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—Abstract: Corrective software maintenance consumes 30-60% 

time of software maintenance activities. Automated failure 

reporting has been introduced to facilitate developers in 

debugging failures during corrective maintenance. However, 

reports of software with large user bases overwhelm developers 

in identification of the origins of faults, and in many cases it is not 

known whether reports of failures contain information about 

faults. Prior techniques employ different classification or 

anomaly detection algorithms on user space traces (e.g., function 

calls) or kernel space traces (e.g., system calls) to detect 

anomalies in software behaviour. Each algorithm and type of 

tracing (user space or kernel space) has its advantages and 

disadvantages. For example, user space tracing is useful in 

detailed analysis of anomalous (faulty) behaviour of a program 

whereas kernel space tracing is useful in identifying system 

intrusions, program intrusions, or malicious programs even if 

source program code is different. If one type of tracing or 

algorithm is infeasible to implement then it is important to know 

whether we can substitute another type of tracing and algorithm.  

In this paper, we compare user space and kernel space tracing by 

employing different types of classification algorithms on the 

traces of various programs. Our results show that kernel space 

tracing can be used to identify software anomalies with better 

accuracy than user space tracing. In fact, the majority of 

software anomalies (approximately 90%) in a software 

application can be best identified by using a classification 

algorithm on kernel space traces. 

Keywords-Tracing, classification algorithms, system call traces, 

function call traces,  failures, deployed software. 

I.  INTRODUCTION  

Corrective maintenance, an activity that aims to rectify faults 
in a program, can soak up to 30-60% [27][19] of software 
maintenance time. Typically, maintainers collect data (such as 
execution traces) related to software failures in order to fix faults. 
Organizations of such applications as Firefox, NetBeans, 
Microsoft Visual Studio.NET and others often employ automated 
means to collect and report failure data. This is to reduce the cost 
of software maintenance, facilitate debugging, and improve 
software quality. 

While such automation makes data collection and reporting 
practical from numerous sources, it can also overwhelm 
developers because manually interpreting such reports and 
identifying  origins of faults is resource draining for large systems 
with huge user bases [26]. Moreover, it is not always known 
whether a trace collected from the field actually contains a fault or 
not. This is because the size of a trace buffer is limited, and a 

failure could manifest itself well after the fault occurs, since many 
faults do not necessarily crash the system. Thus, a trace might not 
capture the faulty control flow (e.g., faulty function calls, 
exceptions, etc.).  

The importance of classifying a field trace into a ―passing‖ and 
―failing‖ trace can help in many software engineering activities, 
such as: 

 Software Debugging: Remote analyses and fault localization 
techniques (e.g., statistical debugging for fault isolation [2], 
locating faulty functions [23] and faulty paths  [5] in field 
traces, and visualization of field traces [1]) need to know 
whether a trace has come from a successful or failing 
execution to facilitate debugging.  

 Autonomic Computing: Self managing applications need to 
know when a system enters an abnormal state [14][18] so 
that they can automatically reconfigure the system to a 
normal state.  

 Software Intrusion: Anomaly detection systems raise alerts 
when an execution trace is anomalous (faulty) by matching a 
trace with past normal traces (e.g., using hidden Markov 
models [29] and neural networks [13] on system calls to 
detect anomalies).  

Prior techniques employ different machine learning algorithms 
on user space traces (e.g., function calls) or kernel space traces 
(e.g., system calls) to detect anomalous software executions. These 
technique include: (a) decision tree algorithms and Markov models 
to classify user space traces (e.g., statement, branch or function 
call traces) as passing or failing [3][14]; (b) pattern extraction 
algorithms to detect abnormal behaviour such that the user space 
trace collection for failures could be started at the right time [10]; 
and (c) hidden Markov models [29], neural networks [13], support 
vector machines [35], decision trees [35] and k-nearest neighbor 
[35] algorithms use on the system calls to classify abnormal and 
normal software behavior from the perspective of software 
security. 

