
 1

An Exchange Format for Representing Dynamic

Information Generated from High Performance

Computing Applications

Luay Alawneh and Abdelwahab Hamou-Lhadj
Software Behaviour Analysis Lab

Department of Electrical and Computer Engineering

Concordia University

1455 de Maisonneuve West

Montréal, Québec, Canada

{l_alawne, abdelw}@ece.concordia.ca

Abstract

High Performance Computing (HPC) systems tend to be complex to debug and analyze

due to the large number of processes they involve and the way they communicate with

each other to perform specific tasks. Recently, there has been an increase in the number

of tools to help software engineers analyze the behavior of HPC applications. These tools

provide several features that facilitate the understanding and analysis of the information

contained in inter-process communication traces generated from running an HPC

application. They, however, use different formats to represent traces, which hinders

interoperability and sharing of data. In this paper, we address this by proposing an

exchange format called MTF (MPI Trace Format) for representing and exchanging

traces generated from HPC applications based on the MPI (Message Passing Interface)

standard, which is a de facto standard for inter-process communication for high

performance computing systems. The design of MTF is validated against well-known

requirements for a standard exchange format, with an objective being to lead the work

towards standardizing the way MPI traces are represented in order to allow better

synergy among tools. We have also developed an MTF toolkit that supports the

generation of MTF traces equipped with a query engine to facilitate the retrieval of data

from MTF traces. Finally, we show how MTF can carry a large trace generated using a

commercial off the shelf MPI trace analysis tool.

Keywords: High Performance Computing Systems, Inter-Process Communication Traces,

Message Passing Interface, Standard Exchange Format

 2

1. Introduction

High Performance Computing (HPC) systems such as the ones used in grid computing

have been shown to be useful in a variety of domains ranging from solving computation-

intensive scientific problems to powerful back-office data processing units used in large

enterprise applications (e.g. [Stamatakis 05, Aloision 02, Ranjan 08]). These applications

take advantage of multiple processes running on autonomous computers that

communicate through a computer network to achieve a common goal. Although the

benefits of HPC applications are numerous, they tend to be difficult to debug and analyze,

causing significant delays in production and maintenance time [Becker 2007]. This is

mainly due to the large number of inter-communicating processes they involve. To

address this issue, several techniques and supporting tools have been proposed (e.g.

[TAU, Hong 1996, Heath 2003]). These tools provide many features that enable software

engineers to examine the run-time behavior of these applications for performance

analysis, debugging, deadlock detection, etc. Although these tools have common features,

each of them has its own advantages and specialized functions. Currently the only way to

take full advantage of the functions they provide is to convert the data generated from

HPC systems from one format to another. This is due to the fact that they use different

formats for representing HPC traces, which hinders interoperability and sharing of data.

Writing converters to and from all available formats is usually a tedious task, which is in

many times impractical. What is needed is a standard exchange format for representing

run-time information generated from HPC systems that can be readily used by different

tool vendors. There are many other advantages for having a standard exchange format

such as:

 Reducing the effort required to represent HPC traces.

 Allowing researchers to use different tools on the same input, which can help

compare the techniques supported by each tool.

 Enabling software engineers to combine the techniques from different tools without

having to worry about how the data is represented.

In this paper, we present an exchange format, called MTF (MPI Trace Format) that we

have developed to represent run-time information generated from HPC applications. We

 3

believe that MTF can lead the work towards a standard exchange format for representing

and sharing information generated from HPC systems. The focus is on modeling inter-

process communication traces based on message passing, which is perhaps the most

common communication paradigm used in most of today’s high performance computing

distributed systems. In particular, we target systems built using the Message Passing

Interface (MPI) framework [MPI], which is the de facto standard for inter-process

communication in HPC parallel applications running on distributed systems.

Organization of the paper: In Section 2, we present the related work and the

background on MPI traces. In Section 3, we present the requirements that guided the

design of MTF. Section 4 presents MTF along with the semantics of its components. In

Section 5, we discuss MTF tool support. In Section 6, we show how MTF meets some

key requirements for a standard exchange format. We present a case study where we

applied MTF to represent an MPI trace file generated by VampirTrace [VampirTrace], a

library for the generation of MPI traces in Section 7. We conclude the paper in Section 8.

2. Background and Related Work

In the section, we first provide necessary background on the MPI framework that is

needed to understand the content of this paper including the point-to-point and collective

mechanisms defined in MPI for inter-process communication. We also discuss related

work by surveying existing MPI trace formats found in the literature.

2.1 The Message Passing Interface

A parallel program is composed of several processes running on different processors that

need to collaborate in order to execute a specific set of tasks. Usually, processes cannot

have direct access to each others’ address space. Therefore, a mean for communication is

needed in order to enable information exchange among the program’s processes. The

message passing mechanism, which consists of having processes communicate through

the exchange of messages, has been adopted as the mechanism of choice for inter-process

communication. It is based on the transfer of a message from one process to another by

sending a copy of the message from the sending process to the receiving one which in

turn expects an incoming message at a predefined location in its memory space.

 4

In 1992, an effort for standardizing the operations that can be used by processes to

exchange messages has started as a result of a meeting held at the workshop on Standards

for Message Passing in a Distributed Memory Environment, sponsored by the Center for

Research on Parallel Computing, Williamsburg, Virginia. In 1994, the first version of the

MPI (Message Passing Interface) specification [MPI] was released. The work continued

on improving the standard until 1997 where the second version known as MPI 2.0 [MPI]

was released, which is the version currently in effect.

The main advantages that distinguish MPI from other message passing paradigms are its

support for asynchronous communication, process group context, and process

synchronization. Another important advantage is its portability since all existing

implementations on different platforms are based on the same open accepted standard.

MPI supports two communication modes: point-to-point as well as collective

communication. Point-to-point communication involves only two processes in an MPI

program. MPI allows the same process to act as the sender and the receiver for the same

message. The sending process posts a send operation that contains the destination

process, the message data, the data type, the tag, and the communicator. The tag is an

integer value that helps in identifying the incoming message at the receiving process. The

receiver, on its side, should post a receive operation that matches the incoming message

based on its data type, the tag value, and the source process. However, the receiving

process may post a receive operation that can accept a message coming from any source

in the group and that has any tag value.

MPI supports blocking and non-blocking modes of point-to-point communication. In the

blocking mode, the process must wait for the completion of the posted operation. Thus,

the process cannot resume any other computations until a confirmation is received that a

matching operation has been posted. On the other hand, non-blocking operations return

immediately in order to allow the process to continue with its computations which

demonstrates the advantage of asynchronous communication. The non-blocking mode

requests the MPI library to perform, when possible, the posted operation. A process can

use ‘wait’ and ‘test’ MPI routines to wait or check for the completion of the non-blocking

operation respectively.

 5

MPI collective communication defines different types of operations for exchanging

information among a group of processes defined as an MPI communicator. MPI assumes

that all processes, in a communicator, must execute the same collective operations in the

same order. In order to guarantee the synchronization among all processes in the

communicator, MPI recommends the usage of the ‘barrier’ operation.

It is worth mentioning that MPI collective operations are based on point-to-point

operations. However, the communication mode in a collective communication must be

blocking in order to enforce the execution of the same collective operation by all

processes synchronously. Moreover, collective operations do not use tags as message

identifier in order to strictly force the exchange of messages according to their order of

execution. All processes must post collective operations that exactly match the size and

data type of the exchanged data.

