from Figure 5.8. We can see that in the last execution state, p4 holds one Blue token, one Green

token, and two Red tokens. Thereby, the pattern of one Blue token and one Green token can be

observed multiple times in the Petri nets execution (see Table 5.1). For instance, p1 holds one Blue

and one Green token in all execution states, and p3 holds the same kinds of tokens in the first and

in the second execution state. To share these token specifications, we define one LeafObjectState

with one Green token and one Blue token. This LeafObjectState is then used to represent all

96

ParameterList
ParameterValue

CompositeParameterList

+parametervalueorder : EInt(0..*)
 LeafParameterList

parametervalue
*

parameterlist
*

Trace

parametervalue
*

parameterlist
*

 Value
value
*

LiteralValue RefValue

value
*

Figure 5.11: Excerpt of CTM with modeling concepts related to ParameterList, with the changes
highlighted in blue

ObjectStates of Place objects where the Place objects hold one Green and one Blue token. To

illustrate this, Figure 5.10 shows this for the last state of p4 (B,G,R,R) and the second state of p3

(B,G,R). For the last state of p4 (B,G,R,R), we create a CompositeObjectState (C2) that points

to the LeafObjectState (L2) that represents the combination of one Green and one Blue token.

In addition, we create a second LeafObjectState (L5) that defines two read tokens. Similarly, to

record the second state of p3 (B,G,R), we also create a CompositeObjectState (C1) that points to

the LeafObjectState (L2) for the Green and Blue tokens. In addition, it refers to a LiteralInteger

that defines one Red token.

In comparison to the original trace, shown in Figure 5.8, applying the compaction mechanism

to this part of the trace leads to a decrease in the number of objects from 48 to 14 and the number of

references from 60 to 35, around 71% reduction in the number of objects and 42% in the number

of references.

5.3.2.4 Dealing with Repetitions in ParameterList

The last part of our compaction strategy deals with redundancies among input and output pa-

rameters of Step objects with regard to their values. It is very likely that the values of parameters

be repeated among different Step objects during execution. Hence, our approach determines the

97

parameters that can be shared and represents them only once. The problem of the repetitions in

parameter values and its respective solution for avoiding redundancy is similar to those that were

given in Section 5.3.2.4 for ObjectState. Due to space restrictions, we only present the relevant

part of CTM in this section.

As shown in Figure 5.11, the class ParameterList is decomposed into two subclasses: Com-

positeParameterList and LeafParameterList, each might have a reference to the class Param-

eterValue. We add the containment references parameterlist, parametervalue and

value to the class Trace to enforce storing similar objects only once. Using such structure,

we can obtain the sequence of ParameterValue objects relevant to a ParameterList object by

traversing its corresponding ParamererLists in a recursive way. Finally, similar to ObjectState,

the order of ParameterValue can be stored in the parametervalueorder attribute of the class

CompositeParameterList, in the case that the order of ParameterValue changes after retrieving

the ParameterValue sequence.

5.4 Related Work

In this section, we first give an overview of existing approaches for defining model execution

trace structures, then we look at existing business process mining approaches and finally, we briefly

describe efforts on existing scalable model persistence approaches.

5.4.1 Model execution tracing approaches

There exist many studies that tackle the problem of large traces with a focus on code-centric

development. Existing approaches fall into different categories including trace filtering, graph re-

duction, trace visualization, partitioning, and trace abstraction [94]. A considerably less emphasis

was placed on managing traces generated from executable models. We surveyed the approaches

conducted in tracing executable models [159] and found that, although each approach has its own

advantages, only a few have been proposed to deal with the scalability of traces in memory usage.

98

In the following, we present existing model execution tracing approaches that are related to our

work.

Hegedus et al. [85] proposed a generic execution trace metamodel that can be specialized to any

given xDSML. This approach reduces traces size by only capturing state modifications and events

related to state modifications. Although such a technique is slightly similar to State compaction

applied in CTM, their trace metamodel only considers event occurrences in an execution, whereas

CTM presents a complete representation of traces (including states, steps, and their corresponding

inputs and outputs) in a compact form.

Kemper and Tepper [101] proposed a scalable approach to remove repetitive fragments from

traces using heuristic methods such as cycle reduction. Similar to our approach, the authors focused

on removing repetitions contained in the trace. Contrary to CTM, their approach represents traces

as simple sequences of events and states in the form of message sequence charts, and no trace

metamodel is presented.

In the TopCased project, Combemale et al. [51, 40, 12] proposed an approach to define an exe-

cution trace metamodel for discrete-event system modeling. They manually provided a metamodel

specific to an xDSML. Similar to the work of HegedÃijs et al. [85], this approach considers a trace

only as a sequence of execution steps. Another limitation of this approach is that the obtained

metamodel does not take into account any sort of compaction scheme. Hence, it is not scalable to

support large traces.

Meyers et al. [41] applied a generative approach as part of their ProMoBox framework, which

generates domain-specific trace metamodels for xDSMLs. The obtained trace metmamodel is

clone-based, and defines execution traces as sequences of events and states in which each state

is a complete snapshot of the executing model. Although the resulted trace is more rich than the

aforementioned approaches, it does not consider any technique to compact execution traces.

Similarly, Gogolla et al. [144] generate so-called filmstrip models that can be considered as

domain-specific trace metamodels. Such trace metamodels are also clone-based and capture oper-

ation calls as well as state modifications during the execution. Thereby, the trace is defined as a

99

sequence of events and states. However, the whole model is cloned to store each execution state,

meaning that a complete snapshot of an object is created at each execution step, and all static fields

(that never change) and dynamic fields (that may not change in each step) are stored. Consequently,

there is a lot of redundancies due to repetition in states, so that the resulting traces, even for small

models, might be very large, hindering scalability.

Aljamaan and Lethbridge [123, 124, 125] applied a different approach to enable model exe-

cution tracing. They proposed Umple1—an action language in a fully executable platform—for

textual modeling with UML. They defined trace directives that allow modelers to specify traces of

UML attributes and state machines, representing attribute values as states and transitions as steps.

This approach represents a trace in a textual format without applying any compaction techniques,

hindering scalability.

Fuentes et al. [136, 137] provided a dynamic model weaver for executing aspect-oriented mod-

els, leading to the generation of execution traces. A trace represents the execution of an activity as

well as the current status of objects and their attribute values. Likewise, this approach suffers from

the same limitations as the other approaches. Their approach deals with a specific kind of xDSML,

as opposed to CTM, which is more generic. There is no compaction for execution traces either.

Mayerhofer et al. [39] proposed an approach to capture execution traces of fUML models.

The traces represent the execution of fUML activities and actions, snapshots of object values, as

well as processed inputs and produced outputs. Despite providing a complete representation of a

trace for UML models, their proposed metamodel differs from CTM in that it is specific to fUML,

while CTM is completely generic supporting any xDSML. Furthermore, it does not consider the

compaction of traced data.

Hendriks et al. [117, 118] proposed a graph-based representation of execution traces for per-

forming automated analysis techniques that can be applied by different modeling and analysis

tools. The authors suggested the TRACE tool to interpret system behavior and analyze execution

traces by using two different analysis techniques. They emphasize the fact that the large size of

1https://github.com/umple/Umple

100

traces complicates the interpretation and analysis behavior of systems over time. However, they

do not apply any compaction techniques for traces. Moreover, their approach represents only trace

execution events by producing traces that are sequences of events that occur during a model exe-

cution.

Schivo et al. [149] proposed UPPAAL as a back-end analysis tool for real-time systems.

The approach provides a systematic way to define metamodels for UppaalâĂŹs timed automata,

queries, and traces, which are needed to construct UPPAAL’ models, and to verify relevant prop-

erties and interpret the results. Although the authors proposed a generic trace metamodel that is

independent of any xDSML, the metamodel represents a trace as a sequence of states and transi-

tions, and no compaction for execution traces is provided.

Recently, Bousse et al. [10, 7] presented a generative approach to automatically derive mul-

tidimensional domain-specific trace metamodels for xDSMLs that provide facilities for efficiently

processing traces. Such metamodels define an execution trace as a sequence of execution steps and

execution states where execution states capture the values of the dynamic properties of all model

elements. By providing one navigation dimension per dynamic property, the trace metamodels

improve scalability in trace processing time. With the derivation of domain-specific trace meta-

models, usability is improved. The approach also considers reducing redundancies in states by

only capturing the values of dynamic properties when they change between states. However, no

other compaction technique is considered.

Finally, Luay and Hamou-Lhadj [162] proposed MTF (MPI Trace Format) to model in a scal-

able way execution traces generated from multi-process systems based on the MPI (Message Pass-

ing Interface) standard. The authors discussed the scalability problems of MPI traces and the lack

of practical solutions. The design of MTF is validated against well-known requirements for a stan-

dard exchange format, with the objective to work towards standardizing the way MPI traces are

represented in order to allow better synergy among tools. Although MTF was developed in the

context of multi-process systems, the compaction techniques in MTF can be used to extend CTM

to support traces of executable models, designed with concurrency and parallel processing in mind.

101

5.4.2 Business process mining approaches

Process mining techniques focus on extracting knowledge from event logs (i.e., execution

traces). In many cases, the high volume of data is captured in specific event logs, causing problem

in process discovery. Accordingly, significant effort has been made to analyze business process ex-

ecution traces by developing efficient and scalable techniques in process mining. Examples of such

techniques include event log filtering [163], event log transformation [164], trace clustering [165]

and discovery techniques such as fuzzy mining [166] and pattern discovery [167, 168, 164]. Most

of these techniques are somehow similar to the methods, which are used for code-centric trace

compaction approaches.

For example, trace clustering is an effective way of dealing with large event logs by splitting

into correlative subsets of traces. Song et al.[165] used a trace clustering technique to partition

execution traces into different groups. By dividing traces into different groups, process discovery

techniques can be applied on subsets of behavior and thus improve the accuracy and comprehensi-

bility.

Bose and Aalst [164] proposed a multi-phase approach that provides abstractions of activities in

traces based on the patterns. The approach first determines and replaces the repeated occurrence of

the loop constructs in traces with an abstract entity. Then, it identifies and replaces sub-processes

or common functionality with abstract entities. This technique is similar to the Step compaction

technique of CTM, which identifies patterns of identical sequences of Steps and replaces them with

an abstract entity (i.e., PatternOccurrence).

Pattern mining techniques such as the one’s proposed by Tax et al. [169] discover patterns of

local behavior from event logs. Such patterns do not capture the behavior of the complete traces.

For instance, Tax et al. [169] discovered more precise process models by abstracting events at a

higher level of human activity. Although these techniques simplify the analysis of event logs, their

applicability depends on the availability of a list of human behavior at the activity level. Contrary

to CTM compaction techniques, which allow us to keep track of every detail in the trace, pattern

mining techniques ignore low-level data from a trace to understand its main content.

102

5.4.3 Model persistence approaches

The interest in scalable persistence of large models has grown significantly in recent years. In

the following, we present some existing approaches in different categories.

5.4.3.1 XMI-based approaches

There exist many MDE approaches that used XMI as a common import/export model persis-

tence format. Although XMI allows interoperability between existing tools and their models, it

provides limited support for lazy or partial loading of models in memory for persistence. It also

lacks scalability when working with large models. Examples are the work of Mayerhofer et al. [14],

Combemale et al. [12], and Schivo et al. [149, 170] that persist execution traces in the XMI format.

Besides XMI, CTM uses EXI format to address XMI limitations and improves scalability both in

terms of memory and time required to store/load trace models.

5.4.3.2 Relational-based approaches

Another idea for persisting huge models is storing models in a relational database. An exam-

ple is Connected Data Objects (CDO)2 project in which an Ecore metamodel derives a relational

schema and allows developers interacting with models. Such approach supports on-demand and

partial loading of models in memory. While relational-based approaches are better than XMI se-

rialization, they are no longer effective for timely, scalable data management. Furthermore, such

approaches are still inefficient due to the highly interconnected nature of models for providing

complex queries. As an example of a relational-based approach, Dominguez et al. [130] persist

execution traces in a database. In this approach, an UML profile is generated for tracing system

execution using a UML statechart. A persistence component transmits the runtime data obtained

from the execution of a model to the trace database.
2http://www.eclipse.org/cdo/

103

5.4.3.3 Graph-based NoSQL databases

NoSQL databases provide better scalability and performance compared to relational databases [171].

MORSA [172] is the first approach for scalable model persistence based on a NoSQL back-end

and on-demand loading/caching mechanisms. MORSA uses a document store database to per-

sist large models using the standard EMF mechanisms. While this approach leads to an effective

memory footprint and system performance, due to highly interconnected references between model

elements, the storage of models can be extremely complex.

Hartmann et al. [173] proposed a compact representation of time-evolving graphs for analyzing

complex data. The authors incorporated time as a first-class property into a temporal graph struc-

ture to make each node an independent time series. A temporal graph is an efficient data structure

for storing the history of data that frequently changes over time. In this approach, GREYCAT, a

framework for time-evolving graphs, was implemented to support read and write mechanisms for

a temporal graph. This structure provides substantial memory reduction rather than snapshots. It

is efficient for analyzing large-scale graphs especially with partial changes along time. This ap-

proach is similar to CTM as both of them focuses on state changes instead of providing a complete

or partial snapshot of data.

Another example is KMF runtime versioning [5], which stores the versions of each object of

a model separately, allowing to enumerate the states of a specific object of the executed model. It

efficiently supports the notion of model versioning by setting a specific version to each object or

making a reference to a particular version of an object. This approach considers changes at the

object level, allowing to browse an execution trace by navigating among the states of a model. The

model elements can be stored from memory to a NoSQL database. Similar to this approach, we

only save incremental changes rather than snapshots of a complete model. While this approach

offers a considerable reduction in memory usage for small modifications, it induces a serious over-

head for full model change storage.