Zahalka et al. [36] identified in their experiments with user 
space traces that the discriminating strength of failing and passing 
traces significantly varies from program to program. This means a 
technique that produces high accuracy on user space traces of one 
program might yield low accuracy on other programs. Also, each 
algorithm and type of tracing (e.g., user space or kernel space) has 
different traits, and what is suitable in one situation might not be 
suitable in another situation. For example, the user space tracing is 
useful in detailed analysis (e.g., fault localization) of anomalous 
(faulty) behaviour of a program; whereas, the kernel space tracing 



 

 

is useful in identifying system intrusions, program intrusions, or 
malicious programs even if the source program code is different. 
Similarly, another example is that the kernel space tracing can be 
used to trace all the applications in a system simultaneously with 
lesser overhead than the user space tracing, but the kernel space 
tracing misses control flow information that is not executed 
through kernel (e.g., function calls executed directly by CPU).  

Thus, the literature lacks information on the comparison of 
kernel space and user space tracing in identification of anomalous 
software behaviour. This will be useful in understanding if one 
type of tracing is not feasible to implement, then how different 
would the results of another type of tracing be?  Thus, the main 
research question of this paper is: 

(Q1) Can kernel space tracing be used to classify pass fail 
traces of a program with the same accuracy as user space 
tracing? 

We find the answer of this research question by evaluating six 
classification algorithms on both user space and kernel space 
traces. The six classification algorithms are C4.5 decision tree, 
naïve Bayes classifier, neural network, Bayesian network, support 
vector machine, and hidden Markov model. We evaluate these 
algorithms by (a) training them on both passing and failing traces 
and (b) training them only on normal traces.  This is because in 
some situations abnormal behaviour (traces) is not available for 
training; e.g., in biometric password hardening system which 
strengthens the login process when password is not type in a  
correct rhythm [15] and in intrusion detection systems where 
malicious program‘s (attack) behaviour is not known. Irrespective 
of the training method, each type of algorithm has different 
characteristics; e.g., hidden Markov models are slower to train but 
they consider temporal relationship of attributes unlike other 
algorithms. In finding out the answer to our main research 
question, we identified a secondary novel research question on the 
comparison of classification algorithms in identification of normal 
and anomalous software behaviour: 

(Q2) Can we substitute one classification algorithm with 
another without affecting the accuracy of classification of 
normal and anomalous traces? 

These questions are important because efficient debugging and 
anomaly detection systems can be built if we know that a 
particular type of tracing and algorithm perform better or similar to 
others. For example, if a particular algorithm and type of tracing 
can be used to classify passing-failing traces with high accuracy, 
then due to similar characteristics of traces that algorithm and 
tracing will presumably be also able to perform better for further 
analysis of traces, such as fault localization, finding origin of 
software intrusions, etc.  

 The rest of the paper is as follows: Section II describes related 
work; Section III explains the four UNIX utilities (i.e., Flex, Grep, 
Gzip, and Sed) that we used as subject programs; Section IV 
explains our approach with working examples from the subject 
program; Section V describes the evaluation criteria of our 
approach, Section VI articulates results; Section VII discusses 
threats to validity; and Section VIII concludes this paper with 
directions to future work. 

II. RELATED WORK  

Prior empirical studies that classify normal and failing traces 
have shown that failing execution traces have unusual 
characteristics than normal execution traces (e.g., classifying 

normal failing software behaviour using user space traces 
[10][3][14] and detecting anomalous behaviour using kernel space 
traces [29][34][30][13][35]). These studies can be divided into two 
categories: techniques focusing on software maintenance, and 
techniques focusing on software intrusion.  

A. Techniques Focusing on Software Maintenance 

Elbaum et al. [10] experiment with three different anomaly 
detection methods on function call traces of a deployed system. 
Their objective is to anticipate the occurrence of a failure in a 
deployed system such that trace collection for the failure could be 
automatically started at the right time. Bowring et al. [3] and 
Haran et al. [14] develop techniques based on the Markov model 
[3] and the decision tree [14] to classify (statement, branch and 
function level) executions as being passing or failing. Jiang et al. 
[18] extract varied length n-grams from function call traces of 
normal behaviour, and build an automaton from the n-grams that 
represent the generalized state of the normal traces: they use this 
automaton to detect anomalous traces. 