Furthermore, collective communication involves operations that have one process

sending data to the other processes, one process receiving data from all other processes or

all processes sending data to all other processes in the communicator. Another type of

collective operations is the reduction operations which involve collecting data from the

other processes in the communicator and then performing a predefined operation on the

received data.

2.2 Existing Trace Formats

Recording run-time information requires a trace format that is expressive, scalable,

portable, and extensible. Moreover, it should provide efficient ways for accessing the

trace information through an effective query language. In the following, we surveyed

execution trace formats for MPI traces and other message passing environments. Most of

these formats, however, are either proprietary or built without taking into consideration

the aforementioned requirements for an exchange format. The list of the studies included

in this survey is by no means exhaustive but we believe that it is representative of the

state of the art.

 6

2.2.1 Pablo Self-Defining Data Format (SDDF)

SDDF is perhaps one of the leading trace formats that have been used for performance

analysis of distributed applications [Aydt 1994]. It is a general-purpose language that can

be considered as a meta-format for defining data record structures. SDDF trace files

consist of a header and packet sections. The header determines the type of encoding used

in the trace file (binary or ASCII). The packets describe information about the trace files

such as the time the trace was generated. The main packet which defines the data record

structures is called the ‘Record Descriptor’. The trace data exists in the ‘Record Data’

packet which is represented using the Record Descriptor packet.

SDDF is designed to provide trace formats in both binary and ASCII representations. The

reason behind this is that the binary representation can be used when compactness is

sought. On the other hand, the ASCII representation is used when portability and

readability are needed. Another advantage of using SDDF is its flexibility. Therefore,

trace format developers can define new trace formats by extending the meta-format

provided by SDDF. SDDF, however, is not specifically designed to support MPI

operations, which renders its applicability to support traces generated from HPC systems

based on MPI a difficult task.

2.2.2 Pajé Trace Format

Pajé trace format is a generic trace format that provides the ability to define the structure

of the traces based on the targeted problem [Kergommeaux 2003]. Similar to SDDF, the

trace data format of Pajé is self-defined. The meta-format (the trace structure) is defined

in the trace file in a hierarchical manner that classifies all types of traceable elements. A

Pajé trace file is composed of two definition categories that define the format of the

generic instructions about the experiment and the format of the event traces respectively.

Pajé, also, contains two data categories (the trace data) which represent instances of the

two definition categories.

The trace file contains the definition of the events followed by the events themselves.

Events with different unique identifiers can have the same names. This allows adding

different fields for the same event type based on the tracing requirement. When the trace

file is generated, the event unique numbers are replaced with the event name from the

 7

event definition which is used to ignore the event definitions afterwards in order to

process the trace file using the event names. Though Pajé trace format provides flexible

ways of defining different event formats, it is difficult to represent all the properties of

MPI traces such as matching point-to-point operations and their corresponding wait and

test statements.

2.2.3 EPILOG Trace Format

EPILOG (Event Processing, Investigating, and Logging) is a binary data format for

capturing traces of MPI and OpenMP (a paradigm for shared memory programming)

applications [Wolf 2004]. An EPILOG trace file consists of a header preceding the trace

records. This header contains information related to the EPILOG file such as the EPILOG

version number. EPILOG uses two record types; the definition record and the event

record. Each record consists of a header and a body. The header defines the length and

the type of the record body. Definition records are used to define the types and objects

that will be used in the trace file. For example, a definition record can be used to define

the trace for the MPI send operation.

Also, EPILOG defines records for the communicator and the locations in the MPI

application so they can be referenced by other record definitions. The event records are

used to capture run-time information. EPILOG provides a trace format specifically

designed for MPI traces. However, it is limited in many ways including the fact that it

provides a binary trace format that hinders portability of the trace format on different

platforms.

2.2.4 Structured Trace Format (STF)

The main idea behind the Structured Trace Format (STF) is to handle traces generated

from large applications using several physical files [STF]. The intention is to properly

handle the size problem of large trace files to avoid having trace files that take up more

than ten gigabytes. STF defines a set of files mainly the index file, the declaration file,

the event data file and the statistics file. The index file is used to locate the other STF

files. The declaration file defines the record formats of the traced units such as method

Enter and Exit. The data file contains the trace data based on the format defined in the

 8

declaration file. Finally, the statistics file contains some profiling information based on

the trace.

The Intel Trace Collector (ITC) tool [STF] produces traces in the STF format. STF traces

can be analyzed using the Intel Trace Analyzer (ITA) performance analysis tool. This

trace format does not meet the simplicity requirement for a standard exchange format as

it is complex to use since it requires managing different types of data files.

2.2.5 Open Trace Format (OTF)

OTF is a trace format that uses different streams (files) to represent trace data for HPC

parallel applications [Knüpfer 2006]. A stream may contain traces corresponding to one

or more process. However, traces of one process must exist in one stream only in order to

preserve the execution of the process’ events. Each stream contains definitions for the

trace events such as the routine names, the MPI operations used in the trace file as well as

the information regarding the processes and the MPI communicators in the application.

The definitions of the traces are followed by the events traced in the program. Some

statistical information may follow the trace events in the stream.

OTF defines an index file that is used to map each process to its stream (file). This file is

used by the OTF library to locate and map the streams for each process. OTF uses ASCII

encoding in order to be presented as a platform independent trace file format. Finally,

OTF uses compression techniques in order to provide reduced trace file size.

Based on our experiments, we believe that OTF is an efficient trace file format. However,

it does not use a popular data carrier which makes it difficult to be read by other tools.

Moreover, OTF, similar to other trace formats, does not provide all the information that

can be traced from MPI applications that are needed, for example for debugging purposes,

such as the data types and the memory addresses of the exchanged data.

3. Requirements for the Design of MTF

In this section, we present the requirements that we used to guide the design of MTF.

These requirements are based on known requirements for developing a standard

exchange which are described in [Bowman 1999, Lethbridge 1997, St-Denis 2000,

Woods 1999]. The validation of MTF against these requirements is presented in Section 4.

 9

3.1 Expressiveness

An exchange format should be expressive enough to capture the needed information to

enable various types of analyses. After studying the MPI specifications and the related

research studies, it was clear that all the information needed for MPI operations must be

captured in order to be used during the analysis phase. For example, when tracing an

MPI_Send operation, we need to store information about the sender, receiver, data type,

tag value, communicator, size of sent data, and the address of send buffer.

3.2 Scalability

An exchange format should be scalable to support a large amount of information

efficiently in a way that does not degrade access to its data. This is particularly important

in the area of trace analysis since the size of typical trace files can easily reach tens to

hundreds of gigabytes.

3.3 Simplicity

This requirement for an exchange format dictates the need for a trace format specification

that is easy to understand so as to facilitate its adoption by tool vendors. Also, simplicity

requires clean and complete documentation of the design of the exchange format.

3.4 Transparency

Transparency ensures that the information is represented without any alteration.

Therefore, we need to provide well-defined mechanisms in order to generate traces in the

form of MTF.

3.5 Neutrality

Neutrality refers to an exchange format that is not specific to a particular language or

platform.

3.6 Extensibility

Extensibility is an important requirement when building an exchange format. Exchange

formats should be easily extended in order to support new or different data types.

 10

3.7 Completeness

Completeness mandates that an exchange format should include the necessary information

during the exchange process. An exchange format that satisfies this requirement should

provide the data as well as the structure (i.e. the metamodel, ‘known as the schema’) which

can be used to interpret the carried data. This enables tools to validate the carried data with

regard to the provided metamodel.

3.8 Solution Reuse

It is important to build an exchange format that reuses some existing technologies to

avoid reinventing the wheel. For example, an exchange format can be carried using an

existing data carrier language such as XML instead of creating a new one.