104

5.5 Conclusion

Dynamic V&V of models requires the ability to capture execution traces for the execution

of models. In order to support dynamic V&V, an efficient representation of trace information

is required. We identified three main requirements for designing a trace metamodel: genericity,

scalability in space, and information preservation. To design a trace metamodel for an xDSML,

the following requirements have to be addressed. First, it must be generic to support any kind of

xDSML. Second, it must provide good scalability in space. In addition, it should provide lossless

representation of traces. In this thesis, we presented CTM, a metamodel for representing traces

generated from executable models. The metamodel captures sequences of model states, execution

steps, object values, and parameters, which are concepts that exist in most xDSMLs, making CTM

generic enough to support traces generated from models of various xDSMLs. We designed CTM

by embedding various compaction techniques that remove redundancies in model states, object

states, values, steps, and parameters.

105

Part III

Applications and Tooling

106

Chapter 6

Tool Support in the Context of Gemoc

In this chapter, we present the software development that was achieved to implement our ap-

proaches and applications. Section 6.1 gives an overview of the Gemoc studio and its execution

framework. Continuing, we present all the work that was performed in the Gemoc Studio. Sec-

tion 6.2 explains the implementation of our trace metamodel that we presented in Chapter 5. Con-

tinuing, Section 6.3 presents techniques and algorithms that are used for the compaction of traces

in CTM. Lastly, Section 6.4 evaluates CTM by defining several research questions, measuring

evaluation criteria, and comparing the results with the existing trace metamodels.

6.1 Gemoc Studio Execution Framework

The Eclipse Gemoc Studio1 is a framework for designing and integrating, and using different

executable modeling languages. The framework provides generic components through Eclipse

technologies to define discrete-event operational semantics into an execution engine specific to a

metaprogramming approach. Figure 6.1 gives an overview of the Gemoc Studio.

The Gemoc Studio offers two workbenches including a language workbench and a modeling

workbench. The language workbench is used by language designers and language integrator to

build and compose new executable modeling languages. For this work, the designer should define

the abstract syntax (using Ecore), the operational semantics, and the concrete syntax of an xDSML.

Figure 6.2 shows a snapshot of the Gemoc language workbench that has been used for designing a

Timed Finite State Machine (TFSM) example.

1http://gemoc.org/studio

107

The modeling workbench is used by domain designers to create, execute, and coordinate mod-

els conforming to executable modeling languages. An advanced execution engine also exists that

can be used for the execution of any model.

Figure 6.3 presents an overview of the underlying architecture of the execution framework. On

the left, an xDSML containing an abstract syntax, a concrete syntax and operational semantics is

shown. At the middle, the model that is conformed to the execution metamodel of the xDSML

is presented. The state of the model is modified by the transformation rules of the operational

semantics. In addition, it provides an interface to define engine addons that contain components

to control the progress of the execution, and can be used to support the execution. For example,

an add-on may be used to provide synchronous notifications to control the execution. It is also

possible to create queries, and to modify the model between execution steps (e.g., for implementing

a debugger).

Figure 6.1: overview of the Gemoc studio [174]

108

Figure 6.2: Screenshot of Gemoc language workbench showing the design of a TFSM example

Figure 6.3: Overview of the Gemoc modeling workbench execution framework [174]

109

6.2 Implementation of CTM

We have implemented a prototype in EMF using the Xtend2 and Java programming language.

It was implemented as an add-on integrated in Eclipse Gemoc Studio. The prototype is a set of

Eclipse plug-ins containing the generic and compact trace metamodels, and a trace constructor as

well as a trace decompactor. We explain and discuss the different parts of the implementation in

the following sections.

6.2.1 Generation of proposed trace metamodels in EMF

We employed the metamodeling language Ecore for defining the abstract syntax of the meta-

models, and Kermeta and xMOF for the operational semantics. For each metamodel, we have

generated three additional plug-ins which provide wizards for creating new model instances, an

editor which allows to enter the model information, and templates to write tests for a model as

well.

At the beginning, we created a project to define two trace metamodels (generic and CTM) by

using EMF tooling, creating Ecore models (.ecore files), and an EMF generator model (.genmodel

file) that configures the generation of the Java API corresponding to the metamodel. The EMF

model code generator is called with the .genmodel file, and generates Java interfaces and Java

classes. The genmodel defines various options needed for the code generation, e.g., the path and

file information. The genmodel file also contains the control parameter how the code should be

generated.

The generated code consist of three parts: model, model.impl, model.util. Every generated

method is tagged with @generated. Although in some cases, we had to adjust the methods, and

changed them to support special features. For instance, for the non-unique references in CTM,

we added an additional code to the corresponding methods to support duplicated objects. Note

that due to a bug in EMF, assigning false value to the flag Unique for a reference doesn’t support

2https://www.eclipse.org/xtend/

110

duplicated objects. Listing 6.2.1 shows the updated version of the generated Java code of the

method getParametervalue in ParameterListImpl class.
1 * @generated Not FIXME workaround BUG 89325
2 * In order to accept duplicates in parametervalues
3 @SuppressWarnings("supporting duplicats in object")
4 @Override
5 public EList<ParameterValue> getParametervalue() {
6 if (parametervalue == null) {
7 parametervalue = new EObjectResolvingEList<ParameterValue>(

ParameterValue.class, this, TracePackage.
PARAMETER_LIST__PARAMETERVALUE){

8 @Override
9 protected boolean isUnique() {

10 return false;
11 }
12 };
13 }
14 return parametervalue;
15 }

Listing 6.2.1: The updated code of getParametervalue method for ParameterListImpl class to
support duplicates in parametervalue reference, written in Java

The code was added for the following references in the respective methods.

• Patternoccurencestepdate.states

• Patternoccurencestepdate.parameterlists

• Objectstate.values

• Refvalue.originalobjects

• Parametervalue.values

• Steppattern.repeatingstep

• Compositeparameterlist.parameterlist

• Compositobjectstate.objectstates

Moreover, we relied on Kermeta aspects to add new properties and operations, and imple-

mented the operational semantics, weaving them into the proposed metamodels. Kermeta is a

language designed as an extension of the Xtend language, which is part of the Eclipse project.

111

Xtend is a programming language that provides same possibilities as Java, with a very powerful

syntax, better switch expressions and template expressions as well. Xtend is extensible through

so-called active annotation, which is a mechanism to allow developers to change the content of

methods. Kermeta consists of a set of Xtend active annotations. @Aspect is an annotation that is

used to add new properties and methods in them.

6.2.2 Creation of an xDSML

As shown in Figure 5.1, the input of our approach is an xDSML, which is defined using Ecore

for the abstract syntax, and using either Kermeta [175] or xMOF [14] for the operational seman-

tics. At the next step, we created the abstract syntax of the Petri net language, i.e., the ecore

metamodel, also called "domain model" in Gemoc, and generated the code of the ecore metamodel

using a genmodel file. Then, we created the operational semantics of the language, which is also

called "DSA project" in Gemoc. Using Kermeta 3, we created an Xtend file containing a set of

aspects, each being an extension of a class of the abstract syntax (e.g., Place or Transition). Each

aspect allows to define (a) new dynamic properties, such as the number of tokens contained in a

Place, and (b) methods, which are the transformation rules that will create execution steps, such as

"fireTransition". The last step for the definition of an xDSML is creating the language definition

project, which declares all the different components of the language using a DSL called Melange.

In summary, for an xDSMl we have to create three projects:

• the abstract syntax (with the ecore)

• the operational semantics (with xtend)

• the language definition (with melange)

We validated our approach by all well known xDSMLs. For each xDSML, we created the three

aforementioned projects for making the respective language executable.

112

6.2.3 Implementation of the Trace Constructor

The main element of our prototype is the Trace Constructor (shown by d and e elements of

Figure 5.1), which is used for constructing traces during a model execution. It contains two com-

ponents: 1) regular trace constructor, which constructs traces in regular form conforming to the

generic trace metamodel. 2) compact trace constructor which has been developed so that each

part of the trace (State, Step, ObjectState, ParameterList, Value) can be produced in both regu-

lar (uncompact) and compact form. Both of two trace constructors, as shown in Figure 5.1, use

an xDSML and an input model for the execution as well. The output of the model execution is

an execution trace either in regular or compact form. A user can choose the trace compaction

techniques (i.e., State, Step, ObjectState, ParameterList) he or she wishes to apply by selecting

the corresponding flag in the compact trace constructor tool. Thus, the trace can be partially or

entirely compacted. In the case that all flags are false, the trace is constructed in a regular form

using the regular trace constructor. In the case of generating the compact trace, we have applied

several techniques, each being used to efficiently reduce the size of the corresponding part of the

trace described in Section 5.3.2. We will detail each technique in the following sections.

6.2.4 Implementation of the Trace Decompactor

The second part of our prototype is a trace decompactor, which aims to prove that the trace

constructor a lossless compact execution trace. The trace decompactor takes a serialized compact

trace as an input, and produces the original one. As mentioned before, the regular trace constructor

generates trace without compaction. Hence, we are able to compare such trace with the regular

trace resulted from the trace decompactor. Note that similar to the trace construction process, the

trace de-compactor relies on four boolean flags, each specifying the de-compaction state of each

part of the trace (State, Step, ObjectState, ParameterList). Therefore, trace de-compaction can be

done partially if there is no need for full de-compaction of the trace.

CTM was implemented as an engine add-on deployed in Eclipse Gemoc Studio. This simpli-

fies the integration of the trace constructor with the execution engine, as the engine is responsible

113

for running the execution transformation, and no modifications of the execution transformation are

required to enable construction of traces. It is worth noting that the CTM components (i.e., generic

trace metamodel, compact trace metamodel, trace constructor and trace de-comactor) were im-

plemented independently from any xDSML, and can be applied to any execution framework that

supports execution of models. In this case, the considered xDSML containing its abstract syntax

and its operational semantics should be supported by the execution framework.

Our prototype has been tested on a selection of xDSMLs that had been previously developed

using the Gemoc Studio. Table 6.2 presents all the xDSMLs considered so far, with links to their

source material and their semantics as well. The trace constructor and trace decompactor were

successfully tested for these languages.

Both the trace constructor and the trace de-compactor have been implemented using the

Xtend3 and Java programming language. The trace constructor and the trace de-compactor share

some part of the code and comprise 4107 and 744 lines of Java and Xtend codes, respectively. The

source code (EPL 1.0 licensed) is available at our project web page4.

6.3 Applying Compaction Techniques to CTM

In the following sub sections, we explain how compaction techniques are employed, and ap-

plied to CTM to produce a compact execution trace.

6.3.1 Implementation of Step Compaction

In this section, we present an algorithm for converting a tree structure into an ordered directed

acyclic graph. We used an extension of Valiente’s algorithm [176] to detect Step repetitions in a

trace when the trace is represented in a tree. In the following, we first define Valiente’s algorithm,

then explain how it can be improved to abstract the Step part of the trace.

3https://www.eclipse.org/xtend/
4https://github.com/MDSEGroup/TraceCompaction

114

6.3.1.1 Overview

Valiente [176] presented an algorithm that traverses the tree in a bottom-up fashion (from the

leaves to the root). In this algorithm, a certificate (positive integers between 1 and the size of the

tree) are assigned to nodes so that the roots of two isomorphic sub-trees take the same certificate.

For computing each certificate, the algorithm uses signature, which is obtained by concatenating

the label node and the certificates of its direct children.

Figure 6.4: A sample tree (left) and its DAG (right) which is transformed using Valiente’s algorithm

For example, in Figure 6.4, the signature of B is “B 1 2”. For the leaf nodes, the signature is

their labels (e.g. the signature of D is “D”). In the program, a hash table (or hash map) can be

used to store the certificates and signatures, so that there is no duplication for the certificates. The

results of applying Valiente’s algorithm to the tree are shown in Table 6.1

Table 6.1: Result of applying Valiente’s algorithm to the tree of Figure 6.4

Signature Certificate

D 1
E 2
B12 3
C2 4
A34 5

115

Time complexity of the algorithm consists of the time of traversing the tree, the time needed to

compare two sub-trees, and the time of calculating the signatures.

6.3.1.2 Extension of Valiente’s Algorithm to Trace Compaction

To deal with the repetitions of Steps, we used an extension of Valiente’s algorithm [176] pro-

posed by Hamou-Lhadj and Lethbridge [64] to detect redundant patterns within execution steps.

In our case, the execution trace would be a tree, containing the nodes corresponding to the Steps.

The aim is to detect patterns involving contiguous repetitions of Steps existing due to loops or

recursion. As mentioned in Section 5.3.2.2, the StepPattern class in the metamodel represents the

repetition in steps. The idea is to be able to detect similar patterns, which can be either sub-trees

or leaf nodes during the generation of the trace. At the end of execution, the node signatures are

computed by detecting the patterns, and using the global hash table to find/add the respective entry.

The final table represents the DAG version of the trace.

To develop the algorithm, let us consider the following items:

• We need to create a new structure as nodesignature for the nodes, including a string value

as the signature, and a boolean value to show whether the node involved in a pattern or not.

Each entry of the global hash table contains a certificate and a nodesignature. The signature

composes of the StepType of the respective Step, and the certificates of its direct children.

• A node or a sub-tree is considered as a pattern only when they exist in a loop or recursion.

Hence, the certificates of the same nodes are different, if they occur only once.

• The algorithm is done offline (i.e., after the execution of the model), due to the complexity

of applying the technique during execution. We defer doing the step compaction on the fly

to future work.

The algorithm simply takes a complete execution trace, and produces a certificate and signa-

ture for each node by traversing the tree of Steps in a bottom-up fashion (from the leaves to the

root). The certificates are assigned to nodes so that the roots of two isomorphic sub-trees take

116

the same certificate. The signatures are computed by checking the global table, and finding the

respective values if they exist. To carry out this work, we extended the Step class by adding two

new properties (signature, certificate) in the trace metamodel through a Kermeta aspect (shown

in Listing 6.3.1). Given a signature, we can recognize repetitions that might be included in the

corresponding Step, and thus construct the trace in accordance to the trace metamodel described

in Section 5.3.2.2. Algorithm 1 shows our compute signature procedure. It is a recursive procedure

that is called in line 7.
1 @Aspect(className=StepSpec)
2 abstract class StepSpecAspect
3{
4 public String signature=""
5 public int certificate=0
6}

Listing 6.3.1: Defining two new properties in StepSpec aspect class Aspect

According to the algorithm (lines 8, 11), the node signature is a string value, which can contain

contiguous repetitions of numbers, meaning that similar certificates occur contiguously. We used

Java.Utill.Regex class and its methods (e.g., compile, matcher) to find patterns in a signature.