Zahalka et al. [36] determine the factors affecting the 
differences between passing and failing user space traces. Zahalka 
et al. [36] identify that the discriminating strength of failing and 
passing traces is significantly different from a program to program. 
They [36] also identify that the characteristics of the program has 
more effect on the discriminating strength of failing and passing 
traces than the number of (different) faults.  

Podgurski et al. [26] form clusters of execution traces of field 
failures based on common faulty source files. Podgurski et al. [26] 
first employ logistic regression to classify passing and failing 
traces, second they select relevant attributes from classification, 
and third they employ k-medoid clustering to cluster failures. Liu 
et al. [21] cluster failing runs of deployed systems according to a 
rank list of assertions (check points) in source code by using a 
statistical debugging technique. Statistical debugging [21], requires 
a collection of passing and failing traces and Liu et al. assume that 
passing and failing traces are provided. Apart from clustering, 
there were researchers who use the C4.5 decision tree algorithm 
[23]¸ statistical utility functions (HOLMES [5]), literal comparison 
of traces [4][8] to identify fault locations of field failures. These 
researchers also require a distinction between passing and failing 
executions for their techniques.   

B. Techniques Focusing on Software Intrusion 

Our work is related to the type of intrusion detection systems 
that focuses on detecting anomalous software behaviour by 
measuring the deviations in system calls of a system from that of 
normal behaviour of the same system [25]. They are called host 
based anomaly detection systems [25] and techniques focusing on 
them are described below. 

Forrest et al.[12], Hofmeyr et al. [17]  and Warrender et al. 
[30] extract sequences of system calls from traces of a system and 
compare them with the historical sequences of normal behaviour. 
In the case of a mismatched sequence they raise alerts for 
anomalous behaviour. This is called a sliding window technique. 

Warrender et al. [30], Yeung and Ding [33] and Wang et al. 
[29] also train hidden Markov model (HMM) on system call traces 
and raise alerts when the probability of a system call in a sequence 
is below a certain threshold [30] or the probability of whole system 
call sequence is below a certain threshold [29]. Hoang et al. [16] 
propose a multiple layer detection approach by using the sliding 
window technique on the first layer and HMM on the second layer 



 

 

and combining their output using fuzzy inference engine to predict 
anomalous system call sequences. 

  Ghosh et al. [13] employ standard multilayer perceptron and 
Elman [11] recurrent neural network on system calls to detect 
anomalous system calls in test data.  Their results [13] show better 
accuracy with recurrent neural networks but at the expense of 
more time than the standard multilayer perceptron. Yuxin et al. 
[35] use support vector machines, decision trees, and the k-nearest 
neighbor algorithm to classify malicious software code (e.g., virus) 
and normal code. They first extract static system call sequences for 
a program (i.e., extract system calls without running a program) 
and then train the algorithms for classification. They identify that 
their static system call based technique produce better results than 
dynamic system call based techniques. Tandon [28] and Warrender 
et al. [30] use variations of association rules on system calls [28] 
and system calls with arguments [28] to identify anomalous rules 
of system calls. 

C. Research Gap 

Prior studies have used a variety of algorithms on system call 
traces [29][35][30][13][33][28][12] and user space traces (e.g., 
function calls) [14][18][3][10] to identify anomalous software 
executions. However, none of them compared user space and 
kernel space traces. This paper aims to fill this void.  Comparison 
of user space and kernel space tracing is important to understand 
the problem: when it is not feasible to collect one type of tracing 
(e.g., user space tracing due to source instrumentation) then can 
other type of tracing (e.g., kernel space tracing) be used with the 
same efficacy to identify anomalies? This paper also helps in 
understanding a novel issue: can we substitute classifiers when 
identifying normal anomalous software behaviour? This is 
important because some classifiers are faster to train and some are 
slower to train. 