3.9 Popularity

In order to meet the popularity requirement (i.e. acceptance by several users), an

exchange format needs to meet the previously mentioned requirements. Moreover, it

should be delivered with an API that will allow tool vendors to generate and query traces.

4. MTF Components

In this section, we present the MTF exchange format. The definition of an exchange

format involves two main components [Bowman 1999]: A metamodel (also called a

schema) that describes the abstract syntax or the structure of the entities to exchange and

the way they are connected, and the syntactic form, which describes how the instance

data of the metamodel is represented in a trace file.

4.1 MTF Metamodel

Figure 1 shows a UML class diagram that describes the MTF metamodel. The entities of

this metamodel are discussed in the following subsections. The exact definition of the

classes of the metamodel including their attributes, associations, constraints, and

semantics are presented in Appendix A using as similar template as the OMG
1
 template

for defining the UML metamodel.

1
 http://www.omg.org/uml

 11

Figure 1. The MTF metamodel

4.1.1 Usage Scenario

An execution trace is obtained by executing a usage scenario described in the Scenario

class. Our metamodel accepts that a scenario can be represented by several execution

traces in order to support situations where different traces might be needed to understand

a particular scenario. Traces for the same scenario can, for example, be used to detect

anomalies caused by non-deterministic behavior of MPI applications.

4.1.2 Trace Types

The abstract class Trace is used to describe information about the collected trace such as

the name, the time the trace was collected, etc. To create specialized types of traces, one

 12

can simply extend this class. In our metamodel, we define the MPITrace class to

represent traces of MPI applications.

4.1.3 Processor and Process

The Processor and Process classes are used to capture the process and the machine

(including the node) a process is running on.

4.1.4 Traceable Unit

A traceable unit (modeled using the TraceableUnit class) is used to represent any event

contained in traces of an MPI system such as the MPI operations, routine calls, program

statements, messages, and any other type of a traceable unit in the program. Although our

focus is on modeling MPI operations, the TraceableUnit abstract class is added to enable

our metamodel to be extended to capture other types of dynamic information.

4.1.5 MPI Operations

The MPI operations are represented using the class MPIOperation, which is a base class

to many other MPI operations including MPI_Finilize, MPI_Init, a probe, a wait, a test,

point-to-point operations, and collective operations. The Point-to-point operations are

further specialized into specific operations modeling blocking send and receive

operations (represented using the classes Send and Receive), non-blocking send and

receive operations (classes NonBlockingSend and NonBlockingReceive). Similarly, the

specific collective operations such as a barrier, broadcast, etc. are represented using

classes that inherit from the CollectiveOperation class. Collective operations are only

blocking operations and involve all the processes in the application. The attributes needed

for each of these operations are also modeled although some of them are not shown in the

diagram of Figure 1 to avoid cluttering the diagrams.

4.1.6 Message

The class Message is used to capture the messages exchanged using point-to-point

operations only. Data exchanged using collective operations can be detected from the

collective call for each process. Since point-to-point operations allow the receiving

process to post a receive operation that does not match exactly the incoming message, the

 13

information in the MPI_Recv call cannot be used to refer to the received message.

Therefore, the message needs to be checked in order to determine the sending process as

well as the information regarding data such as size, data type and receiving buffer address.

4.1.7 Collective Data

Collective data (modeled using the class CollectiveData) represent the information about

the data being exchanged by each process when executing a collective MPI operation.

MPI requires that all the processes post the same data type and size when executing a

collective MPI call.

4.1.8 Trace Patterns

We also modeled trace patterns, which are defined as sequences of events that are

repeated non-contiguously in a trace. This is based on the work of Hamou-Lhadj et al.

[Hamou-Lhadj 04], where the authors proposed an exchange format for representing

traces of routine calls in which trace patterns are modeled as separate entities. According

to the authors, the analysis of trace patterns might reveal important information about the

behavior of the system. Similarly, we propose that MPI trace patterns might be needed to

understand various aspects of an MPI system. We therefore provide support for it in our

metamodel using the classes TracePattern and PatternOccurrence (which represents a

single occurrence of a given pattern). The analysis of MPI traces using trace patterns is

out of the scope of this paper.

4.2 Syntactic Form

The syntactic form of an exchange format describes the way the data (instances of the

abstract syntax metamodel) is carried. There exist several data carriers including XMI

(XML Metadata Interchange) [XMI-OMG], GXL (Graph Exchange Language) [Holt

2000], TA (Tuple Attributes language) [Holt 1998], etc. These syntactic forms vary

depending on whether they are based on XML or not, their ability to carry the metamodel

as well as the instance data, their compactness, etc. In this paper, we suggest that an

adequate syntactic form that can be used with MTF should have the following

characteristics:

 14

1. It should be compact in order to be able to handle very large traces and enable the

scalability of the trace analysis tools.

2. It needs to be able to carry the metamodel as well as the data (instance of the

metamodel). This will allow tools to check the consistency of the data against the

metamodel.

3. It should be open and portable. This excludes proprietary and binary syntactic

forms that are dependent on a particular technology.

4. It should have tool support available such as parsers and viewers.

5. It should be adopted by tool vendors. This requirement favors well accepted data

carriers such as the ones that have been standardized (e.g. XMI).

Except for Requirement 1, all other requirements can be met by a known XML-based

language such as GXL, which is widely accepted in academia and industry [Holt 2000]. It

supersedes a number of pre-existing syntactic forms for exchanging software artefacts

such as GraX [Ebert 1999], TA [Holt 1998], and RSF [Müller 1988]. Figure 2 shows an

example using GXL to represent an MPI trace which is used in the case study of this

paper to show the effectiveness of MTF to capture MPI traces.

 15

<gxl>

<graph>
<node id = “scen001”>
<attr name = “description”>
<string> Test of Weather Research and Forecasting Model
code</string>
</attr>
</node>
<node id = “trace001”>
<attr name = “startTime”>

<double> 12:00:00 </double> </attr>

<attr name = “endTime”>

<double> 12:00:40 </double> </attr>

<attr name = “comments”> <string> Sample MPI trace of
Weather Research and Forecasting Model code
</string></attr>
</node>
<node id = “PRCR00001”>
<attr name = “ProcessorName”>
<string> Processor 1</string> </attr>
</node>
<node id = “PRC00001”>
<attr name ="rank">
<int> 0 </int></attr>
<attr name ="ProcessName">
<string> Process 1 </int></attr>
</node>
<node id = “PRC00002”>
<attr name ="rank">
<int> 1 </int></attr>
<attr name ="ProcessName">
<string> Process 2 </int></attr>
</node>
--- REMAINING PROCESS NODES {2 - 15}
<node id = “COMM 1000000000”>
<attr name ="COMMName">
<string> MPI Communicator 0 </string></attr>
</node>
<node id = “trc000001”>
<attr name ="MPOperationName">
<string> MPI_Init </string></attr>
<attr name ="startTime">
<double> 0.00070105 </double></attr>
<attr name ="endTime">
<double> 0.0008256 </double></attr>
</node>

<node id = “trc000002”>
<attr name ="MPOperationName">
<string> MPI_Init </string></attr>
<attr name ="startTime">
<double> 0.00070185 </double></attr>
<attr name ="endTime">
<double> 0.0008311 </double></attr>
</node>

--- REMAINING MPI_Init NODES

<node id = “trc000017”>
<attr name ="MPOperationName">
<string> MPI_Bcast </string></attr>
<attr name ="startTime">