117

6.3.2 Implementation of State Compaction

As for the State part, we used an add-on named BatchModelChangeListener appended in

Gemoc Studio to track the changes that are made to the objects during an execution. It can rec-

ognize new objects created, and the objects removed after execution of each execution step. In

addition, the changes made on the collection fields and non collection fields are provided as well.

This method helped us to represent only the modification between State objects as TransientO-

bjectState objects. The value of basestate reference is determined by traversing the trace,

comparing the states with the current state and finding the closest one. If there is no change in

Objectstate values, no new State is created, and previous Step is assigned to the current Step.

Listing 6.3.1 shows how the BatchModelChangeListener method gets the changes made on

the objects. This method takes an engine with type of IExecutionEngine as an input (line 1), and

puts the model changes on the related output variables. It first defines a listener, assigns related

resource model, and gets the list of changes by executing getchanges method (lines 6 -9). Then,

the for statement iterates over the list of values, each being compared with the values for each case

in the switch structure. If there is a match, the block of code associated with that case is executed.

For the new and deleted objects, only the objects are added to the associated variables (lines 11 -

15, 28 - 30). For the changes made on a field (either collection or non collection), the respective

feature is also added in the associated variables. Note that ObjectFeature (lines (17, 23)) is a

new structure defined with two elements including Eobject and EStructuralFeature, which is used

to store both objects and features of the model changes.

In addition to considering state modifications after executing steps, our trace constructor sup-

ports also recording of state modification that occur before starting a step. This is relevant when a

step makes a change before calling another (sub-)step. In such case, the trace constructor creates

an instance of Step object and its StepType is assigned to “Implicit step”.

118

Algorithm 1 Algorithm for calculating signature and certificate for each step in the execution trace

. %input: trace , step % . % output: an integer value as certificate of step%
1: i=0, fnode=null
2: nodeSignature=”, subtreeSignature=”

. % nodeSignature is the signature of the node respective to step, subtreeSignature is obtained
by concatinating the signature of all the children of the step %

3: globalTable=a Hash table
. % In the globalTable, the keys represent signatures and the values represent certificates%

4: if (step.children not null) then
5: while (i<step.children.size) do
6: fnode= step.children.get(i)

. %the algorithm is called in recursive way to compute certificate of the input node%
7: certificate= call the algorithm with fnode as an input
8: subtreeSignature|certificate

. % || : concatination sign %
9: i++

10: end while
11: nodeSignature‖node.lable
12: nodeSignature‖subtreeSignature

. % node label is step.StepType%

. % The findglobalTable method check globalTable, if there exist an entry with nodeSignature,
the method return the respective certificate, if not, the certificate is increased by one, and an
entry (certificate,nodeSignature) is added to globalTable %

13: certificate=findglobalTable(nodeSignature)
14: assign cerificate to step, assign nodeSignature to step
15: return certificate
16: end if
17: if (step children is null) then
18: nodeSignature‖node.lable
19: certificate=findglobalTable(nodeSignature)
20: assign cerificate to step, assign nodeSignature to step
21: return certificate
22: end if

119

1def void preparechangelist(IExecutionEngine engine, Collection<EObject>
newObjects,

2 Collection<ObjectFeature> NonCollectionFieldobjects, Collection<
ObjectFeature> PotentialCollectionFieldobjects,

3 Collection<EObject> removedObjects) {
4 // Defining a Listener and
5 this.listenerAddon = new BatchModelChangeListener(
6 EMFResource.getRelatedResources(engine.executionContext.

resourceModel))
7 listenerAddon.registerObserver(this)
8 var List<ModelChange> changelist = listenerAddon.getChanges(this)
9 // A ModelChange can be a new/removed object in the model, or a

change in a field.
10 for (c : changelist) {
11 switch (c) {
12 NewObjectModelChange: {
13 newObjects.add(c.changedObject)
14 }
15 NonCollectionFieldModelChange: {
16 val ObjectFeature of = new ObjectFeature()
17 of.object = c.changedObject
18 of.feature = c.changedField
19 NonCollectionFieldobjects.add(of)
20 }
21 PotentialCollectionFieldModelChange: {
22 val ObjectFeature of = new ObjectFeature()
23 of.object = c.changedObject
24 of.feature = c.changedField
25 PotentialCollectionFieldobjects.add(of)
26 }
27 RemovedObjectModelChange: {
28 removedObjects.add(c.changedObject)
29 }
30 }
31 }
32 }

Listing 6.3.1: Using BatchModelChangeListener to get model changes

6.3.3 Implementation of Objectstate Compaction

Regarding the ObjectState compaction, the main challenge was how to efficiently identify the

similar values of ObjectStates that can be shared among different ObjectStates. To this work,

we used LCM (Linear time Closed item set Miner) [177], a powerful algorithm for enumerating

frequent closed item sets, which creates a set of ObjectStates including the values that occur more

frequently than a certain threshold. We chose this algorithm due to efficiency in memory saving

and computation time. We defined the threshold value (between 0 and 1) as minimum support by

executing several fUML models multiple times, and selected the value that leads to less memory

120

Table 6.2: xDSMLs applied to test our prototype

xDSML Link Description Semantics
Petri nets linka Simple Petri nets (see Figure 2.1) xMOF
PetrinetComplex linkb Petri nets with token objects Kermeta
IML linkc AutomationML Intermediate Kermeta
TFSM linkd Time finite state machine Kermeta
fUML linke Complete fUML xMOF

ahttps://github.com/MDSEGroup/TraceCompaction/tree/master/Traceconstruction/Petrinet
bhttps://github.com/MDSEGroup/TraceCompaction/tree/master/Traceconstruction/PetrinetComplex
chttps://github.com/MDSEGroup/TraceCompaction/tree/master/Traceconstruction/IML
dhttps://github.com/MDSEGroup/TraceCompaction/tree/master/Traceconstruction/TFSM
ehttps://github.com/MDSEGroup/TraceCompaction/tree/master/Traceconstruction/fUML

consumption during the execution.

6.3.4 Implementation of Parametervalue Compaction

As the compaction technique used for Parametervalue is the same as Objectstate, we used

the same algorithm for finding frequent ParameterValues within ParameterList objects, and con-

sequently creating CompositParameterList and LeafParameterList representing the Composite

design pattern [160]. Note that in both cases, the compaction can be done both on the fly and

offline.

6.4 Evaluation of CTM

In this section, we present the evaluation of our approach. We first provide background in-

formation on fUML, then we evaluate the genericity of CTM with respect to different xDSMLs

and different metaprogramming approaches. Thereafter, we present the conducted experiments

and a set of metrics regarding to the scalability of traces created with our approach. We have also

evaluated the overhead caused by CTM regarding execution time and memory consumption. Con-

tinuing, we present the evaluation of CTM with regard to information preservation. Finally, we

discuss the evaluation results.

121

https://github.com/MDSEGroup/TraceCompaction/tree/master/Traceconstruction/Petrinet
https://github.com/MDSEGroup/TraceCompaction/tree/master/Traceconstruction/PetrinetComplex
https://github.com/MDSEGroup/TraceCompaction/tree/master/Traceconstruction/IML
https://github.com/MDSEGroup/TraceCompaction/tree/master/Traceconstruction/TFSM
https://github.com/MDSEGroup/TraceCompaction/tree/master/Traceconstruction/fUML

6.4.1 Overview on fUML

Foundational UML (fUML) [178] is an OMG standard, which defines the execution semantics

of a subset of UML through an operational approach. It provides a virtual machine for executing

fUML-compliant models. The fUML subset contains parts of the abstract syntax of UML including

structural concepts for defining UML classes and behavioral concepts for defining the behavior of

these classes using UML activities. The fUML execution model is a model which defines the

execution semantics of the fUML subset, and specifies how fUML models are executed. fUML

basically enables the execution of UML activities. For the execution, the fUML virtual machine

takes an fUML activity and the activity’s input parameter values as input, and produce values for

the activity’s output parameters. The execution semantics of fUML activities is similar to the one

of the Petri net xDSML; both are based on offering and consuming tokens, except that tokens in

an fUML activity, can specify either control or data. Control tokens define the beginning and the

end of an activity, as well as conditionals or concurrency among nodes. Object tokens represent

the passing of data between actions. In some cases (i.e., join node) both control and object tokens

may flow among actions.

6.4.2 Experiments on CTM

We evaluated CTM with respect to several research questions, which have been defined based

on all targeted criteria.

6.4.2.1 Genericity

To evaluate the genericity of the CTM, we considered the following research questions.

RQ #1: Can CTM be used with different xDSMLs?

RQ #2: Can CTM be used with xDSMLs implemented using different metaprogramming

approaches?

122

To answer these questions, we tested CTM with a selection of different xDSMLs that had

previously been developed using Gemoc Studio. Table 6.2 presents all the xDSMLs considered in

this study, with links to their source material. The trace constructor and trace decompactor were

successfully tested for these languages. For each xDSML, we executed several example models

with different parameters, and generated execution traces using trace constructor.

For each xDSML, we implemented a set of plugins containing the abstract syntax (implemented

with the Ecore), and the execution semantics (implemented using either Kermeta or xMOF). Then,

we executed several example models with given parameters, and created traces (in both regular and

compact forms) with the trace constructor. The regular traces were compared with traces that were

produced from the domain-specific trace metamodels proposed by Bousse et al. [7], for number of

Step, State and Value objects, and observed the same results. We also reconstructed uncompacted

version of the compact traces using the trace decompactor, compared them with the uncompacted

ones produced by the regular trace constructor, and observed similar results.

6.4.2.2 Scalability

To evaluate scalability of CTM, we compared the memory and disk space used by the trace

generated by CTM with the trace obtained from the domain-specific trace metamodels proposed

by Bousse et al. [7]. We chose to compare our approach to Bousse’s method because, to our

knowledge, this is the only method that supports compaction of traces of executable models.

To proceed, first, we chose the set of 16 fUML models, which have been selected by Maoz et al. [61]

from different industrial sources (e.g., IBM, Nokia), and have been already used for similar case

studies (e.g., [122], [45], [7]). We chose these fUML models because they have also been used by

Bousse et al. [7] for the generation of traces. Note that the experiments contain a total of 38 model

execution of the considered fUML models, with the number of execution states ranging between

180 and 340, and different parameter setting. We examined the following research question to

evaluate the scalability of CTM.

RQ #3: Does CTM reduce the size of traces in memory and disk space, as compared to

123

existing trace metamodels?

For answering RQ #3, we have first defined a set of simple and practical metrics that aim to

measure how scalable the trace is compared to the other existing tracing approach. We then show

the results of applying these metrics to several traces generated for fUML models. The first metric

is used for the disk space measurement, and the two other ones measure the memory used by the

trace at the conceptual level.

File size [S] is the size of a trace serialized in the XMI standard format. It specifies how much

storage space we need to store a trace.

Number of Objects [Nobj] is the number of objects used to represent the trace. It is important

to notice that in practice the number of objects is equal to the number of nodes within the trace,

specified as either a graph or a digraph object.

Number of References [Nref] is the number of references in the trace. This number is equal to

the number of edges in the graph made from the trace.

We define the memory size, A, of the CTM trace as the total number of objects and references

in the trace:

A = NrefCTM +NobjCTM (6.1)

Similarly, we define the memory size, B, of the obtained trace from the domain-specific trace

metamodels as the total number of objects and references in the trace. Note that we are using the

subscript DS to mean ’Domain-Specific trace’.

B = NrefDS +NobjDS (6.2)

We measure the memory compaction rate as follows:

CompactionRate = (1− A/B) ∗ 100% (6.3)

124

Besides, we measure the disk usage compaction rate as follows:

CompactionRatedisk = (1− A/B) ∗ 100% (6.4)

where A and B refers to the disk usage of the CTM trace and the domain specific trace, respectively.

Using the aforementioned metrics, we have measured the scalability of the execution traces

constructed with our CTM add-on, in terms of memory and disk space.

Likewise, the compaction rate corresponding to each part of the trace (i.e., State, Step, Object-

State, and ParameterList) can be determined using the same formula. For instance, we measure

the compaction rate for State using the memory compaction rate formula, except that A and B now

refer to the total number of objects and references in the trace with the State-based compaction

technique and without it, respectively.

We used yEd Graph Editor 5 (Version 3.17.1) (for the very large trace, we used Gephi 6 (Version

0.9.1)) and Advanced XML Converter 7 (Version 3.02.0.12) to generate graphs of the serialized

traces, and prepared several SQL scripts running in SQL Server 2016 to determine the generated

graph’s nodes and edges.

6.4.2.3 Information Preservation

We define the following research question to demonstrate information preservation of CTM.

RQ #4: Can CTM provide a lossless representation of traces?

For answering RQ #4, we used the trace decompactor to reconstruct an uncompacted version of

a compact trace. This uncompacted version was then compared with the trace produced by the

regular trace constructor (i.e., an uncompacted trace). Both traces were serialized as XMI files,

and compared using EMF Compare.
5https://www.yworks.com/products/yed
6https://gephi.org/
7www.xml-converter.com

125

6.4.2.4 Performance overhead

We evaluate the performance of CTM by considering the following research question.

RQ #5: How much performance overhead is caused by CTM?

To answer RQ #5, we measured the runtime overhead induced by the trace construction using

CTM, and compared it with the execution time needed to construct traces of domain-specific trace

metamodels. The runtime overhead is obtained by comparing each execution time with the time

needed for the model execution where no trace was constructed.

The experiments for answering the research questions were performed on the following hard-

ware and software environment.