III. SUBJECT PROGRAMS 

In this section, we explain the subject programs used in our 
study and how we collected traces. We present the subject 
programs before explaining our approach (presented in the next 
section) because we will be drawing examples from the subject 
program in the next section. We used open source UNIX utilities 
[9] Flex, Grep, Gzip and Sed for our experiments, which are 
known commercial C language applications. The faults in these 
programs were hand seeded by Do et al. [9] by using a specific 
procedure to keep them realistic (described in their paper [9]). Do 
et al. [9] used several releases of every program to insert faults. 
The important steps of fault insertion procedure were: (a) 
identification of the changes in source code of different releases; 
(b) insertion of faults at the changes in the code by multiple 
programmers working independently; (c) insertion of faults 
associated with definition, redefinition, deletion, and change of 
values of variables; (d) insertion of faults associated with control 
flow, such as deletion of path, addition of new block of code, 
redefinition of execution condition, modification to external 
function-calls, etc.; (e)  insertion of faults associated with memory, 
such as erroneous use of pointers, memory not allocated, etc.; and 
(f) merging of all the faults and removal of overlapping faults such 
that programs should compile. 

Flex, Grep, Gzip, and Sed [9] are made available in several 
releases by Do et al. For our experiments, we randomly selected 
one release of every program. The release numbers of each 
program, used in our experiments, are shown in Table 1. Each 
subject program comes with a test suite containing many test 

cases, and source code of the program with a list of faults in a 
header file—these faults were not active. We compiled each 
program without activating faults and ran test cases on the faults 
free programs. Since no faults were activated, the output of the 
program for each test case considered normal and traces were 
collected as normal traces. To collect failing traces, we activated 
all the faults provided with the programs by Do et al. , and ran test 
cases on the fault programs. If the output of a faulty program on a 
particular test case differs from its fault free program then we 
collected a trace as a failing trace. Mainly two main types of faults 
were resulted when test cases were run: (a) crashing faults (e.g., 
segmentation faults); (b) non crashing faults (e.g., logical errors). 
The details of each of the programs with number of faults, number 
of test cases, and number of passing and failing traces that we 
collected are shown in Table 1. In Table 1, in some cases the 
number of passing traces is not equal to the total test cases because 
some of the input files could not be run. 

Table 1: Characteristics of the subject programs (UNIX utilities). 

LOC excludes blank lines and comments  

 Releases used: Flex 2.5.1; Grep 2.4; Gzip 1.1.2; Sed 4.0.7. 

Prog. LOC  # 

Functions 

# 

Faults 

# Test 

Cases 

# Passing 

Traces 

#Failed 

Traces 

Flex 9724 167 20 567 566 545 

Grep 9041 149 18 809 799 710 

Gzip 4032 88 16 214 214 204 

Sed 4735 115 6 370 366 166 

We used LTTng [22] to collect both user space (function call 
traces—see Figure 2 for an example) and kernel-space traces (see 
Figure 3 for an example). All of our experiments were performed 
on Ubuntu 11.04. Kernel space tracing was specific to Linux 
operating system as obtained using the LTTng tool, and user space 
tracing was independent of the operating system. For user space 
tracing we used a tool called Etrace

1
 [7] to collect function call 

traces.  

IV. APPROACH 

In order to compare kernel and user space traces using different 
classification algorithms we proceeded with the approach shown in 
Figure 1. The steps of our approach were: 

 

Figure 1: Steps of our approach. 
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 Etrace has a bug which prevents it from capturing traces of the 

segmentation faults. We fixed it to collect such traces. 



 

 

1) First, we collected user space and kernel space traces for a 
program by running test cases (see Section III). The rationale 
is that both user space and kernel space traces should be 
collected on the same input. An example of user space traces 
—i.e., function calls traces—is shown in Figure 2. An 
example of kernel space traces collected using LTTng [22] is 
shown in Figure 3.  LTTng allowed us to collect system 
calls, IRQs, trap, memory management, softIRQs, 
scheduling, network management, file system management 
and other events.  

 

Function entry point shows when control enters a function 
and function exit shows when control exits a function. 

Figure 2: Function call trace at user space level. 

 

 

Channels group events (i.e., handlers and methods in Linux OS code) 
of a particular type; other variables are specific to events. 

Figure 3: Trace containing system wide events associated to 

gzipe.exe at kernel-space level. 

 
2) Secondly, for user space traces, we extracted function calls 

and their likelihood of occurrences in a trace and train 
classification algorithms on them. Similarly, for kernel-space 
traces, we extracted all the occurring events related to the 
program under study (e.g., system calls, IRQs, etc.) and 
measure their likelihood of occurrence in the traces. The 
intuition is to transform traces into a form on which 
classification algorithm can be trained.  