<double> 0.001653567 </double></attr>

<attr name ="endTime">

<double> 0.0233165 </double></attr>
</node>

<node id = “trc000018”>

<attr name ="MPOperationName">

<string> MPI_Bcast </string></attr>

<attr name ="startTime">

<double> 0.00172138 </double></attr>

<attr name ="endTime">

<double> 0.0297359 </double></attr>

</node>

--- REMAINING TRACE NODES

trace001
<edge from = “scen001” to = “trace001”></edge>
<edge from = “trace001”to = “trc000001”></edge>
<edge from = “trc000001” to = “PRC00002”></edge>
<edge from = “trace001”to = “trc000002”></edge>
<edge from = “trace001”to = “trc000003”></edge>

--- REMAINING EDGES

</graph>
</gxl>

Figure 2. An example of an MPI trace captured with MTF and carried by GXL

An XML-based language, however, tends to be very verbose due to the excessive use of

XML tags. This may cause scalability issues when applied to carry MTF traces since

traces, in general, tend to be excessively large. A possible alternative is to explore non

XML formats such as TA. These formats, however, are not widely accepted which goes

against some of the above requirements. The decision on which syntactic form should be

used with MTF is a subject of future studies.

 16

5. MTF Tool Support

In this section, we present a prototype tool that we have developed to support the analysis

of MTF traces. Our tool is written in Java as an Eclipse plug-in. Figure 3 shows the

architecture of the tool, which consists of four main components, which are presented

here and discussed in more detail in the subsequent sections:

 The MPI trace repository: We used EMF (Eclipse Modeling Framework) [EMF]

to create an Ecore model from which we generated the implementation of the MPI

metamodel classes. The MPI trace query engine: We have developed a powerful

query language that can retrieve all sort of information from an MPI trace

modeled in MTF.

 The MPI Trace Generation Engine: We have developed an engine that permits

generating traces in the form of MTF (carried in GXL).

 The MPI Visualizer: The visualizer aims to visualize MPI traces in a usable

manner. The implementation of this component is not completed, and therefore, it

is not included in this paper.

 MTF Trace Importer and the MTF Trace Exporter are two modules used to

convert the MTF traces from and to other trace formats respectively.

Figure 3 The MTF Tool Architecture

 17

5.1. The MTF Trace Repository

The MTF trace repository is based on the Eclipse Modeling Framework (EMF), which is

a modeling framework and code generation facility for building applications based on a

structured data model [EMF]. The advantages of using EMF are as follows:

1. It explicitly represents the data model which gives a clear understanding of the

data structure.

2. It generates an implementation from the model automatically.

3. If there is an update to the model, the corresponding implementation is also

updated automatically.

4. It provides the flexibility to import a UML model (such as the MTF class

diagram) created using any supported UML CASE tool such as Rational Rose

[Rose].

In our work, we created an Ecore model by importing the MTF class diagram into EMF.

We were then able to generate a Java implementation of the class diagram that is used by

the other components of the tools such as the query engine.

5.2. MTF Query Language

In order to facilitate the use of MTF, we have implemented a set of queries in our EMF-

based tool for accessing and retrieving of specific information about MPI traces. Every

query has an implementation that can retrieve information about traces related to a single,

group, or all the processes in a specific communicator.

Table 1. Processes Specified in a Query

Process (pn) Traces related to one process only.

Processes (pm - pn) Traces related to a sequence of processes.

Processes (pa, pc, pm,…, pn) Traces related to a selected number of processes.

Processes in Communicator c1 All processes in an MPI communicator.

 18

Table 1 shows the part of the query that determines which processes the query should run

on. For example, when specifying a query with (3-6) as the process parameter, it means

that the query will only return a slice of a trace that involves processes 3 to 6 inclusive. In

the following, we explain the different types of queries implemented in our toolset for

MPI traces.

5.2.1 Point-to-Point-Related Queries

Point-to-point related queries retrieve information that pertains to MPI point-to-point

operations. Table 2 shows the information that the queries supported by our tool are

capable of retrieving for point-to-point processes.

Table 2 Point-to-Point Queries

1 All point-to-point operations for a specific set of processes.

2 All Send operations for a specific set of processes.

3 All Receive operations for a specific set of processes.

4 All point-to-point operations sent and/or received between time t1 and time t2 for a specific

set of processes where size of data sent/received is less than, equal, or greater than sizen.

5.2.2 Collective-Related Queries

Collective related queries retrieve information that pertains to collective operations. Since

collective operations involve all the processes in a communicator, we have only

implemented the queries that are related to traces of one process or all the processes in a

communicator. Table 3 shows the collective queries supported by our tool.

Table 3. Collective Queries

1 All Collective operations related to one process or all the processes in a

communicator.

2 All traces related to a specific collective operation for all processes in the group.

3 All Collective operations executed between time t1 and time t2 related to one process in a

communicator.

4 All Collective operations executed between time t1 and time t2 related to one process in a

communicator where size of data sent/received is less than, equal, or greater than

sizen.

 19

5.2.3 Message-Related Queries

Message-related queries target traces of messages exchanged in point-to-point operations.

Table 4 shows the main queries used to retrieve information related to messages

transferred using point-to-point operations.

Table 4. Message-Related Queries

1 All messages in the MPI trace.

2 All messages exchanged among a group of processes.

3 All messages exchanged among a group of processes between time t1 and time t2 related to

where size of data sent/received is less than, equal, or greater than sizen.

Figure 4 shows a few simple query examples that can be used in our tool to retrieve

information from the trace under study.

Example 1: retrieve all messages in Communicator C1

SELECT ALL MESSAGES IN COMM(C1)

Example 2: retrieve all messages between process 1 and process 2

SELECT ALL MESSAGES BETWEEN PROCESS(1,2) IN COMM(C1)

Example 3: retrieve all point-to-point operations between process 1 and process 2

SELECT POINT_TO_POINT_OPERATIONS BETWEEN PROCESS(1,2) IN COMM(C1)

Example 4: retrieve all collective messages among all processes in communicator C1

SELECT COLLECTIVE_OPERATIONS AMONG ALL PROCESSES IN COMM(C1)

Example 5: retrieve all Broadcast messages that Process 1 performed

SELECT BROADCAST FOR PROCESS(1) IN COMM(C1)

Figure 4. Simple Query Examples

This query language can also be used to compute statistical information such as the time

a process was involved in MPI communications, the number of bytes a process sent to

other processes and the number of bytes a process received from other processes during

MPI communications. Also, we provide some queries for retrieving profiling information

from the MPI execution trace. For this purpose, we define the following functions:

 20

Process M-fan-in: A process fan-in represents the number of bytes received by a process.

This includes messages received by point-to-point as well as collective operations. A

process fan-in includes data received using the following operations.

Number of Bytes Received(p) = ∑ p = receiver Message.DataSize + ∑ p CollectiveData.RcvSize

Process M-fan-out: A process fan-out consists of the number of bytes sent by a process.

This includes messages sent by point-to-point as well as collective operations. A process

fan-out includes data sent using the following operations.

Number of Bytes Sent(p) = ∑ p = sender Messages.DataSize + ∑ p CollectiveData.SendSize

5.3. MTF Trace Generation Engine

Trace generation is another important feature in a trace analysis tool. We built our own

tracing API which generates MPI traces based on our proposed trace format, MTF. We

use the MPI standard Profiling Interface (PMPI) [MPI], for the instrumentation of the

various MPI operations in the program.