• Hardware: Intel Core i7-2620M CPU 2.5 GHz, 12 GB RAM

• Operating system: Windows 10 Professional 64-Bit

• Eclipse Gemoc Studio: Eclipse Oxygen 3, Build 2018-07-17

• Java: Version 8, Build 1.8.0_60

• Eclipse Memory Analyzer: Released Version 1.8.1

6.4.3 Results of the Evaluation

In the following, we present the results obtained from the experiments, and give the answers to

the research questions.

RQ #1 and RQ #2: Genericity of CTM. The results obtained regarding the genericity of CTM

shows that the compact trace can be generated for any given xDSML and regardless of the metapro-

gramming approach used for the implementation of execution semantics. Therefore, to answer

RQ #1 and RQ #2, we observe that CTM is generic enough to support different xDSMLs, and

different metaprogramming approaches.

126

180 200 220 240 260

0

2000

4000

6000

8000

10000

12000

14000

16000

Number of states

M
em

o
ry

 u
se

d
 b

y
th

e
tr

ac
e

(k
B

)

domain specific trace

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Model ID

Figure 6.5: Number of objects used by both CTM traces and domain-specific traces

RQ #3: Scalability. Figure 6.5 shows the number of objects used to represent the trace with

CTM and the domain-specific trace metamodels generated with [7]. The X-axis shows the used

example model, while the Y-axis shows the number of objects contained in the trace recorded for

the model’s execution. Likewise, Figure 6.6 shows the number of references used to represent the

trace obtained by CTM and the domain-specific trace metamodels. These two measures are related

to memory consumption. As we can see, domain-specific traces require 1.7 to 2.2 times more

objects than CTM traces with an average of 1.9. In addition, we observe that less references are

created using CTM compared to domain-specific traces. As shown in Figure 6.6, domain-specific

traces require 2.1 to 3.3 times more references than CTM traces with an average of 2.5.

Furthermore, regarding the disk usage, Figure 6.7 shows the disk space usage of the execution

traces with CTM serialized in both XML and EXI, and the domain-specific trace metamodels. The

Y-axis shows the amount of disk used by the trace in kilobytes (kB). We observe a significant

reduction of the disk usage ranging from 92% to 96% for the CTM trace serialized in EXI, and

65% to 73% for the CTM trace serialized in XML. This means that domain-specific traces require

13.4 to 28.5 times more disk usage than EXI-based CTM traces with an average of 18.2 and needed

2.8 to 3.7 times more disk usage than XML-based CTM traces with an average of 3.3.

Therefore, to answer RQ #3, we observe that CTM traces are more efficient in both memory

127

2000

4000

6000

8000

10000

12000

14000

16000

Number of objects used by the
trace

domain specific trace

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Figure 6.6: Number of references used by both CTM traces and domain-specific traces

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

D
is

k
sp

ac
e

u
se

d
 b

y
th

e
tr

ac
e

(K
B

)

domain specific trace in XML CTM trace in XML domain specific trace in EXI CTM trace in EXI

Figure 6.7: Disk space used by both CTM traces and domain-specific traces

128

72%

61%

58%

15%

%State CR

%Step CR

%ObjectState CR

%ParameterList CR

0% 10% 20% 30% 40% 50% 60% 70% 80%

Figure 6.8: Compaction rate of CTM trace elements

and disk usage than traces obtained by domain-specific trace metamodels as defined in [7]. In

Summary, CTM achieves an average compaction rate of 59% in memory usage and 95% in disk

space for EXI-based CTM traces.

Regarding the memory compaction rate, corresponding to each part of the trace, we also did

an empirical study on ten selected fUML models. First, we measured the memory compaction

in terms of the number of objects and references, which are relevant to each of trace element

instances (i.e., State, Step, ObjectState, ParameterLists). Then, we measured the average of the

compaction rates of the selected models for every trace element separately. Figure 6.8 shows a

chart depicting the distribution of the memory compaction measurements corresponding to each

trace element. The figure shows that the State element obtained the highest ratio of memory gain

(%35) over the total compaction rate, while the ParameterList element has the least (%7). These

results are due to the fact that the State of a trace contains the states of all objects in the executed

model after each execution step that occurs. Hence, storing only states modification using State

compaction technique can provide a remarkable result. The State compaction rate heavily depends

on the number of static or dynamic objects and the number of execution steps as well. Although

the compaction technique used for ParameterList is similar to the technique used for ObjectState,

in most cases such as what we had in the selected fUML models, the redundancies among input

and output parameters are less than the value repetitions in ObjectState objects. Therefore, in our

experiments, ObjectState obtained more memory gain than ParameterList.

129

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

0%

2%

4%

6%

8%

10%

12%

14%

16%

Model ID

Tr
ac

e
co

n
st

ru
ct

io
n

 o
ve

rh
ea

d

domain specific trace CTM trace

Figure 6.9: Runtime overhead of the CTM and domain-specific trace construction, for each exe-
cuted model

RQ #4: Information Preservation. For answering this research question, we conducted the

experiments on the same 10 fUML models. The compact traces of these models were uncompacted

using the trace de-compactor, and then compared with the regular ones produced by the regular

trace constructor. The results show that compact traces created with our compaction techniques

contain the same information as their not-compacted counterparts. Indeed, using the developed

trace de-compactor on traces recorded with the compact trace constructor, the same uncompacted

traces could be obtained as the ones recorded with the regular trace constructor. Thus, it can be

concluded that CTM offers a lossless representation of traces. In particular, no information is lost

in the compaction of traces, and the regular trace can be perfectly reconstructed from the compact

one without losing data.

RQ #5:Performance Overhead. Figure 6.9 shows the runtime overhead induced by constructing

execution traces, i.e., the percentage of additional execution time spent on building a trace, using

CTM and domain-specific trace metamodels. The X-axis shows the used example model, while

the Y-axis shows the percentage of runtime overhead induced by the construction of execution

traces. Although the runtime overhead for constructing traces heavily depends on the considered

execution, the results show that on average, the runtime overhead comprises 8.9% for constructing

130

a CTM trace and 7.25% for building a domain-specific trace. We observe that the construction

of a domain-specific trace is faster than the CTM construction. This is expected since the CTM

construction process involves different compaction techniques, i.e., the notification framework and

the LCM algorithm on the fly and Valiente’s tree pattern matching algorithm offline, which causes

more overhead on the execution. However, the median overhead remains quite low and under 10%.

Furthermore, for each compaction technique, we measured the execution time needed by the

respective operation for executing it, as well as the respective memory consumption. These ex-

periments were carried out on the same 10 fUML models8. The execution time was measured by

taking timestamps right before the operation for each compaction technique starts, and right after

the operation finishes. We repeated the measurements three times and used the arithmetic mean

for answering this research question. First, we measured the runtime overhead induced by only

constructing execution traces associated to each of the trace compaction techniques (i.e., State,

Step, ObjectState, ParameterList). Then, we measured the percentage of the time overhead of the

selected models for each compaction technique separately. Figure 6.10 and Table 6.3 show the exe-

cution times measured for applying each of the models distinguished between different compaction

techniques. Due to space limitations, we only present the total time of the trace construction con-

sumed by each execution. The last column of Table 6.3 shows the percentage of the time required

for executing some additional operations not related to the trace compaction. The figure shows that

the Step compaction technique obtained the highest ratio of the time overhead (%38) over the total

trace construction time. This result is due to the complexity of the Valentine’s algorithm, which

consists of the time to traverse the tree, the time to compare two subtrees, and the time to compute

the signatures.

We used the Eclipse Memory Analyzer (MAT)9 to measure the memory usage associated to

each compaction operation. First, we created a heap dump at the end of each operation run. Then,

we measured the number and size of objects allocated on the heap, relevant to trace elements in-

8https://github.com/MDSEGroup/TraceCompaction/tree/master/
runtime-modelingworkbench/examples.fuml.models

9http://www.eclipse.org/mat/

131

https://github.com/MDSEGroup/TraceCompaction/tree/master/runtime-modelingworkbench/examples.fuml.models
https://github.com/MDSEGroup/TraceCompaction/tree/master/runtime-modelingworkbench/examples.fuml.models

Table 6.3: Time measurement, corresponding to each compaction technique

Model ID Total time State Step ObjectState ParameterList others
1 1.57E+09 %15 %37 %29 %12 %7
2 1.53E+09 %17 %40 %28 %10 %5
3 1.25E+09 %17 %38 %29 %11 %5
4 9.43E+08 %16 %36 %30 %12 %6
5 9.30E+08 %16 %33 %33 %13 %5
6 1.28E+09 %17 %35 %32 %11 %5
7 1.05E+09 %18 %38 %29 %10 %5
8 1.33E+09 %15 %40 %27 %11 %7
9 5.17E+09 %19 %44 %20 %9 %8

10 4.08E+09 %19 %43 %21 %8 %9
Average 1.91E+09 %17 %38 %28 %11 %6

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Ti
m

e
o

ve
rh

ea
d

(%
 o

f
to

ta
l t

ra
ce

 c
o

n
st

ru
ct

io
n

 t
im

e)

Step ObjectState State ParameterList others

Figure 6.10: Time measurements for CTM trace compaction techniques

1 2 3 4 5 6 7 8 9 1 0

0

200

400

600

800

1000

1200

1400

1600

1800

2000

M
EM

O
R

Y
U

SE
D

 (
K

B
)

CTM Trace Step State ObjectState ParameterList

Figure 6.11: Memory consumption measurements for CTM trace elements

132

Table 6.4: Memory consumption measurement associated to compaction techniques (all measure-
ments are in KBs)

Model ID Total trace State Step ObjectState ParameterList
1 1073 17(%2) 76(%7) 50(%5) 11(%1)
2 1007 23(%2) 67(%7) 56(%6) 29(%3)
3 988 22(%2) 109(%11) 98(%10) 34(%3)
4 871 19(%2) 98(%11) 78(%9) 12(%1)
5 811 21(%3) 87(%11) 82(%10) 13(%2)
6 813 20(%2) 91(%11) 91(%11) 16(%2)
7 774 18(%2) 76(%10) 84(%11) 17(%2)
8 776 17(%2) 81(%10) 86(%11) 13(%2)
9 1530 27(%2) 112(%7) 93(%6) 21(%1)

10 1474 27(%2) 107(%7) 91(%6) 25(%2)
Average 1012 21(%9) 90(%8) 81(%2) 19(%2)

stances, and consequently calculated the additional memory consumption caused by various types

of compaction, i.e., change notification framework, the LCM algorithm, and the Valiente’s tree

pattern matching algorithm. Note that for the Step compaction, we created a heap dump before

and after it is run, and computed the difference. Figure 6.11 and Table 6.4 show the results of

the memory consumption measurements for each of the models distinguished between Step, State,

ObjectState, and ParameterList. The results show only the size (in KB) of the objects allocated

on the heap for executing each of the compaction techniques. It amounts to 21KB, 90KB, 81KB,

and 19KB compared to 1,012 KB allocated for the trace size. Thus, the measured memory con-

sumption overhead lies between 2% and 9%. Such overhead is due mostly to the use of collections

such as ArrayList, Hashtable, and HashMap. For example, the LCM algorithm uses ArrayLists of

ObjectState and Value instances to deal with frequent ObjectStates.

Overall, from these results, we conclude that CTM compaction techniques cause only a marginal

memory overhead. Nevertheless, the memory overhead and the size of captured traces grow linear

with the number of executed model elements.

133

Part IV

Conclusion and Perspectives

134

Chapter 7

Conclusion and Perspectives

7.1 Conclusion

Dynamic V&V of models requires the ability to capture execution traces for the execution of

models. We identified three main requirements regarding execution trace data structures. First,

genericity is required for a trace structure to support a wide range of xDSMLs, independent of

the metaprogramming approaches used for their implementation. Second, scalability in space is

required to handle large execution traces. Third, information preservation must be considered for

providing a lossless representation of traces.

In this thesis, we aimed at defining a new trace structure addressing the identified requirements.

Hence, we made the following two contributions.

First, in order to understand the state of research on model execution tracing, we conducted

a systematic literature review. Our search yielded a classification of 64 existing approaches from

645 research studies found through automatic searches in popular academic online libraries. We

analyzed the identified approaches, and classified them based on the following facets: supported

types of models, supported execution semantics definition technique, traced data, purpose, data ex-

traction technique, trace representation format, trace representation method, language specificity,

data carrier format, and maturity.

Our reviews of the literature shows that there is a lack of approaches that address the three

mentioned requirements. The results suggest that more research work is needed particularly on

suitable trace representations and broad applicability of approaches with scalability and interoper-

ability being two concerns that have been mostly neglected so far.

135

As the second contribution, we defined CTM, a metamodel for representing traces generated

from executable models that is built with genericity and scalability in space. For this, we presented

four complementary contributions:

1. A generic trace metamodel that is defined by identifying a set of key generic concepts needed

to express traces for models created with any xDSML. Examples of such generic concepts

include the execution steps occurring during the execution, execution states, object states,

and processed parameters.

2. A generic scalable trace metamodel called the Compact Trace Metamodel (CTM), which

relies on a set of compaction techniques to provide a representation of traces in a compact

form. CTM is built with scalability in mind, supporting trace compaction techniques at the

metamodel level.

3. A process for compressing a regular trace into a compact trace. The process is lossless,

meaning that the regular trace can be fully reconstructed from its compact version.

4. A process to uncompress a trace compacted with CTM into its original format.

CTM was applied to five different xDSMLs: two variants of Petri nets, IML, TFSM and fUML.

Furthermore, we compared the scalability of CTM traces with traces created using the approach

by Bousse et al. [7], which is the only model execution tracing approach that considers some kind

of compaction. The results show that the compaction gain reached by a trace represented in CTM

is in average 59% in memory usage and 95% disk space.

Overall, we addressed the challenges identified in model execution trace structures. Our con-

tributions not improve the state of the art of solutions for model execution tracing, but illustrate the

concrete benefits of CTM as a new trace structure concerning to execution trace management.