3) Third, we trained classification algorithms on the extracted 
data. In our experiments we used six classification 
algorithms (see Section I) to compare the accuracy of 
classification of user space and kernel space traces. We then 
use the trained algorithms to classify traces present in a test 
set. These classification algorithms are well known 
algorithms and their details can be found in standard text 
[31]; we do not provide their details to save space. Also, 
recall from Section I, we employ the classification 
algorithms from two different perspectives: (a) training and 

testing on both normal and anomalous traces; and (b) training 
on only normal traces and testing on both types of traces. The 
rationale is to compare user space and kernel space tracing 
from variety of perspectives as used by researchers. 

In Section IV.A, we explain in detail our procedure for training 
the classification algorithms on user space traces. Similarly, in 
Section IV.B, we explain our approach for training the 
classification algorithms on kernel space traces. Both Section IV.A 
and Section IV.B describe classification form the perspective of 
training on both normal and anomalous traces. In Section IV.C, we 
describe how classifiers were trained only on normal traces and 
tested on both types of traces. 

A. User Space Tracing 

At user space level we collected function call traces, see Figure 
2, because prior researchers [10][3][14][36][23] have mostly used 
function call traces from the field to classify passing and failing 
traces. Also, function call traces are the commonly collected traces 
from deployed software systems as they are easier to collect and 
incur less overhead than finer grained traces, such as statements. 

After collecting passing and failing user space traces, we 
transformed them into a form on which  classification algorithms 
could be trained. This is shown in Figure 4. In Figure 4, each row 
represents a trace, and each column shows the name of a function. 
The last column in each row denotes whether a trace is a passing 
trace or a failing trace.  Each cell represents the chances of 
occurrence of a function in a trace and it is measured by the 
following equation: 
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 Equation 1: Equation to measure the chances of a function’s 

occurrence in a trace. 

The Equation 1 simply measures the frequency of occurrences 
of a function ‗f‘ in a trace and divides it by the total number of 
function calls in the trace. 

 

Figure 4: Function calls and their chances of occurrences in a 

passing and failing traces of the Gzip program. 

In Figure 4 we have used only function ―exit‖ events for 
training; the term ―exit‖ is not shown in Figure 4. However, Figure 
2 shows function ―entry‖ and function ―exit‖ events. The reason 
for using only ―exit‖ events lies in our earlier experiments [23], 



 

 

where we have found that when a classifier is trained on function 
―entry or exit‖ and on both function ―entry and exit‖ then there is 
no significant difference in the accuracy of the classification. This 
discovery helps in reducing the size and overhead of a trace to 
half, as the function ―entry‖ or function ―exit‖ events can be 
removed from traces. Thus, in our experiments in this paper we 
only used function ―exit‖ events. 

Once traces were transformed into a form shown in Figure 4, 
we then trained the classification algorithms on them. We actually 
first divided the original dataset into two parts: training 
(approximately 65%) and testing (approximately 35%). The 
classification algorithms were trained on this 65% of the original 
training data and tested on the remaining 35% traces. An example 
of the C4.5 decision tree (a classification algorithm) trained on the 
transformed traces of Gzip is shown in Figure 5. This tree was 
obtained by applying the J48 algorithm in the data mining tool 
Weka [31] which was an implementation of the C4.5 decision tree 
algorithm. 

 

Figure 5: C4.5 decision tree on function call traces of the Gzip 

program. 

Each line in Figure 5 contains a function name, its likelihood, 
and a name of passing and failing trace after a colon sign if any. 
The discovery of a faulty function was done by traversing this 
trained tree (like If-then-else statements) according to the 
likelihood values of functions. For example the decision tree of 
Figure 5 shows that if in a trace, the likelihood value of a function 
―fill_window‖ is less than or equal to ―0.004698‖ and the 
likelihood value of ―clear_bufs‖ is less than or equal to ―3.448‖, 
and the value of ―do_stat‖ is less than equal to ―0.005896‖ then the 
trace is a passing trace. 