6. Validation of MTF

In this section, we discuss how MTF meets the requirements for a standard exchange

format that we presented in Section 3. Table 5 summarizes the evaluation of MTF with

respect of each requirement. As shown in Table 5, the design of MTF meets many of

these requirements. It is expressive, fully supporting MPI functions. It is built with

simplicity in mind using proper and well recognized modeling practices. It is also

designed with transparency in mind by suggesting a data carrier that can not only carry

MTF instance data but MTF metamodel (i.e., the abstract syntax) as well. This will allow

tools that do not support MTF to check the well-formedness of an MTF trace with respect

to the meramodel by reconstructing, on the fly, the metamodel from the MTF file. The

design of MTF also favors reuse of an existing solution. First, many object-oriented

design techniques have been used to build the MTF metamodel, which should readily

enable tool builders to support MTF. Also, we recommend reusing an existing data

carrier (e.g., GXL) rather than creating a new one so as to avoid reinventing the wheel.

 21

We also believe that MTF is easily extendible. We deliberately made use of abstract

classes to facilitate the creation of specialized classes that would represent other types of

data not captured by MTF (e.g., functions used in other types of inter-process

communication platforms than MPI).

However, we recognize that MTF requires further improvements to meet the scalability

requirement. As it isn MTF will require modeling every event of an MPI trace and does

support any compaction scheme. A possible solution to this is to improve the MTF model

by representing non-contiguous repeated events only once. This will require investigating

ways to transform MPI event streams into a structure in which similar sequences are

represented only once.

Table 5. Validating MTF against requirement for a standard exchange format

Requirement Justification

Expressiveness

MTF supports all the necessary information for MPI point-to-point

and collective operations that enable the analysis of MPI traces using

MPI trace analysis tools.

Scalability

We recommend using a compact syntactic form to carry MTF traces.

This, however, will not guarantee an exchange format that is scalable

enough to carry trace files of the size of gigabytes. We are still

working on improving the metamodel by investigating ways to

represent the information that is duplicated in an MPI trace only once.

One direction is to adopt the techniques presented in [Reiss 01] which

are inspired from data compression techniques in information theory

to reduce the amount of information found in traces.

Simplicity

We believe that the MTF metamodel is simple to understand since it

maps well to MPI operations. In Appendix A, the detailed

specification of MTF is provided.

Transparency
We have developed an API for generating and querying MTF-based

MPI traces as shown in Section 5.

Neutrality

Currently, MTF supports only MPI generated traces. MPI is

implemented as a middleware to allow applications that run on MPI

to be neutral to the specific technology platform. However, MTF only

supports MPI traces and does not support other message passing

frameworks.

Extensibility MTF can be extended in many ways to support new types of traces by

 22

extending the Trace and the TraceableUnit classes.

Completeness

We address this requirement by recommending a syntactic form (e.g.

GXL) that supports the exchange of MTF metamodel as well as the

instance data.

Solution Reuse

In this work, we suggest reusing an existing syntactic form such as

GXL. We also built the MPI query language as an Eclipse plug-in

using the EMF (Eclipse Modeling Framework) capabilities.

Additionally, we used the MPI profiling functions in building our

API for trace generation.

Popularity

We believe that the need for a standard exchange format for MPI

traces is an important issue to which we have provided a complete

solution. Therefore, we believe that MTF can lead towards the work

of standardizing MPI traces.

7. Case Study

In order to show the ability for MTF to represent MPI traces generated from large

systems, we tested it using a sample trace generated by the VampirTrace [VampirTrace]

trace analysis tool. These traces are provided on the Vampir tool website [Vampir]. They

have been generated from the Weather Research and Forecasting Model system running

on HPC-System SGI Altix 4700, which is composed of 1024 dual-core Intel Itanium

processors and has 6.5 TB main memory. The trace file format generated by the

VampirTrace is called the Open Trace Format (OTF) which comes with several APIs for

reading the trace data. However, we built our own code, which is a proprietary format.

OTF files are compressed using the zlib [Gailly 2002] data compression format, which

requires the use of special libraries (e.g. OTFDUMP library [Knüpfer 2006]) to convert

the content of the file into a human readable version.

The size of the original OTF compressed file was 4.12 MB. However, the size of the

uncompressed file increased dramatically to 79.4 MB. This file also includes traces of

non-MPI routines. The size of the MPI trace extracted from the file was 39.4 MB, which

is almost half the size of the complete trace file. We converted the OTF file into MTF

using GXL as the syntactic form. The size of the resulting GXL trace file was 46.2 MB,

which is larger than the size of the MPI traces in the OTF file. This is expected since

OTF is not based on GXL. The increase in the size was due to the XML-like syntax

 23

added to the trace data which accounts for almost 17% more than the original trace data.

This shows that GXL may not be the best carrier for MTF and that a non-XML language

should be considered. The MTF trace was fed to our trace analysis tool. We have noticed

some scalability problems due mainly to the fact that the tool does not support any

optimization technique of memory in its actual state. It is provided in this paper as a

proof of concept and we intend to continue working on improving it in the future.

Table 6. MPI Trace Statistics

 Init Fin Wait Bcast Gather Scatterv Isend Irecv Sent (bytes)

Received

(bytes)

P1 1 1 2140 640 120 60 1070 1070 159205808 565756448

P2 1 1 3210 640 120 60 1605 1605 213522608 186419232

P3 1 1 3210 640 120 60 1605 1605 213522608 186419232

P4 1 1 2140 640 120 60 1070 1070 158508560 131405184

P5 1 1 3210 640 120 60 1605 1605 236278352 209174976

P6 1 1 4280 640 120 60 2140 2140 289913264 262809888

P7 1 1 4280 640 120 60 2140 2140 289913264 262809888

P8 1 1 3210 640 120 60 1605 1605 234899216 207795840

P9 1 1 3210 640 120 60 1605 1605 236278352 209174976

P10 1 1 4280 640 120 60 2140 2140 289913264 262809888

P11 1 1 4280 640 120 60 2140 2140 289913264 262809888

P12 1 1 3210 640 120 60 1605 1605 234899216 207795840

P13 1 1 2140 640 120 60 1070 1070 159198128 132094752

P14 1 1 3210 640 120 60 1605 1605 213522608 186419232

P15 1 1 3210 640 120 60 1605 1605 213522608 186419232

P16 1 1 2140 640 120 60 1070 1070 158508560 131405184

Total 16 16 51360 10240 1920 60 25680 25680 3591519680 3591519680

In Table 6, we present part of the results obtained by querying the MTF trace data using

our proposed query language. Since collective operations are executed on all processes

simultaneously, we can see that all the processes execute the same number of collective

operations as expected. Moreover, when querying the point-to-point operations, we were

able to identify the MPI virtual topology used in the program. Every process

communicates with its neighbors in the grid (west, east, south and north). For example,

Process 7 communicates with Processes 3, 6, 8 and 11. However, Process 1 only

communicates with Processes 2 and 5 since it does not have an east and a north

neighboring processes. Detecting the MPI virtual topology helps in identifying which

processes to include in the study of the behavior of inter-process communication. Also,

since the program uses non-blocking point-to-point operations, we noticed that the

 24

MPI_’wait’ operation was used by all processes to represent non-blocking calls. For

example, Process 5 has 3210 MPI_’wait’ operations that were used to detect the

completion of the 1605 MPI_Isend and 1605 MPI_Irecv operations. Finally, the size of

data helps in identifying which process or processes have the highest load in the program.