136

7.2 Perspectives

In the following, we discuss interesting directions for future work building upon the research

conducted in this study.

7.2.1 Extended pattern detection

There exist two kinds of behavioral patterns in a trace. The first type involves contiguous rep-

etitions of sequences of events due to loops. The second type consists of behavioral patterns that

occur in a non-contiguous way in the trace. Our graph reduction technique, used for dealing repeti-

tions in Steps, supports only the first one in which patterns are considered as the sequence of Steps

repeated contiguously in the trace. It dose not take into account the non-contiguous repetitions that

occur in a trace. In other words, two identical sub-trees that occur in a non contiguous way will be

counted twice. This would require applying relevant techniques to the compact trace constructor

to support non-contiguous patterns.

In addition, as mentioned in Section 5.3.2.2, the step compaction including the pattern detec-

tion is performed offline (i.e., after the execution of the model). In order to gain better memory-

efficiency, such technique must be carried out on the fly.

7.2.2 Further evaluation

We intend to test our trace constructor with producing numerous execution traces of real world

models to further evaluate the efficiency of CTM. By efficiency, we mean the ability of the con-

struction of execution traces as compactly as possible with minimal run-time overhead.

7.2.3 Combining compaction with compression techniques

CTM uses several compaction techniques that are tailored to remove redundancies, which exist

in different parts of a trace. Our approach employed the common compaction techniques that are

mostly used for the compaction of trace in code-centric approaches. On the other hand, there

137

exist various data compression techniques to reduce redundancies in data representation in order

to decrease the size of data. Compression can be either lossy or lossless. An interesting topic for

future research could be combining data compression techniques with compaction techniques, for

providing more scalable and efficient trace.

7.2.4 Applying lens-like abstraction

. In this research, the compaction techniques have been used to traces with the aim of removing

repetitions of trace elements. An efficient technique would be lens-like abstraction, which can

reduce the size of traces by ignoring details not relevant to the property under study. In fact, an

abstract trace model is constructed and, during its analysis, only the main concepts are considered

and all details about the system are ignored. Hence, it is possible to analyze the behavior of a

system and understand its main content through the analysis of a smaller more compact trace.

7.2.5 Applying process mining abstraction techniques.

As mentioned in Section. 5.4, many abstraction techniques have been proposed in process

mining approaches to reduce the size and complexity of traces. In future investigations, it might

be possible to use these techniques for abstracting and exploring the content of large model-based

traces.

7.2.6 A Tool Suite

The techniques presented in this thesis need to be integrated with trace analysis tools. We need

to investigate how existing V&V techniques, specially dynamic analysis, can be used to support

such techniques. Finally, we need to work more towards the adoption of CTM by tool builders in

academia as well as real industry.

138

Author’s publications

1 F. Hojaji, B. Zamani, and A. Hamou-Lhadj, Towards a tracing framework for Model-Driven

software systems, in Proceedings of the 6th International Conference on Computer and

Knowledge Engineering (ICCKE), pp.298-303, IEEE, 2016, doi = 10.1109/ICCKE.2016.7802156.

2 F. Hojaji, T. Mayerhofer, B. Zamani, A. Hamou-Lhadj, and E. Bousse, Tracing Executable

Models: A Systematic Mapping Study, Software & Systems Modeling, 2019, doi = 10.1007/s10270-

019-00724-1.

3 F. Hojaji, T. Mayerhofer, B. Zamani, A. Hamou-Lhadj, and E. Bousse, Lossless Compaction

of Model Execution Traces, Software & Systems Modeling, 2019, doi = 10.1007/s10270-

019-00724-1.

Bibliography

[1] M. Brambilla, J. Cabot, and M. Wimmer, Model-driven software engineering in practice.

Synthesis Lectures on Software Engineering, Morgan & Claypool Publishers, second ed.,

2017.

[2] A. Benelallam, A. Gómez, G. Sunyé, M. Tisi, and D. Launay, “Neo4EMF, a scalable per-

sistence layer for EMF models,” in Proceedings of the European Conference on Modelling

Foundations and Applications, vol. 8569 of Lecture Notes in Computer Science, pp. 230–

241, Springer, 2014.

[3] A. Hamou-Lhadj and T. C. Lethbridge, “A survey of trace exploration tools and techniques,”

in Proceedings of the 2004 conference of the Centre for Advanced Studies on Collaborative

research, pp. 42–55, IBM Press, 2004.

[4] A. Hamou-Lhadj and T. C. Lethbridge, “A Metamodel for the compact but lossless Ex-

change of Execution Traces,” Software & Systems Modeling, vol. 11, no. 1, pp. 77–98,

2012.

[5] T. Hartmann, F. Fouquet, G. Nain, B. Morin, J. Klein, O. Barais, and Y. Le Traon, “A

native Versioning Concept to Support Historized Models at Runtime,” in Proceedings of the

International Conference on Model Driven Engineering Languages and Systems, vol. 8767

of Lecture Notes in Computer Science, pp. 252–268, Springer, 2014.

[6] P. Langer, T. Mayerhofer, and G. Kappel, “Semantic model differencing utilizing behav-

ioral semantics specifications,” in Proceedings of the International Conference on Model

Driven Engineering Languages and Systems, vol. 8767 of Lecture Notes in Computer Sci-

ence, pp. 116–132, Springer, 2014.

[7] E. Bousse, T. Mayerhofer, B. Combemale, and B. Baudry, “Advanced and efficient execution

trace management for executable domain-specific modeling languages,” Software & Systems

140

Modeling, vol. 18, pp. 385–421, Feb 2019.

[8] K. Peffers, T. Tuuanen, M. A. Rothenberger, and S. Chatterjee, “A Design Science Research

Methodology for Information Systems Research,” Journal of Management Information Sys-

tems, pp. 45–77., 2007.

[9] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in Information Systems

Research,” MIS Quarterly, vol. 28, no. 1, pp. 75–105, 2004.

[10] E. Bousse, T. Mayerhofer, B. Combemale, and B. Baudry, “A Generative Approach to

Define Rich Domain-Specific Trace Metamodels,” in European Conference on Modelling

Foundations and Applications, vol. 9153 of Lecture Notes in Computer Science, pp. 45–61,

Springer, 2015.

[11] B. Selic, “The pragmatics of model-driven development,” IEEE Software, vol. 20, pp. 19–

25, Sep. 2003.

[12] B. Combemale, X. Crégut, and M. Pantel, “A Design Pattern to build Executable DSMLs

and associated V&V tools,” in Proceedings of the 19th Asia-Pacific on Software Engineering

Conference (APSEC), vol. 1, pp. 282–287, IEEE, 2012.

[13] A. Hegedus, G. Bergmann, I. Ráth, and D. Varró, “Back-annotation of simulation traces

with change-driven model transformations,” in Proceedings of the 8th IEEE International

Conference on Software Engineering and Formal Methods (SEFM), pp. 145–155, IEEE,

2010.

[14] T. Mayerhofer, P. Langer, M. Wimmer, and G. Kappel, “xMOF: Executable DSMLs based

on fUML,” in Proceedings of the International Conference on Software Language Engineer-

ing, vol. 8225 of Lecture Notes in Computer Science, pp. 56–75, Springer, 2013.

[15] J. Tatibouet, A. Cuccuru, S. Gérard, and F. Terrier, “Formalizing Execution Semantics of

UML Profiles with fUML Models,” in Proceedings of the 17th International Conference

on Model-Driven Engineering Languages and Systems (MODELS’14), vol. 8767 of Lecture

Notes in Computer Science, pp. 133–148, Springer, 2014.

141

[16] E. Bousse, T. Degueule, D. Vojtisek, T. Mayerhofer, J. DeAntoni, and B. Combemale, “Ex-

ecution framework of the GEMOC studio (tool demo),” in Proceedings of the 2016 ACM

SIGPLAN International Conference on Software Language Engineering (SLE’16), pp. 84–

89, ACM, 2016.

[17] F. Ciccozzi, I. Malavolta, and B. Selic, “Execution of UML models: a systematic review of

research and practice,” Software & Systems Modeling, 2018.

[18] Object Management Group, “Meta object facility (mof) core specification,” 2014.

[19] S. Sendall and W. Kozaczynski, “Model transformation: The heart and soul of model-driven

software development,” IEEE software, vol. 20, no. 5, pp. 42–45, 2003.

[20] F. Jouault and I. Kurtev, “Transforming models with atl,” in International Conference on

Model Driven Engineering Languages and Systems, vol. 3844 of Lecture Notes in Computer

Science, pp. 128–138, Springer, 2005.

[21] J.-M. Jézéquel, B. Combemale, O. Barais, M. Monperrus, and F. Fouquet, “Mashup of

metalanguages and its implementation in the kermeta language workbench,” Software &

Systems Modeling, vol. 14, no. 2, pp. 905–920, 2015.

[22] A. Schürr, “Specification of graph translators with triple graph grammars,” in International

Workshop on Graph-Theoretic Concepts in Computer Science.

[23] G. D. Plotkin, “A structural approach to operational semantics,” 1981.

[24] G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle, “On the use of graph transformation in the

formal specification of model interpreters,” J. UCS, vol. 9, no. 11, pp. 1296–1321, 2003.

[25] L.-Å. Fredlund, B. Jonsson, and J. Parrow, “An implementation of a translational semantics

for an imperative language,” in International Conference on Concurrency Theory, pp. 246–

262, Springer, 1990.

[26] E. Lepore and B. Loewer, “Translational semantics,” Synthese, vol. 48, no. 1, pp. 121–133,

1981.

142

[27] E. Bousse, T. Mayerhofer, B. Combemale, and B. Baudry, “Advanced and efficient execution

trace management for executable domain-specific modeling languages,” Software & Systems

Modeling, pp. 1–37, 2017.

[28] J. Kraft, A. Wall, and H. M. Kienle, “Trace Recording for Embedded Systems: Lessons

Learned from Five Industrial Projects,” in Proceedings of the International Conference

on Runtime Verification, vol. 6418 of Lecture Notes in Computer Science, pp. 315–329,

Springer, 2010.

[29] K. Mehner, “JaVis: A UML-Based Visualization and Debugging Environment for Concur-

rent Java Programs,” Software Visualization, vol. 2269, pp. 163–175, 2002.

[30] T. Ball, “The Concept of Dynamic Analysis,” in ACM SIGSOFT Software Engineering

Notes, vol. 24 of Lecture Notes in Computer Science, pp. 216–234, Springer, 1999.

[31] L. Alawneh and A. Hamou-Lhadj, Execution traces: A new Domain that requires the Cre-

ation of a Standard Metamodel, vol. 59 of Lecture Notes in Communications in Computer

and Information Science book series, pp. 253–263. Springer, 2009.

[32] E. Bousse, Execution trace management to support dynamic V&V for executable DSMLs.

Thesis, 2015.

[33] D. Eschweiler, M. Wagner, M. Geimer, A. Knüpfer, W. E. Nagel, and F. Wolf, “Open trace

format 2: The next generation of scalable trace formats and support libraries,” in Interna-

tional Conference on Parallel Computing, vol. 22, pp. 481–490, 2011.

[34] X. Zhang and R. Gupta, “Whole execution traces and their applications,” ACM Transactions

on Architecture and Code Optimization (TACO), vol. 2, no. 3, pp. 301–334, 2005.

[35] STMicroelectronics, “KPTrace Specification,” 2012.

[36] M. Geimer, F. Wolf, B. J. Wylie, E. Ábrahám, D. Becker, and B. Mohr, “The scalasca per-

formance toolset architecture,” Concurrency and Computation: Practice and Experience,

vol. 22, no. 6, pp. 702–719, 2010.

143

[37] J. DeAntoni, F. Mallet, F. Thomas, G. Reydet, J.-P. Babau, C. Mraidha, L. Gauthier, L. Ri-

oux, and N. Sordon, “RT-simex: retro-analysis of execution traces,” in Proceedings of

the 18th ACM SIGSOFT international symposium on Foundations of software engineering,

pp. 377–378, ACM, 2010.

[38] M. Desnoyers, “Common trace format (ctf) specification (v1.8.2),” 2013.

[39] T. Mayerhofer, P. Langer, and G. Kappel, “A runtime model for fUML,” in Proceedings of

the 7th Workshop on Models@ run. time, pp. 53–58, ACM, 2012.

[40] X. Crégut, B. Combemale, M. Pantel, R. Faudoux, and J. Pavei, “Generative Technologies

for Model Animation in the TopCased Platform,” ECMFA, vol. 6138, pp. 90–103, 2010.

[41] B. Meyers, R. Deshayes, L. Lucio, E. Syriani, H. Vangheluwe, and M. Wimmer, “Pro-

MoBox: A Framework for Generating Domain-specific Property Languages,” in Proceed-

ings of the International Conference on Software Language Engineering (SLE), vol. 8706

of Lecture Notes in Computer Science, pp. 1–20, Springer, 2014.

[42] P. Kemper and C. Tepper, “Automated trace analysis of discrete-event system models,” IEEE

Transactions on Software Engineering, vol. 35, no. 2, pp. 195–208, 2009.

[43] Object Management Group, “Uml testing profile (utp),” 2013.

[44] L. Alawneh, A. Hamou-Lhadj, and J. Hassine, “Towards a common metamodel for traces

of high performance computing systems to enable software analysis tasks,” in 22nd Interna-

tional Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 111–

120, IEEE, 2015.

[45] S. Maoz and D. Harel, “On tracing reactive systems,” Software & Systems Modeling, vol. 10,

no. 4, pp. 447–468, 2011.

[46] K. Taniguchi, T. Ishio, T. Kamiya, S. Kusumoto, and K. Inoue, “Extracting sequence dia-

gram from execution trace of java program,” in Eighth International Workshop on Principles

of Software Evolution, pp. 148–151, IEEE, 2005.

144

[47] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. E. Nagel, “Introducing the open trace

format (OTF),” in International Conference on Compuatational Science, vol. 3992 of Lec-

ture Notes in Computer Science, pp. 526–533, Springer, 2006.