After building classifier like the C4.5 decision tree, we 
classified every trace in a test set as a passing or failing trace, and 
recorded the accuracy of classification. Finally, we repeated the 
above process two more times (three in all) every time with a 
different 35% test set and 65% train set. The accuracy on the test 
set was then averaged. This is called three fold cross validation. 
Similarly, we repeated this procedure for all other classification 
algorithms by using three fold cross validation and the results are 
discussed in Section VI. 

In Figure 4, we showed that we extracted only single function 
calls and their likelihood of occurrences to train a classifier. This 
does not preserve the temporal order of function calls as they occur 
in a trace. There are two possible solutions to keep the temporal 
order of sequences in the model of a classifier: (a) use hidden 
Markov model (HMM); and (b) extract temporal sequences of 
function calls and train any classifier. First method is the use of 
HMM as a classifier. HMM preserves the temporal order of 

function calls, as they occur in a trace, in its model. Our results on 
HMM are shown in Section VI. 

Another method is to train every classifier on the patterns of 
function calls. For example, consider an example of a pattern of 
length three function calls: ―adddefelemdefwaitcont‖. This 
pattern is read as ―adddef‖ precedes ―elemdef‖ and ―elemdef‖ 
precedes ―waitcont‖ in traces. If all such function-call patterns [23] 
of different lengths are extracted from the failed traces and used 
with the classifier to identify faulty functions, then our earlier 
experiments show that results are not better than the use of single 
function calls with the classifier, such as decision tree [23].  Thus, 
we considered using only single function calls for classification in 
this paper.  

B. Kernel Space Tracing 

Table 2: Extracted attributes for channels and events and 

example of elements. 

Channel Event Attribute Example 

Element* 

kernel syscall_entry syscall_id kernel:syscall_entry:10 

kernel syscall_exit *ret kernel:syscall_exit:10_zero 

kernel irq_entry irq_id kernel:irq_entry:20 

kernel softirq_entry softirq_id kernel:softirq_entry:1 

kernel softirq_raise softirq_id kernel_softirq_raise:1 

task_state process_state *status Task_state:process_state:0 

*fs *all *fd fs:open:3 

*block *all *rw, 

not_uptoda

te, error 

block:rq_insert_fs:1 

*―fs‖ stands for file system,*―block‖ stands for block IO devices,*―all‖ 

means all the events and channels, *―ret‖ stands for return value, * 

―status‖ is for state of the process in system,*―fd‖ is file descriptor id, 

*―rw‖ stands for read/write. *In element a number at the end indicates a 

value of attribute. 

In a similar manner to user space traces, we also collected 
kernel space traces. An example of a kernel space trace is already 
shown in Figure 3.  Recall from Section III that we used LTTng to 
collect kernel space traces. Kernel space traces are specific to an 
operating system as they record functions of operating system‘s 
source code. An LTTng trace actually groups different events (e.g., 
functions, handlers, etc.) executed by the Linux operating system 
using a channel name. For example, in Figure 3, events related to a 
file system are grouped under the channel ―fs‖, and events related 
to core kernel functions (e.g., system calls, page_fault_entry, 
soft_irq) are grouped under the channel ―kernel‖.  

An LTTng trace also groups several associated attributes with 
an event. For example: (a) whenever control enters a particular 
function (system call) in operating system‘s code  then the system 
call ―name‖ and ―id‖ is recorded (see the event ―syscall_entry in 
Figure 3); (b) when a control exits a function (system-call) in 
operating system‘s code then its return value is  recorded with the 
―exit‖ event (see the event ―syscall_exit‖ in Figure 3); and (c) 
whenever there is an event of a page fault then the specific trap 
which caused the page fault along with the read-write status of  the 
page fault is recorded (see the event ―page_fault_entry‖ in Figure 
3). In order to train a classifier on such kernel-space level traces, 
we followed the following steps: 



 

 

 First, we extracted only those channels, events and attributes 
that were associated with the subject program under 
investigation. For example, in Figure 3, all the events and 
channels are associated with the process ―gzip.exe‖, and we 
filtered out all other events. 