8. Conclusion and Future Directions

In this paper, we presented a new exchange format for MPI traces generated from HPC

applications, called MTF. MTF is built with the requirements for a standard trace

exchange format, which we believe can facilitate its adoption. We provided a detailed

specification of the abstract syntax (metamodel) of MTF in the form of a UML class

diagram and an associated documentation. We also discussed the syntactic form that

should be used with MTF. We also built an MTF toolkit to allow users to generate and

query MTF traces. Finally, we showed how MTF can represent a large trace generated

from a commercial MPI trace analysis tool.

An immediate future direction is to continue to use MTF to represent traces and study

ways of optimizing it so it could handle extremely large traces. In addition, we need to

work on defining a compact but yet expressive data carrier that can be used with MTF.

Finally, we need to create converters that would convert the formats used by other tools

into MTF to encourage tool vendors to adopt it.

Acknowledgment

This work has been partially supported by the Natural Sciences and Engineering

Research Council of Canada (NSERC).

References

[Aydt 1994] Ruth A. Aydt, “The Pablo Self-Defining Data Format”, Technical

report, Department of Computer Science, University of Illinois, 1994.

http://wotug.kent.ac.uk/parallel/performance/tools/pablo/.

[Becker 2007] D. Becker, F. Wolf, W. Frings, M. Geimer, B. J. N. Wylie, B. Mohr,

“Automatic Trace-Based Performance Analysis of Metacomputing

 25

Applications”, In Proc. of the International Parallel and Distributed

Processing Symposium, IEEE Computer Society, 2007.

[Bowman 2000] I. T. Bowman, M. W. Godfrey, and R. C. Holt, “Connecting

Architecture Reconstruction Frameworks”, Journal of Information and

Software Technology, 42(2), pp. 91-102, 2000.

[Ebert 99] J. Ebert, B. Kullbach, and A. Winter, “GraX – An Interchange Format

for Reengineering Tools”, In Proc. of the 6th Working Conference on

Reverse Engineering, pp. 89–98, 1999.

[EMF] Eclipse Modeling Framework,

 URL: http://www.eclipse.org/modeling/emf/.

[Kergommeaux 2003] J. Chassin de Kergommeaux, B. de Oliveira Stein, and G. Mouni,

“Paje Input Data Format”, Technical report, Intel GmbH, Brühl,

Germany, 2003.

[Gailly 2002] J. L. Gailly and M. Adler, “zlib 1.1.4 Manual”, 2002. URL:

http://www.zlib.net/manual.html.

[Hamou-Lhadj 2004] A. Hamou-Lhadj and T. Lethbridge T., “A Metamodel for Dynamic

Information Generated from Object-Oriented Systems”, In Proc. of the

First International Workshop on Meta-models and Schemas for

Reverse Engineering, Electronic Notes in Theoretical Computer

Science Volume 94, pp. 59-69, 2004.

[Heath 2003] M. T. Heath and J. E. Finger, “Paragraph: A performance visualization

tool for MPI”, A User guide, 2003.

 URL: http://www.csar.illinois.edu/software/paragraph/.

[Hong 1996] C-Eui Hong, B-Sik Lee, G-W. On, D-H. Chi, “Replay for Debugging

MPI Parallel Programs”, In Proc. of the Second MPI Developers

Conference, pp. 156-160, 1996.

[Holt 1998] R. C. Holt, “An Introduction to TA: The Tuple Attribute Language”,

http://swag.uwaterloo.ca/pbs/papers/ta.html

[Holt 2000] R. C. Holt, A. Winter, and A. Schürr A., “GXL: Toward a Standard

Exchange Format”, In Proc. of the 7th Working Conference on

Reverse Engineering, pp. 162-171, 2000.

http://www.zlib.net/manual.html
http://swag.uwaterloo.ca/pbs/papers/ta.html

 26

[Lethbridge 1997] T. C. Lethbridge and N. Anquetil, “Architecture of a Source Code

Exploration Tool: A Software Engineering Case Study”, Computer

Science Technical Report TR-97-07, University of Ottawa, 1997.

[Knüpfer 2006] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. Nagel,

“Introducing the open trace format (OTF)”, In Proc. of the

International Conference on Computational Science (ICS), pp. 526-

533, 2006.

[MPI] Message Passing Interface Forum. MPI: A Message Passing Interface

Standard, June 1995. URL: http://www.mpi-forum.org.

[Müller 1988] H. A. Müller, K. Klashinsky, “Rigi – A System for Programming in-

the-large”, In Proc. of the 10th International Conference on Software

Engineering, pp. 80-86, 1988.

 [Rose] Rational Rose, URL: http://www-01.ibm.com/software/rational/

[STF] Intel Trace Collector User’s Guide.

 URL: http://www.uybhm.itu.edu.tr/documents/ITC-

 ReferenceGuide.pdf

[St-Denis 2000] G. St-Denis, R. Schauer, and R. K. Keller, “Selecting a Model

Interchange Format: The SPOOL Case Study”. In Proc. of the 33rd

Annual Hawaii International Conference on System Sciences, 2000.

[TAU] TAU User’s Guide.

 URL : http://www.cs.uoregon.edu/research/tau/docs/newguide/.

[Vampir] Vampir Performance Optimization Tool. URL: http://www.vampir.eu.

[VampirTrace] VampirTrace, ZIH, Technische Universitat, Dresden,

 http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih.

[Wolf 2004] F. Wolf and B. Mohr, “EPILOG Binary Trace-Data Format”,

Technical report, Forschungszentrum Jülich, University of Tennessee,

2004.

[Woods 1999] S. Woods, S. J. Carrière., and R. Kazman R., “A semantic foundation

for architectural reengineering and interchange”, In Proc. of

International Conference on Software Maintenance, pp. 391–398, 1999.

http://www-01.ibm.com/software/rational/
http://www.vampir.eu/

 27

[XMI-OMG] XMI: XML Metadata Interchange

 URL: http://www.omg.org/technology/documents/formal/xmi.htm

[Xue 2009] R. Xue, X. Liu, M. Wu, Z. Guo, W. Chen, W. Zheng, W. Zhang, and

G. Voelker, “MPIWiz: subgroup reproducible replay of mpi

applications”, In Proc. of the 14th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, pp. 251-260, 2009.

[Stamatakis 05] A. Stamatakis, M. Ott, T. Ludwig, and H. Meier, ``DRAxML@home:

A Distributed Program for Computation of Large Phylogenetic Trees''.

In Future Generation Computer Systems (FGCS) 21(5), pp.725-730,

2005.

[Aloision 02] G. Aloisio, D. Talia, Guest editorial: grid computing: Towards a new

computing infrastructure, Future Generation Computer System 18 (8)

2002.

[Ranjan 08] R. Ranjan, A. Harwood, R. Buyya, A case for cooperative and

incentive-based federation of distributed clusters, Future Generation

Computer, 24(4), pp. 280-295, 2008.

 28

Appendix A - The detailed specification of MTF

1) Scenario

Semantics

Objects of the Scenario class represent the system scenario executed in order to generate

the traces that need to be studied.

Attributes

– desc: Specifies a description of the usage scenario such as the name of the

scenario, input data, etc.

Associations

– Trace [1..*]: References the execution traces that are generated after the execution

of the usage scenario. One scenario may have more than one trace object.

2) Trace

Semantics

An abstract class representing common information about traces generated from the

execution of the system.

Attributes

– TraceID: A unique identifier for the generated trace.

– StartTime: Specifies the starting time of the generation of the trace.

– EndTime: Specifies the ending time of the generation of the trace.

– Comments: Specifies comments that software engineers might need in order to

describe the circumstances under which the trace is generated.