[48] G. Pagano, D. Dosimont, G. Huard, V. Marangozova-Martin, and J.-M. Vincent, “Trace

management and analysis for embedded systems,” in 7th International Symposium on Em-

bedded Multicore Socs (MCSoC), pp. 119–122, IEEE, 2013.

[49] R. Aydt, “The Pablo self-defining data format,” 1992.

[50] L. M. Schnorr, O. Stein, and J. Chassin, “Paje Trace File Format,” report, 2013.

[51] B. Combemale, X. Crégut, J.-P. Giacometti, P. Michel, and M. Pantel, “Introducing simula-

tion and model animation in the MDE Topcased toolkit,” in Proceedings of the 4th European

Congress Embedded Real Time Software (ERTS), 2008.

[52] A. Hegedus, G. Bergmann, I. Ráth, and D. Varró, “Replaying execution trace models for dy-

namic modeling languages,” Periodica Polytechnica Electrical Engineering and Computer

Science, vol. 56, no. 3, pp. 71–82, 2013.

[53] F. Hilken, L. Hamann, and M. Gogolla, “Transformation of UML and OCL models into

Filmstrip Models,” in International Conference on Theory and Practice of Model Transfor-

mations, vol. 8568 of Lecture Notes in Computer Science, pp. 170–185, Springer, 2014.

[54] F. Hilken and M. Gogolla, “Verifying Linear Temporal Logic Properties in UML/OCL Class

Diagrams Using Filmstripping,” in Proceedings of the Euromicro Conference on Digital

System Design (DSD), pp. 708–713, IEEE, 2016.

[55] O. M. G. (OMG), “XML Metadata Interchange specification, version 2.5.1,” 2011.

[56] Isocpp.org, “Serialization and unserialization,” [April 1, 2015].

[57] W3C, “Efficient Extensible Markup Language (XML) Interchange (EXI), Format 1.0,” stan-

dard, IJIS Institute Technical Advisory Committee, 2014.

145

[58] D. Crockford, “The application/JSON media type for javascript object notation (JSON),”

RFC 4627, 2006.

[59] K. Varda, “Google Protocol Buffers: Google’s Data Interchange Format,” tech. rep., 2008.

[60] W. De Pauw, D. H. Lorenz, J. M. Vlissides, and M. N. Wegman, “Execution patterns in

object-oriented visualization,” in Proceedings of the 4th USENIX Conference on Object-

Oriented Technologies and Systems, vol. 4, pp. 219–234, 1998.

[61] S. Maoz, J. O. Ringert, and B. Rumpe, “ADDiff: semantic differencing for activity di-

agrams,” in Proceedings of the 19th ACM SIGSOFT symposium and the 13th European

conference on Foundations of software engineering, pp. 179–189, ACM, 2011.

[62] R. Sharp and A. Rountev, “Interactive exploration of uml sequence diagrams,” in 3rd IEEE

International Workshop on Visualizing Software for Understanding and Analysis, pp. 1–6,

IEEE, 2005.

[63] C. Prada-Rojas, M. Santana, S. De-Paoli, and X. Raynaud, “Summarizing embedded exe-

cution traces through a compact view,” in Conference on System Software, SoC and Silicon

Debug (S4D), 2010.

[64] A. Hamou-Lhadj, T. C. Lethbridge, and L. Fu, “Seat: A usable trace analysis tool,” in

13th International Workshop on Program Comprehension, IWPC 2005, pp. 157–160, IEEE,

2005.

[65] A. Hamou-Lhadj, Techniques to simplify the analysis of execution traces for program com-

prehension. Thesis, 2005.

[66] K. Noda, T. Kobayashi, and K. Agusa, “Execution trace abstraction based on meta patterns

usage,” in Working Conference on Reverse Engineering (WCRE), pp. 167–176, IEEE, 2012.

[67] K. Noda, T. Kobayashi, K. Agusa, and S. Yamamoto, “Sequence diagram slicing,” in Asia-

Pacific Software Engineering Conference, APSEC’09., pp. 291–298, IEEE, 2009.

146

[68] J. Quante and R. Koschke, “Dynamic object process graphs,” Journal of Systems and Soft-

ware, vol. 81, no. 4, pp. 481–501, 2008.

[69] P. Dugerdil and J. Repond, “Automatic generation of abstract views for legacy software

comprehension,” in 3rd India software engineering conference, pp. 23–32, ACM, 2010.

[70] A. Zaidman and S. Demeyer, “Managing trace data volume through a heuristical cluster-

ing process based on event execution frequency,” in Eighth European Conference on Asia-

Pacific Software Maintenance and Reengineering, CSMR 2004, pp. 329–338, IEEE, 2004.

[71] R. J. C. Bose and W. M. van der Aalst, “Trace clustering based on conserved patterns:

Towards achieving better process models,” in Business Process Management Workshops,

vol. 43, pp. 170–181, Springer, 2009.

[72] M. Song, C. W. GÃijnther, and W. M. Van der Aalst, “Trace clustering in process mining,”

in Business Process Management Workshops, pp. 109–120, Springer, 2009.

[73] B. Korel and J. Rilling, “Dynamic program slicing methods,” Information and Software

Technology, vol. 40, no. 11, pp. 647–659, 1998.

[74] R. Smith and B. Korel, “Slicing event traces of large software systems,” arXiv preprint

cs/0101005, 2001.

[75] D. M. Dhamdhere, K. Gururaja, and P. G. Ganu, “A compact execution history for dynamic

slicing,” Information Processing Letters, vol. 85, no. 3, pp. 145–152, 2003.

[76] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, and J. Yang, “Visualizing the

execution of Java programs,” Software Visualization, vol. 2269, pp. 647–650, 2002.

[77] K. Sartipi and H. Safyallah, “An environment for pattern based dynamic analysis of software

systems,” Comprehension through Dynamic Analysis, p. 12, 2006.

[78] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Eleventh International Confer-

ence on Data Engineering, pp. 3–14, IEEE, 1995.

147

[79] M. Crochemore, “An optimal algorithm for computing the repetitions in a word,” Informa-

tion Processing Letters, vol. 12, no. 5, pp. 244–250, 1981.

[80] D. B. Lange and Y. Nakamura, “Object-oriented program tracing and visualization,” Com-

puter, vol. 30, no. 5, pp. 63–70, 1997.

[81] F. Francois, G. Nain, B. Morin, E. Daubert, O. Barais, N. Plouzeau, and J.-M. Jézéquel,

“Kevoree modeling framework (kmf): Efficient modeling techniques for runtime use,” arXiv

preprint arXiv:1405.6817, 2014.

[82] F. Fouquet, G. Nain, B. Morin, E. Daubert, O. Barais, N. Plouzeau, and J.-M. Jézéquel, “An

eclipse modelling framework alternative to meet the models@ runtime requirements,” in

International Conference on Model Driven Engineering Languages and Systems, vol. 7590,

pp. 87–101, Springer, 2012.

[83] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Modeling Frame-

work. Addison-Wesely, 2009.

[84] J. Vlissides, R. Helm, R. Johnson, and E. Gamma, Design patterns: elements of reusable

object-oriented software. Addison-Wesley, 1995.

[85] A. Hegedus, G. Bergmann, I. Ráth, and D. Varró, “Back-annotation of simulation traces

with change-driven model transformations,” in Proceedings of the 8th IEEE International

Conference on Software Engineering and Formal Methods (SEFM), pp. 145–155, IEEE,

2010.

[86] G. Graefe and L. D. Shapiro, “Data compression and database performance,” in Symposium

on Applied Computing, pp. 22–27, IEEE, 1991.

[87] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin,

S. Madden, E. O’Neil, et al., “C-store: a column-oriented DBMS,” in Proceedings of the

31st international conference on Very large data bases, pp. 553–564, VLDB Endowment,

2005.

[88] C. Dunn, “Smile! you’re on RLE,” The Transactor, vol. 7, no. 6, pp. 16–18, 1987.

148

[89] S. Kodituwakku and U. Amarasinghe, “Comparison of lossless data compression algorithms

for text data,” Indian journal of computer science and engineering, vol. 1, no. 4, pp. 416–

425, 2010.

[90] D. Abadi, “Teradata RainStor’s Compression and Performance

Technology.” http://blogs.teradata.com/data-points/

teradata-rainstors-compression-performance-technology/, [April 1,

2015].

[91] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil, “LeP-

etersen2015ssons from Applying the Systematic Literature Review process within the Soft-

ware Engineering Domain,” Journal of systems and software, vol. 80, no. 4, pp. 571–583,

2007.

[92] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting systematic map-

ping studies in software engineering: An update,” Information and Software Technology,

vol. 64, pp. 1–18, 2015.

[93] R. J. Adams, P. Smart, and A. S. Huff, “Shades of grey: guidelines for working with the grey

literature in systematic reviews for management and organizational studies,” International

Journal of Management Reviews, vol. 19, no. 4, pp. 432–454, 2017.

[94] F. Hojaji, B. Zamani, and A. Hamou-Lhadj, “Towards a tracing framework for Model-

Driven software systems,” in Proceedings of the 6th International Conference on Computer

and Knowledge Engineering (ICCKE), pp. 298–303, IEEE, 2016.

[95] B. Kitchenham and S. Charters, “Guidelines for Performing Systematic Literature Reviews

in Software Engineering,” report, Software Engineering Group, School of Computer Science

and Mathematics, Keele University, 2000.

[96] I. Santiago, Ã. JimÃl’nez, J. M. Vara, V. De Castro, V. A. Bollati, and E. Marcos, “Model-

Driven Engineering as a new landscape for traceability management: A systematic literature

review,” Information and Software Technology, vol. 54, no. 12, pp. 1340–1356, 2012.

149

http://blogs.teradata.com/data-points/teradata-rainstors-compression- performance- technology/
http://blogs.teradata.com/data-points/teradata-rainstors-compression- performance- technology/

[97] B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen, and R. Koschke, “A System-

atic Survey of Program Comprehension through Dynamic Analysis,” IEEE Transaction on

Software Engineering, vol. 35, no. 5, pp. 684–702, 2009.

[98] Á. J. Cuadros López, C. Galindres, and P. Ruiz, “Project maturity evaluation model for

SMEs from the software development sub-sector,” AD-minister, no. 29, pp. 147–162, 2016.

[99] J. P. Calvez, Embedded Real-time Systems. A specification and Design Methodology. John

Wiley, 1993.

[100] O. Pasquier and J. P. Calvez, “An object-based executable model for ation of real-time

Hw/Sw systems,” in Proceedings of the Design, Automation and Test in Europe Conference

and Exhibition, pp. 782–783, IEEE, 1999.

[101] P. Kemper and C. Tepper, “Automated analysis of simulation traces-separating progress

from repetitive behavior,” in Proceedings of the Fourth International Conference on the

Quantitative Evaluation of Systems.QEST 2007, pp. 101–110, IEEE, 2007.

[102] S. Kugele, M. Tautschnig, A. Bauer, C. Schallhart, S. Merenda, W. Haberl, C. Kühnel,

F. Müller, Z. Wang, D. Wild, et al., “COLA–The component language,” tech. rep., 2007.

[103] W. Haberl, J. Birke, and U. Baumgarten, “A middleware for model-based embedded sys-

tems,” in Proceedings of the International Conference on Embedded Systems and Applica-

tions (ESA), pp. 253–259, 2008.

[104] W. Haberl, M. Herrmannsdoerfer, J. Birke, and U. Baumgarten, “Model-level debugging

of Embedded Real-time Systems,” in Proceedings of the 10th international conference on

Computer and information technology (CIT), pp. 1887–1894, IEEE, 2010.

[105] J. DeAntoni and F. Mallet, “Timesquare: Treat your models with logical time,” in Proceed-

ings of the International Conference on Objects, Models, Components, Patterns (TOOLS),

vol. 7304, pp. 34–41, Springer, 2012.

150

[106] K. Garcés, J. Deantoni, and F. Mallet, “A model-based approach for reconciliation of poly-

chromous execution traces,” in Proceedings of the 37th EUROMICRO Conference on Soft-

ware Engineering and Advanced Applications (SEAA), pp. 259–266, IEEE, 2011.

[107] A. Krasnogolowy, S. Hildebrandt, and S. Wätzoldt, “Flexible debugging of behavior mod-

els,” in IEEE International Conference on Industrial Technology (ICIT), pp. 331–336, IEEE,

2012.

[108] L. Li, X. Li, and S. Tang, “Research on web application consistency testing based on model

simulation,” in Proceedings of the 9th International Conference on Computer Science and

Education (ICCSE), pp. 1121–1127, IEEE, 2014.

[109] A. Intana, M. R. Poppleton, and G. V. Merrett, “A model-based trace testing approach for

validation of formal co-simulation models,” in Proceedings of the Symposium on Theory

of Modeling & Simulation: DEVS Integrative M&S Symposium, pp. 181–188, Society for

Computer Simulation International, 2015.

[110] B. Combemale, X. Crégut, P.-L. Garoche, and X. Thirioux, “Essay on Semantics Definition

in MDE. An Instrumented Approach for Model Verification,” Journal of Software (JSW),

vol. 4, no. 9, pp. 943–958, 2009.

[111] C. A. Fernández-Fernández and A. J. Simons, “An Algebra to Represent Task Flow Mod-

els,” International Journal of Computational Intelligence: Theory and Practice, vol. 6,

no. 2, pp. 63–74, 2011.

[112] C. Fernández-Fernández and A. Simons, “An Implementation of the Task Algebra, a Formal

Specification for the Task Model in the Discovery Method,” Journal of applied research and

technology, vol. 12, no. 5, pp. 908–918, 2014.

[113] T. Mayerhofer, “Testing and debugging UML models based on fUML,” in Proceedings of

the 34th International Conference on Software Engineering (ICSE), pp. 1579–1582, IEEE,

2012.