Associations

– Scenario [1]: References the usage scenario that is exercised so as to generate the

trace.

Constraints

[1] StartTime and EndTime should be different

self.EndTime >= self.StartTime

 29

3) MPITrace

Semantics

An object of the MPITrace represents a trace generated from MPI operations. This class

inherits from the abstract Trace class.

Attributes

No additional attributes.

Associations

– PatternOccurrence [*]: References the occurrences of the execution patterns that

are invoked in the trace.

– TraceableUnit [0..*]: A reference to all instances of TraceableUnit class that are

of types MPOperation and Message.

Constraints

– MPITrace only references objects created from MPOperation and Message

classes.

4) TracePattern

Semantics

An object of the class TracePattern represents a sequence of message passing operations

that is repeated in a non-contiguous manner in the trace.

Attributes

– desc: Specifies a textual description that a software engineer assigns to the

execution pattern.

Associations

– PatternOccurrence [*] References the instances of the pattern in the trace.

Constraints

[1] The PatternOccurrence objects belong to the same trace (i.e. MPITrace object that

contains the pattern occurrences).

 30

5) PatternOccurence

Semantics

This class represents the instances of an execution pattern.

Associations

– TracePattern [1] References the TracePattern object for which this object

represents an occurrence of the pattern.

– MPITrace [1] References the Trace object where the pattern pointed to by the

PatternOccurrence object appears.

– TraceableUnit [*] References the TraceableUnit instances that belong to the

pattern occurrence.

Constraints

No additional constraints.

6) TraceableUnit

Semantics

This is an abstract meta-class which represents any traceable element in an execution

trace. This class is not restricted to the Message Passing metamodel. Any execution trace

metamodel can use this class. For example, a Method Call is a type of TraceableUnit.

Thus, a metamodel for capturing method call traces, ex. Compact Trace Format (CTF)

[Hamou-Lhadj 2004], can inherit from this class.

Attributes

– TraceableUnitID: a unique identifier assigned to the traceable unit.

– StartTime: a timestamp specifies when the traceable unit started execution.

– EndTime: a timestamp specifies when the traceable unit finished execution.

Associations

– Process [1] : references the Process object that represents the process in which

this traceable unit is executed.

– MPITrace [1]: in our model, every TraceableUnit element belongs to one trace

represented by the class MPITrace. Other traces such as method call traces should

have another class defined such as ‘MethodCallTrace’ to capture traces of MPI

operations.

 31

– PatternOccurence [0..1]: a reference to the PatternOccurence class. Every

traceable unit may belong to one pattern occurrence object.

Constraints

[1] The StartTime timestamp of TraceableUnit objects that belong to one process

must be sorted in an ascending order. This guarantees the order of execution of the

message passing operations. Traces of type Message and traces of type Point-to-point

operation may have the same start or end times.

7) Process

Semantics

This class represents a software process. Instances of this class may represent processes

in a distributed environment or may represent processes running on the same processor.

Attributes

– ProcessID: a unique identifier in the model that identifies the process.

– Rank: the rank of the process in an MPI group.

– ProcessName: the name designated to the process in the trace.

Associations

– TraceableUnit [*]: a process may have many instances of traceable units.

– Communicator [*]: a process may belong to many MPI communicators.

– Processor [1]: a process runs on one processor only.

8) Processor

Semantics

This class represents the processor that a process runs on.

Attributes

– ProcessorID: a unique identifier is specified for every processor in the system.

– ProcessorName: the name designated to the processor in the trace.

Associations

– Process [*]: a processor may contain many running processes.

 32

9) Communicator

Semantics

This class belongs to the Message Passing environment. A communicator represents a

group of processes that communicate through message passing. Processes in a

communicator are ranked from 0 to n-1, where n is the total number of processes.

Attributes

– CommID: the unique identifier for an MPI communicator.

Associations

– Process [1..*]: a communicator may contain one or many processes.

– MPOperation [*]: a communicator may be used by many message passing

operations.

10) MPOperation

Semantics

This abstract class is at the core of our message passing execution trace model. It acts as a

super-class for every message passing operation such as Send, Receive, Gather and

Broadcast. An MPOperation is a traceable element and is a direct child to the

TraceableUnit class.

Attributes

– MPOperationName: The name of the MPI operation.

Associations

– Communicator [0..1]: a message passing operation may reference up to one

communicator object.

Constraints

No additional constraints.

11) MPI_Init

Semantics

This class models the MPI_Init routine which is responsible for the initialization of the

MPI environment. It is the first MPI call in the program. The initialization of the MPI

 33

environment includes synchronization of processes and adding processes to the

MPI_COMM_WORLD communicator. In our trace metamodel, MPI_Init inherits from

MPOperation.

Associations

– MPI_Init is a child of the MPOperation class. Therefore, it will inherit all the

associations of its parent class.

Constraints

[1] A call to MPI_Init must precede any other MPI call in the program, except for

MPI_Initialized routine that can be used to check if MPI_Init has been called or

not.

12) MPI_Finalize

Semantics

This class models the MPI_Finalize routine that is used to clean up the MPI state. Each

process must call MPI_Finalize before it exits. Before calling MPI_Finalize, each process

must ensure that all pending non-blocking communications are (locally) complete.

Associations

MPI_Finalize is a child of the MPOperation class. Therefore, it will inherit all the

associations of its parent class.

Constraints

[1] Every process in the MPI environment must call MPI_Finalize before exiting

unless a call to MPI_Abort has been made.

13) MPI_OtherOps

Semantics

This class represents all the other MPI operations that do not have a concrete class

defined specifically to capture their traces.

Attributes

No additional attributes.

Associations

 34

No more attributes associations than the ones assigned to its parent classes.

Constraints

No additional constraints.

14) Message

Semantics

This class captures messages exchanged in point-to-point communications. Message is a

direct child of the TraceableUnit meta-class.

Attributes

– DataType: the type of data in the message.

– DataSize: the size of data in the message.

– Tag: the tag sent in the message.

Associations

– Sender [1]: the sending process.

– Receiver [1]: the receiving process.

Constraints

– Instances of the class Message only correspond to data exchanged in point-to-

point operations.

15) PointToPointOperation

Semantics

This abstract class is the super-class for blocking and non-blocking point to point

operations in the message passing environment. It inherits directly from the MPOperation

class.

Constraints

[1] Datatype between matching point-to-point operations must match unless

MPI_BYTE data type is specified.

16) Send

Semantics

 35

This class represents a message passing send operation. Send is a direct child of the

MPOperation class. Blocking Send operations are directly instantiated from the Send

class. Non-blocking operations are instantiated from the NonBlockingSend class

described below.

Attributes

– SendDataAddress: address of sent data.

– SendDataSize: number of sent elements.

– SendDataType: the type of data being sent to destination process.

– Tag: the tag value (integer) sent with the message.

– SendType: this attribute specifies the type of the send operation (Standard,

Buffered, Synchronous and Ready).

Associations

– Process [0..1]: the receiving process.

– Receive [0..1]: a message passing send may reference (match) zero or one

message passing receive operations.

Constraints

[1] Send operation must specify a receiving process.

[2] A blocking Send with SendType ≠ Buffered cannot terminate before a matching

Receive is posted (end time of send operation must be after start time of receive

operation).

[3] A blocking Send with SendType = Synchronous cannot terminate before a

matching Receive is posted.

17) NonBlockingSend

Semantics

This class represents non-blocking send operations. A process that makes a non-blocking

send call proceeds right after the send call has been made.

Attributes

No additional attributes.

Associations

– WaitOperation [0..1]: an object of a non-blocking send operation may be

referenced by one WaitOperation object.

– TestOperation [0..*]: an object of a non-blocking send operation may be

referenced by zero or more TestOperation objects.

 36

18) Receive

Semantics

This class represents the message passing Receive operation. It is a direct child of the

PointToPointOperation class. Matching the Send and Receive operations is done by

comparing the values to the instances of the Messsage class.

Attributes

– RcvDataAddress: address of the received message buffer at the receiver.

– RcvDataSize: number of elements received at the Receive address.

– Tag: an integer value that should be matched with the coming process unless if

specified as MPI_ANY_TAG.

Associations

– Send [0..1]: a message passing receive may reference (match) zero or one

message passing send operations.

– Process [0..1]: represents the sender of the message. A receive operation may

specify MPI_ANY_SOURCE, in this case the Source process can not be

determined as part of the trace for the receive operation. The source will be

determined once the message is received at the receiver.

Constraints

No additional constraints.

19) NonBlockingReceive

Semantics

This class represents a trace of a non-blocking message passing Receive operation. It

provides a handle to an object that will be used to check for the completion of the receive

operation. A process that uses a non-blocking receive will proceed after calling the

receive operation.

Attributes

No additional attributes.

Associations

– WaitOperation [0..1]: an object of a non-blocking receive class may be referenced

by one WaitOperation objects.

 37

– TestOperation [0..*]: an object of a non-blocking receive class may be referenced

by zero or more TestOperation objects.

20) WaitOperation

Semantics

This class represents the different types of Wait operations provided by MPI which can

be used to wait and check for the completion of non-blocking message passing operations.

Attributes

No additional attributes.

Associations

– NonBlockingSend [1]: a wait statement references the non-blocking send object

that it is performing the wait operation for.

– NonBlockingReceive [1]: a wait statement references the non-blocking receive

object that it is performing the wait operation for.

Constraints

[1] The StartTime of an MPI_Wait statement cannot occur before the StartTime of

the corresponding Send or Receive operations.

21) TestOperation

Semantics

This class represents traces of the different Test operations provided by MPI. An MPI

Test is similar to MPI Wait except that the process does not wait for the completion of

the non-blocking operation.

Attributes

– Flag: this flag returns true if the non-blocking operation has completed

successfully, false otherwise.

Associations

– NonBlockingSend [0..*]: a test statement references the non-blocking send class

that it is performing the test operation for.

– NonBlockingReceive [0..*]: a test statement references the non-blocking receive

class that it is performing the test operation for.

 38

Constraints

[1] The StartTime of an MPI_Test statement cannot occur before the StartTime of the

corresponding Send or Receive operations.

22) ProbeOperation

Semantics

An MPI probe operation is used to check whether there is an incoming message that

matches the Source, Tag, and Communicator except for MPI_ANY_SOURCE and

MPI_ANY_TAG.

Attributes

– Tag: this is an integer value that is sent with the message.

– Flag: indicates whether the incoming message matches the expected one.

Associations

– Process [0..1]: specifies the source process (sending process).

Constraints

– If MPI_ANY_SOURCE is indicated, ProbeOperation will not have a reference to

the Sending process.

23) CollectiveOperation

Semantics

This abstract class is the parent class of all the collective operations in the message

passing environment. Collective operations involve all the processes in a communicator.

Associations

– CollectiveData [0..1]: Collective operations other than Barrier will reference one

object of the CollectiveData.

– Process [0..1]: represents the root process in the collective operation.

Constraints

[1] A collective operation should match the same type of collective operation in all

other processes. Therefore, the maximum number of matched operations may not

exceed the number of processes in a communicator.

 39

24) CollectiveData

Semantics

This class describes the data being exchanged in a collective operation as well as the

address of the exchanged data for each process. The Barrier operation does not involve

any data exchange. Therefore, the MPI_Barrier operation does not instantiate a

CollectiveData association.

Attritbues

– SendSize: the size of sent data.

– RcvSize: the size of received data.

– SendAddress: the address of sent data.

– RcvAddress: the address of received data.

– SendDataType: the data type of sent data.

– RcvDataType: the data type of received data.

Associations

– CollectiveOperation [1]: an instance of CollectiveData may belong to one

CollectiveOperation object.

Constraints

[1] An object of type Barrier cannot reference an object of type CollectiveData.

25) Barrier

Semantics

This class represents the message barrier operation (MPI_Barrier) in a message passing

environment. It inherits directly from the CollectiveOperation class.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

[1] The end-time for a Barrier object of one process cannot be before the start-time

for any of the matched Barrier objects of the other processes.

 40

[2] A Barrier object cannot have an associated instance of class CollectiveData.

26) Broadcast

Semantics

This class represents the broadcast operation (MPI_Bcast) in the message passing

environment. It inherits directly from the CollectiveOperation class.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

[1] The type signature (SendSize, SendDataType) for MPI_Bcast at the root process

must be equal to the type signature of the matching MPI_Bcast on all processes

(receiving processes) in the communicator.

[2] The root process must belong to the communicator group.

27) Gather

Semantics

This class represents the gather operation (MPI_GATHER and MPI_GATHERV) in a

message passing environment. It inherits directly from the CollectiveOperation class. In

MPI_Gather, the root process receives the messages and stores them in rank order. The

receiving buffer (RcvAddress) for non-root processes is ignored for this operation.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

 41

[1] The type signature (SendSize, SendDataType) for MPI_Gather at the root must be

equal to the type signature of the matching MPI_Gather on all processes (sending

processes) in the communicator.

[2] The gathered (received) message should be sorted based on the process rank in

the communicator.

[3] The root process must belong to the communicator.

[4] The receiving buffer for non-root process should be equal to null.

28) Scatter

Semantics

This class represents the scatter operation (MPI_Scatter and MPI_Scatterv) in a message

passing environment. It inherits directly from the CollectiveOperation class. The send

buffer is ignored for all non-root processes.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

[1] The type signature (SendSize, SendDataType) for MPI_Scatter at the root must be

equal to the type signature of the matching MPI_Scatter on all processes

(receiving processes) in the communicator.

29) Reduce

Semantics

This class represents the Reduce operation (MPI_Reduce) in a message passing

environment. Every process will send a value to the root process.

Attributes

– OpType: the type of the executed operation on the received data at the root

process.

Associations

No additional associations.

 42

Constraints

[1] All processes provide input buffers and output buffers of the same length, with

elements of the same type.

30) Allgather

Semantics

Traces from MPI_ALLGATHER and MPI_ALLGATHERV are captured using the

Allgather class. This class is a direct subclass of the CollectiveOperation class.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

[1] Instances of AllGather do not reference a root process.

31) AllToAll

Semantics

Traces from MPI_ALLTOALL and MPI_ ALLTOALLV are captured using the AllToAll

class.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

[1] Instances of AllGather do not reference a root process.

32) ReduceScatter

 43

Semantics

Traces from MPI_REDUCE_SCATTER are captured using the ReduceScatter class.

Attributes

– OpType: the type of the executed operation on the received data at the root

process.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

33) Scan

Semantics

Traces from MPI_Scan operation are captured using the Scan class. The Scan class is a

subclass of CollectiveOperation class. A Scan operation is used to perform a prefix

reduction on data exchanged across the group. For a process with rank i, the scan

operation returns, in the receive buffer, the reduction of the values in the send buffers of

processes with ranks 0,...,i (inclusive).

Attributes

– OpType: the type of the executed operation on the received data at the root

process.

Associations

No additional associations.

Constraints

No additional constraints.