151

[114] S. Mijatov, P. Langer, T. Mayerhofer, and G. Kappel, “A framework for testing UML activ-

ities based on fUML,” in Proceedings of the 10th International Workshop on Model Driven

Engineering, Verification and Validation co-located with 16th International Conference on

Model Driven Engineering Languages and Systems (MODELS 2013), vol. 1069, pp. 1–10,

Springer, 2013.

[115] S. Mijatov, T. Mayerhofer, P. Langer, and G. Kappel, “Testing functional requirements in

UML activity diagrams,” in International Conference on Tests and Proofs, vol. 9154 of

Lecture Notes in Computer Science, pp. 173–190, Springer, 2015.

[116] L. Yilmaz, “Automated object-flow testing of dynamic process interaction models,” in Pro-

ceedings of the ation Conference, Proceedings of the Winter, vol. 1, pp. 586–594, IEEE,

2001.

[117] M. Hendriks and F. W. Vaandrager, “Reconstructing Critical Paths from Execution Traces,”

in Proceedings of the 15th International Conference on Computational Science and Engi-

neering (CSE), pp. 524–531, IEEE, 2012.

[118] M. Hendriks, J. Verriet, T. Basten, B. Theelen, M. Brassé, and L. Somers, “Analyzing Ex-

ecution Traces: Critical-path Analysis and Distance Analysis,” International Journal on

Software Tools for Technology Transfer, vol. 19, no. 4, pp. 487–512, 2016.

[119] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. E. Lorensen, et al., Object-oriented

modeling and design, vol. 199. Prentice-hall Englewood Cliffs, NJ, 1991.

[120] E. Bousse, J. Corley, B. Combemale, J. Gray, and B. Baudry, “Supporting efficient and

advanced omniscient debugging for xDSMLs,” in Proceedings of the ACM SIGPLAN Inter-

national Conference on Software Language Engineering, pp. 137–148, ACM, 2015.

[121] E. Bousse, B. Combemale, and B. Baudry, “Towards Scalable Multidimensional Execution

Traces for xDSMLs,” in Proceedings of the 11th Workshop on Model Design, Verification

and Validation Integrating Verification and Validation in MDE (MoDeVVa 2014), vol. 1235,

pp. 13–18, 2014.

152

[122] E. Bousse, D. Leroy, B. Combemale, M. Wimmer, and B. Baudry, “Omniscient debugging

for Executable DSLs,” Journal of Systems and Software, vol. 137, pp. 261–288, 2018.

[123] H. Aljamaan and T. C. Lethbridge, “Towards Tracing at the Model Level,” in Proceedings of

the 19th Working Conference on Reverse Engineering (WCRE), pp. 495–498, IEEE, 2012.

[124] H. Aljamaan, T. C. Lethbridge, O. Badreddin, G. Guest, and A. Forward, “Specifying trace

directives for UML attributes and state machines,” in Proceedings of the 2nd International

Conference on Model-Driven Engineering and Software Development (MODELSWARD),

pp. 79–86, IEEE, 2014.

[125] H. I. Aljamaan, T. Lethbridge, M. Garzón, and A. Forward, “UmpleRun: a dynamic analysis

tool for textually modeled state machines using Umple,” in Proceedings of the First Inter-

national Workshop on Executable Modeling co-located with MODELS 2015, pp. 16–20,

2015.

[126] H. Aljamaan, T. C. Lethbridge, and M. A. Garzón, “MOTL: A Textual Language for Trace

Specification of State Machines and Associations,” in Proceedings of the 25th Annual In-

ternational Conference on Computer Science and Software Engineering, CASCON ’15,

(Riverton, NJ, USA), pp. 101–110, IBM Corp., 2015.

[127] S. Maoz, “Using model-based traces as runtime models,” IEEE Computer Society, vol. 42,

pp. 28–36, 2009.

[128] S. Maoz, “Model-based traces,” in Proceedings of the International Conference on Model

Driven Engineering Languages and Systems, vol. 5421 of Lecture Notes in Computer Sci-

ence, pp. 109–119, springer, 2009.

[129] S. Maoz, J. O. Ringert, and B. Rumpe, “Summarizing semantic model differences,” arXiv

preprint arXiv:1409.2307, 2014.

[130] E. Domínguez, B. Pérez, and M. A. Zapata, “A UML profile for dynamic execution per-

sistence with monitoring purposes,” in Proceedings of the 5th International Workshop on

Modeling in Software Engineering, pp. 55–61, IEEE, 2013.

153

[131] Z. Hu and S. M. Shatz, “Mapping UML Diagrams to a Petri Net Notation for System ation,”

in Proceedings of the International Conference on Software Engineering & Knowledge En-

gineering (SEKE), pp. 213–219, Citeseer, 2004.

[132] J. Lian, Z. Hu, and S. M. Shatz, “ation-based analysis of UML statechart diagrams: methods

and case studies,” Software Quality Journal, vol. 16, no. 1, pp. 45–78, 2008.

[133] L. Wang, E. Wong, and D. Xu, “A Threat Model Driven Approach for Security Testing,” in

Proceedings of the 3th International Workshop on Software Engineering for Secure Systems,

ICSE Workshops, pp. 10–17, IEEE, 2007.

[134] L. Fuentes and P. Sánchez, “Designing and Weaving Aspect-Oriented Executable UML

Models,” Journal of Object Technology, vol. 6, no. 7, pp. 109–136, 2007.

[135] L. Fuentes and P. Sánchez, “Towards Executable Aspect-Oriented UML Models,” in Pro-

ceedings of the 10th international workshop on Aspect-oriented modeling, pp. 28–34, ACM,

2007.

[136] L. Fuentes, J. Manrique, and P. Sánchez, “Execution and ation of (profiled) UML models

using Populo,” in Proceedings of the international workshop on Models in software engi-

neering, pp. 75–81, ACM, 2008.

[137] L. Fuentes and P. Sánchez, “Dynamic Weaving of Aspect-Oriented Executable UML Mod-

els,” Transactions on Aspect-Oriented Software Development, vol. 5560, pp. 1–38, 2009.

[138] M. L. Crane and J. Dingel, “Towards a UML virtual machine: implementing an interpreter

for UML 2 actions and activities,” in Conference of the center for advanced studies on

collaborative research, pp. 96–110, ACM, 2008.

[139] B. Combemale, L. Gonnord, and R. Rusu, “A Generic Tool for Tracing Executions back to

a DSMLs Operational Semantics,” in European Conference on Modelling Foundations and

Applications, vol. 6698, pp. 35–51, springer, 2011.

154

[140] A. Goel, B. Sengupta, and A. Roychoudhury, “Footprinter: Round-trip engineering via sce-

nario and state based models,” in Proceedings of the 31st International Conference on Soft-

ware Engineering - Companion Volume, ICSE-Companion, pp. 419–420, IEEE, 2009.

[141] A. Derezinska and M. Szczykulski, “Tracing of state machine execution in the model-driven

development framework,” in Proceedings of the 2nd International Conference on Informa-

tion Technology, ICIT 2010, pp. 517–524, IEEE, 2010.

[142] M. A. Wehrmeister, J. G. Packer, and L. M. Ceron, “Framework to simulate the behav-

ior of embedded real-time systems specified in UML models,” in Brazilian Symposium on

Computing System Engineering (SBESC), pp. 1–7, IEEE, 2011.

[143] M. A. Wehrmeister, J. G. Packer, L. M. Ceron, and C. E. Pereira, “Towards Early Verifica-

tion of UML Models for Embedded and Real-Time Systems,” Embedded Systems, Compu-

tational Intelligence and Telematics in Control, vol. 45, no. 4, pp. 25–30, 2012.

[144] M. Gogolla, L. Hamann, F. Hilken, M. Kuhlmann, and R. B. France, “From Application

Models to Filmstrip Models: An Approach to Automatic Validation of Model Dynamics,”

in Modellierung, vol. 225, pp. 273–288, 2014.

[145] R. Deshayes, B. Meyers, T. Mens, and H. Vangheluwe, “ProMoBox in Practice: A Case

Study on the GISMO Domain-Specific Modelling Language,” in Proceedings of the 8th

Workshop on Multi-Paradigm Modelling (MPM), pp. 21–30, 2014.

[146] Scopus, A Generic Framework for Realizing Semantic Model Differencing Operators,

vol. 1258, 2014.

[147] J. P. Faria and A. C. Paiva, “A Toolset for Conformance Testing against UML sequence

diagrams based on event-driven colored Petri nets,” International Journal on Software Tools

for Technology Transfer, vol. 18, no. 3, pp. 285–304, 2016.

[148] B. Lima and J. P. Faria, “An approach for automated scenario-based testing of distributed

and heterogeneous systems,” in Proceedings of the 10th International Joint Conference on

Software Technologies (ICSOFT), vol. 1, pp. 1–10, IEEE, 2015.

155

[149] S. Schivo, B. M. Yildiz, E. Ruijters, C. Gerking, R. Kumar, S. Dziwok, A. Rensink, and

M. Stoelinga, “How to Efficiently Build a Front-End Tool for UPPAAL: A Model-Driven

Approach,” in International Symposium on Dependable Software Engineering: Theories,

Tools, and Applications, vol. 10606 of Lecture Notes in Computer Science, pp. 319–336,

Springer, 2017.

[150] A. Hamou-Lhadj and T. Lethbridge, “A metamodel for the compact but lossless exchange

of execution traces,” Software & Systems Modeling, vol. 11, no. 1, pp. 77–98, 2012.

[151] A. Hamou-Lhadj and T. Lethbridge, “A metamodel for dynamic information generated

from object-oriented systems,” Electronic Notes in Theoretical Computer Science, vol. 94,

pp. 59–69, 2004.

[152] L. Alawneh and A. Hamou-Lhadj, “An exchange format for representing dynamic informa-

tion generated from High Performance Computing applications,” Future Generation Com-

puter Systems, vol. 27, no. 4, pp. 381–394, 2011.

[153] M. Szvetits and U. Zdun, “Systematic literature review of the objectives, techniques, kinds,

and architectures of models at runtime,” Software & Systems Modeling, vol. 15, no. 1,

pp. 31–69, 2013.

[154] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos, “A Survey on Model-

based Testing Approaches: a Systematic Review,” in Proceedings of the 1st ACM interna-

tional workshop on Empirical assessment of software engineering languages and technolo-

gies: held in conjunction with the 22nd IEEE/ACM International Conference on Automated

Software Engineering (ASE) 2007, pp. 31–36, ACM, 2007.

[155] H. G. Gurbuz and B. Tekinerdogan, “Model-based Testing for Software Safety: a Systematic

Mapping Study,” Software Quality Journal, pp. 1–46, 2017.

[156] P. H. Nguyen, M. Kramer, J. Klein, and Y. Le Traon, “An Extensive Systematic Review on

the Model-Driven Development of Secure Systems,” Information and Software Technology,

vol. 68, pp. 62–81, 2015.

156

[157] L. M. do Nascimento, D. L. Viana, P. A. S. Neto, D. A. Martins, V. C. Garcia, and S. R.

Meira, “A Systematic Mapping Study on Domain Specific Languages,” in Proceedings of

the 7th International Conference on Software Engineering Advances (ICSEA’12), pp. 179–

187, 2012.

[158] F. D. Giraldo, S. Espana, and O. Pastor, “Analyzing the concept of Quality in Model-Driven

Engineering Literature: A systematic review,” in Proceedings of the 8th International Con-

ference on Research Challenges in Information Science (RCIS), pp. 1–12, IEEE, 2014.

[159] F. Hojaji, T. Mayerhofer, B. Zamani, A. Hamou-Lhadj, and E. Bousse, “Model Execution

Tracing: A Systematic Mapping Study,” Software & Systems Modeling, pp. 1–25, Feb 2019.

[160] G. Erich, H. Richard, J. Ralph, and V. John, Design patterns: Elements of reusable Object-

Oriented Software. Addison-Wesley Professional, 1994.

[161] K. Taniguchi, T. Ishio, T. Kamiya, S. Kusumoto, and K. Inoue, “Extracting Sequence dia-

gram from Execution Trace of Java program,” in Eighth International Workshop on Princi-

ples of Software Evolution, pp. 148–151, IEEE, 2005.

[162] L. Alawneh and A. Hamou-Lhadj, “An exchange format for representing dynamic informa-

tion generated from high performance computing applications,” Elsevier Journal of Future

Generation Computer Systems, vol. 27, no. 4, pp. 381–394, 2011.

[163] N. Tax, N. Sidorova, and W. M. P. van der Aalst, “Discovering more precise process mod-

els from event logs by filtering out chaotic activities,” Journal of Intelligent Information

Systems, vol. 52, pp. 107–139, Feb 2019.

[164] R. P. Jagadeesh Chandra Bose and W. M. P. van der Aalst, “Abstractions in Process Mining:

A Taxonomy of Patterns,” in Business Process Management (U. Dayal, J. Eder, J. Koehler,

and H. A. Reijers, eds.), vol. 5701 of Lecture Notes in Computer Science, (Berlin, Heidel-

berg), pp. 159–175, Springer Berlin Heidelberg, 2009.

157

[165] M. Song, C. W. Günther, and W. M. Van der Aalst, “Trace clustering in process mining,”

in International Conference on Business Process Management, vol. 17 of Lecture Notes in

Business Information Processing, pp. 109–120, Springer, 2008.

[166] C. W. Günther and W. M. Van Der Aalst, “Fuzzy mining–adaptive process simplification

based on multi-perspective metrics,” in International conference on business process man-

agement, vol. 4714 of Lecture Notes in Computer Science, pp. 328–343, Springer, 2007.

[167] C. Diamantini, L. Genga, and D. Potena, “Behavioral process mining for unstructured pro-

cesses,” Journal of Intelligent Information Systems, vol. 47, pp. 5–32, Aug 2016.

[168] V. Liesaputra, S. Yongchareon, and S. Chaisiri, “Efficient Process Model Discovery Us-

ing Maximal Pattern Mining,” in Business Process Management (H. R. Motahari-Nezhad,

J. Recker, and M. Weidlich, eds.), vol. 9253 of Lecture Notes in Computer Science, (Cham),

pp. 441–456, Springer International Publishing, 2015.

[169] N. Tax, N. Sidorova, R. Haakma, and W. M. P. van der Aalst, “Event abstraction for pro-

cess mining using supervised learning techniques,” Lecture Notes in Networks and Systems,

pp. 251–269, Aug 2017.

[170] S. Schivo, J. Scholma, B. Wanders, R. A. U. Camacho, P. E. van der Vet, M. Karperien,

R. Langerak, J. van de Pol, and J. N. Post, “Modeling biological pathway dynamics with

timed automata,” IEEE journal of biomedical and health informatics, vol. 18, no. 3, pp. 832–

839, 2014.

[171] K. Barmpis and D. S. Kolovos, “Comparative analysis of data persistence technologies for

large-scale models,” in Proceedings of the 2012 Extreme Modeling Workshop, pp. 33–38,

ACM, 2012.

[172] J. E. Pagán, J. S. Cuadrado, and J. G. Molina, “Morsa: A scalable approach for persist-

ing and accessing large models,” in International Conference on Model Driven Engineer-

ing Languages and Systems, vol. 6981 of Lecture Notes in Computer Science, pp. 77–92,

Springer, 2011.

158

[173] T. Hartmann, F. Fouquet, M. Jimenez, R. Rouvoy, and Y. Le Traon, “Analyzing complex

data in motion at scale with temporal graphs,” in The 29th International Conference on

Software Engineering and Knowledge Engineering (SEKE’17), p. 6, KSI Research, 2017.

[174] GEMOC, “Gemoc studio documentation.” http://download.eclipse.org/

gemoc/docs/nightly/index.html.

[175] J.-M. Jézéquel, B. Combemale, O. Barais, M. Monperrus, and F. Fouquet, “Mashup of

metalanguages and its implementation in the kermeta language workbench,” Software &

Systems Modeling, vol. 14, no. 2, pp. 905–920, 2015.

[176] G. Valiente, “Simple and efficient tree pattern matching,” report, Technical University of

Catalonia, 2000.

[177] T. Uno, T. Asai, Y. Uchida, and H. Arimura, “LCM: An Efficient Algorithm for Enumer-

ating Frequent Closed Item Sets,” in Proceedings of Workshop on Frequent itemset Mining

Implementations (FIMI’03), vol. 90, 2003.

[178] Object Management Group, “Semantics of a Foundational Subset for Executable UML

Models (fUML), Version 1.3,” July 2017.

159

http://download.eclipse.org/gemoc/docs/nightly/index.html
http://download.eclipse.org/gemoc/docs/nightly/index.html

Appendix A

CTM Application and Setup

This appendix provides the required steps to setup the CTM prototype. Using this prototype,

language designers are able to generate scalable traces of executable models for any xDSMLs. To

clarify the application of CTM in practice, its usage as an xDSML is described step by step.

A.1 Introduction

This chapter helps you to setup, configure, and run the CTM prototype in order to generate

a compact trace for a given xDSML. Given an xDSML and an executable model conforming to

the xDSML, the model can be executed, and its trace generated in a compact form. To show the

applicability and usage of the prototype, the following directions will help you to configure, and

run the prototype for several xDSMLs.

A.2 Install Eclipse Gemoc Studio

Download and install the latest Eclipse Gemoc Studio by following the directions from its sup-

porting web page1. Check the installation details from the menu Help>About Gemoc Studio>Installation

Details (see Figure A.1). It must be mentioned that the used Eclipse Gemoc Studio tool suite ver-

sion is 2.3.0-SNAPSHOT here.

The least requirements for Eclipse packages are Java 8 and JavaFX. JavaFX is required for the

Multidimensional timeline features. you can also install additional components using the compo-

nent discovery service: Help > Install additional Gemoc components.
1http://download.eclipse.org/gemoc/packages/nightly/

160

Figure A.1: Gemoc Studio Installation details

161

A.2.1 Features in Gemoc Studio 2.3.0

This section2 lists the main features of the current version of the Gemoc Studio, which are

related to our work.

A.2.1.1 Ecore Tools

EcoreTools provides a complete graphical modeler to create, edit and analyze Ecore models.

Website : http://www.eclipse.org/ecoretools/

Documentation : http://www.eclipse.org/ecoretools/doc/

A.2.1.2 Gemoc Execution Engine

This feature allows to run a given model according to an xDSML definition. It provides an

interface to define, and run a new simulation. It also supports different execution engines associated

to their specific metalanguages, and the behavioral coordination of DSLs.

A.2.1.3 Gemoc Language Designer

This feature provides facilities to create new executable languages. The language designer

supports the following services.

• Language definition tools

• Editor definition (textual, graphical) tools

A.2.1.4 Gemoc Modeling Workbench

The modeling workbench allows creating and executing models conformant to executable

DSMLs. It provides the following services.

• Gemoc Execution Engine

2The content of this subsection has been taken from the Gemoc Initiative web site. http:
gemoc.org

162

Figure A.2: Screenshot of Gemoc Studio Modeling Workbench on the TFSM example

• Gemoc Animation

• Model edition

Figure A.2 shows the screenshot of Gemoc Studio Modeling Workbench for the execution and

animation of a TFSM example.

163

A.2.1.5 Kermeta 3

Kermeta 3 is a metaprogramming environment based on Xtend language that provides aspect

oriented and model typing facilities. It is used to define the execution data and execution functions

through aspects weaved onto the metaclasses of the Domain Model.

A.2.1.6 Sirius

This fetaure allows to easily create the graphical modeling workbench by leveraging the Eclipse

Modeling technologies, including EMF and GMF.

A.2.1.7 Xtend

Xtend is a programming language which compiles to Java source code. it is syntactically and

semantically based on the Java programming language.

A.3 Download and setup CTM

This section provides the required steps to download, and setup CTM tool. First we give an

overview of the CTM tool, then we describe the required configuration for executing a model.

A.3.1 CTM Tool Overview

Download the CTM’s resources from the project web page3. Unzip the archive file. There are

two main folders in the root folder:

Traceconstruction: includes the following plugins; Tracemanagement that is the core of CTM

tool containing trace constructor add-on, trace decompactor and several plugins responsible to

create semantics for the trace metamodel. Tracemetamodel that consists of the ecore of generic

metamodel and CTM, and the genmodel files. Beside these plugins, there are several folders, each

dealing with a particular xDSML, which contains a set of plugins for executing a model conforming

3https://github.com/MDSEGroup/TraceCompaction

164

to the respective xDSML. The xDSML are IML, TFSM, Petrinet, Petrinetcomplex, fUML, xMOF

Gemoc Engine, xMOF virtual machine.

runtime-modelingworkbench: contains several example models conforming to all tested

xDSML, and a plugins with a lunch configuration file.

By using these plugins, you can execute any model conforming to a specific xDSML, and cre-

ate its trace in both regular and compact form. Also, using these plugins, a uncompacted trace can

be reconstructed from a compact trace. While this tool allows executing and constructing compact

traces, it allows applying required plugins (abstract syntax and execution semantics) for a new exe-

cutable DSML, and executing models conforming to the language. Figure A.3 shows a screenshot

of the CTM workspace in Gemoc Studio. In the left of the figure, there exist different working

sets, each containing a set of plugins related to the working set. For instance, trace management

consists of five plugins, dealing with trace construction and trace decompaction. TFSM working

set contains a set of plugins that define the abstract syntax, operation semantics and the melange

language for the TFSM. These plugins allow to debug, and run a TFSM model. This structure is

the same for the other languages.

A.3.2 Launch Configuration

You can use the Run and Debug actions (in Run Menu) to start running and debugging a model,

respectively. These two actions are configured using the launch configuration. Figure A.4 shows

the debug configuration for a TFSM model. You can see the description of each field on the figure.

A.3.3 Trace Generation

Using the launch configuration described in the previous section, you can execute a sample

model and generate trace. We have defined four Boolean variables for specifying the compaction

of different parts of the trace. Listing A.3.1 presents the definition of these variables defined in the

GenericTraceConstructor class.

165

Figure A.3: Screenshot of the CTM workspace

166

This is the model

that will be

executed

It is the

@InitializeModel

annotation of a

method defined in the

language

Arguments that can be

passed to the

initialization method

The language

defined in Melange

The name of the

method that can be

used to start the

engine

The path of main

element in the

model

Figure A.4: An example of debug configuration for a TFSM model

1public class GenericTraceConstructor {
2// false: State without compaction , True: State with compaction
3 val boolean statecompaction=false
4// false: Parameter without compaction , True: Parameter with

compaction
5 val boolean parametercompaction=false
6// false: ObjectState without compaction , True: ObjectState with

compaction
7 val boolean objectstatecompaction=false
8// false: Step without compaction , True: Step with compaction
9 val boolean stepcompaction=false

10
11}

Listing A.3.1: Excerpt of the GenericTraceConstructor class, which defines Boolean variables for
compaction, written in Xtend

167

1public static void createSerializedTrace(Trace trace,String tracename)
{

2 // Register the XMI resource factory for the .trace extension
3 Resource.Factory.Registry reg = Resource.Factory.Registry.INSTANCE;
4 Map<String, java.lang.Object> m = reg.getExtensionToFactoryMap();
5 m.put("xmi", new XMIResourceFactoryImpl());
6 // Obtain a new resource set
7 ResourceSet resSet = new ResourceSetImpl();
8 // create a resource
9 Resource resource =

10 resSet.createResource(URI.createURI("trace/" + tracename+filename)
);

11 // Get the first model element and cast it to the right type, in my
12 // example everything is hierarchical included in this first node
13 resource.getContents().add(trace);
14 try {
15 resource.save(Collections.EMPTY_MAP);
16 System.out.print("saving Xmi successfull");
17 }
18 catch (IOException e) {
19 // TODO Auto-generated catch block
20 e.printStackTrace();
21 }
22 }

Listing A.3.2: Serialization of a trace in an xml file

The trace is generated, and serialized in both XML and EXI formats. Listing A.3.2 shows how

the trace is serialized. Figure A.5 and figure A.6 show an excerpt of the trace of an fUML model

serialized in XML and EXI formats respectively.

168

Figure A.5: An excerpt of the trace of an fUML model serialized in XML

Figure A.6: An excerpt of the trace of an fUML model serialized in EXI

169

List of Acronyms

CTM Compact Trace Metamodel

DSML Domail Specific Modeling Language

EMF Eclipse Modeling Framework

EXI Efficient XML Interchange

xDSML Executable Domail Specific Modeling Language

XML Extensible Markup Language

fUML Foundational UML

GPML General Propose Modeling Language

JSON JavaScript Object Notation

MDD Model Driven Development

MDE Model Driven Engineering

OMG Object Management Group

UML Unified Modeling Language

V&V Verification and Validation

XMI XML Metadata Interchange

xMOF eXecutable MOF

170

	ABSTRACT
	Dedication
	Acknowledgement
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Context
	Problem
	Aim of the Research
	Research Methodology
	Structure of the thesis

	I Foundations
	State of the Art
	Model-Driven Development
	Metamodel
	Model
	Model Transformation

	Model Execution
	Execution semantics
	xDSML
	Execution Metamodel

	Model Execution Tracing
	A Look at Execution Trace Structures
	Structures with Specific Concerns
	Generic Data Structures
	Self-defining Trace Formats
	Domain-Specific Trace Metamodel Definition Approaches

	Data Serialization Formats

	Abstraction and Compaction Techniques
	Trace Abstraction in Code-Centric Approaches
	Trace Visualization
	Trace Exploration
	Abstracting the History of Object Interactions
	Graph Reduction
	Partitioning and Clustering
	Program slicing
	Pattern Detection
	Hiding Components

	Trace Abstraction in Model-Driven Approaches
	Sharing Immutable Objects
	Avoiding Redundancy in Traces
	Recording Modifications of the Dynamic Model

	Data Compression Techniques in Database Domain
	Column-Oriented Database Systems
	Rainstor

	II Contributions
	A Taxonomy for Model Execution Tracing Approaches
	Introduction
	Research Method
	Review Planning
	Review Conduction

	Results
	Types of Models (Q1)
	Semantics Definition Technique (Q2)
	Trace Data (Q3)
	Purpose (Q4)
	Data Extraction Techniques (Q5)
	Trace Representation Format (Q6)
	Trace Representation Method (Q7)
	Language Specificity of Trace Structure (Q8)
	Data Carrier Format (Q9)
	Maturity Level (Q10)

	Future Research Directions
	Limitations and Threats to Validity
	Related Work
	Conclusion

	Generic Compact Trace Metamodel
	Motivation
	Requirements for an execution trace metamodel
	Limitation of existing trace structures

	Overview of the Approach
	Generic Compact Trace Metamodel
	Generic trace metamodel
	CTM Compaction

	Related Work
	Model execution tracing approaches
	Business process mining approaches
	Model persistence approaches

	Conclusion

	III Applications and Tooling
	Tool Support in the Context of Gemoc
	Gemoc Studio Execution Framework
	Implementation of CTM
	Generation of proposed trace metamodels in EMF
	Creation of an xDSML
	Implementation of the Trace Constructor
	Implementation of the Trace Decompactor

	Applying Compaction Techniques to CTM
	Implementation of Step Compaction
	Implementation of State Compaction
	Implementation of Objectstate Compaction
	Implementation of Parametervalue Compaction

	Evaluation of CTM
	Overview on fUML
	Experiments on CTM
	Results of the Evaluation

	IV Conclusion and Perspectives
	Conclusion and Perspectives
	Conclusion
	Perspectives
	Extended pattern detection
	Further evaluation
	Combining compaction with compression techniques
	Applying lens-like abstraction
	Applying process mining abstraction techniques.
	A Tool Suite

	Bibliography
	Appendix CTM Application and Setup
	Introduction
	Install Eclipse Gemoc Studio
	Features in Gemoc Studio 2.3.0

	Download and setup CTM
	CTM Tool Overview
	Launch Configuration
	Trace Generation