 Second, we extracted the channel name (e.g., kernel), the event 
name (e.g., syscall_entry) and the relevant attributes if found 
any (e.g., syscall_id=6). We combined these to make one 
single ―element‖. This is shown in Table 2. We extracted all 
the channels and events associated to a program. We also 
extracted attributes and for some channels and events that are 
relevant for classification. For example, for the event 
―syscall_entry‖ we extracted ―syscall_id‖ since it provides the 
unique id of a system call. Similarly, for ―syscall_exit‖, we 
extracted the return (―ret‖) value of a system-call. Moreover, 
each system call returns a different value, such as error codes, 
hardware specific locations (e.g., memory address, file 
location, etc.). We categorized the return values into three 
types: positive (for normal return values), negative (for errors), 
and zero (for normal or no value).  Table 2 shows the list of 
attributes that we extracted for different channels and events. 
For all other cases, we only extracted channels and events 
(e.g., for events ―irq_exit‖, ―softirq_exit‖ in channel ―kernel‖ 
we only extracted their names as there was no relevant 
attribute associated to them). We discarded all the page faults
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and memory management events because they would vary 
from machine to machine. Similarly, we discarded attributes 
such as process-id, memory address, and thread-id as they were 
dependent on a machine. 

 Third, we transformed the extracted elements into a similar 
form as in Figure 4. For each element we measured its 
likelihood of occurrences in a trace by using Equation 2, which 
is similar to Equation 1 (see Section IV.A). 

 

 
             
              

           

  
                                          

                                           
     

Equation 2: Equation to measure the chances of an element’s 

occurrence in a trace. 

 
Finally, in the same manner to user space traces, we trained the 

six classifiers (including hidden Markov model) on the 
transformed traces and evaluated them using three fold cross 
validation. The results are shown in Section VI. 

C. Training on only Normal Traces  

In identification of anomalous software behaviour, often there 
are situations when only normal traces are available for training, 
for example, in software intrusion detection and in self-healing 
systems (autonomic computing). Such type of classification is 
called anomaly detection or outlier detection. For outlier detection, 
we have also trained classifiers only on normal traces by using one 
class classifier [15] available in Weka [31]. The one-class 
classifier works by transforming data of one class (normal traces) 
into two-class data (normal-anomalous traces) for a two (or more) 
class classifier (e.g., the C4.5 decision tree). The one-class 
classifier works by taking data of a target class–the class on which 
to train a classifier (normal traces in our case)—estimates the 
probability density function of the target class, and generates 
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artificial data using the density function for an outlier class—in our 
case outlier class corresponds to  anomalous traces. This provides 
a two-class (normal and anomalous trace) data to the two-class 
classifier (e.g., C4.5) for training without the knowledge of data of 
actual anomalous traces.  Once the two-class classifier is trained 
on such data then it is tested on the test set that contain all the 
anomalous traces and a proportion of normal traces that are not 
used for training. We again used three-fold cross validation in 
which every time a different set of normal traces were used for 
training but anomalous traces were always kept in the test set.  

We were able to apply one-class classifier on the C4.5 decision 
tree, naïve Bayes, Bayesian network, multilayer perceptron and 
support vector machine. In the case of HMM, one-class classifier 
did not work because of the sequential data format. Our results do 
not contain results of HMM for outlier detection.   

V. EVALUATION CRITERIA 

In this section we explain different parameter settings we used 
in Weka [31] for the six classification algorithms and what 
measures we used to evaluate their results.  

The Bayesian belief network (BBN) was implemented by 
using the K2 algorithm in Weka [31] to learn the network structure 
from the data. We started the K2 algorithm by initializing the class 
node as a parent node and all other attributes as a child node. We 
set the maximum number of parents to two, the ordering of nodes 
to random, and the calculated conditional probabilities by using 
simple estimator in Weka. The goodness of fit of the network 
structure was measured by the Bayes score [31] .  

The C4.5 decision tree [31] was implemented by using Weka 
J48 [31] algorithm. To avoid over-fitting the tree, we used sub tree 
raising, 25% confidence interval to prune the tree, and used MDL 
correction for finding splits on numeric attributes leaves.  

The naïve Bayes (NB) algorithm estimated prior and 
conditional probabilities for each attribute by using Gaussian 
distribution, and Bayes rule was used to measure probabilities of 
test traces [31].  

We implemented the artificial neural network (ANN) by using 
back propagation feed forward multilayer perceptron (MP) in 
Weka [31]. We selected only two hidden layers of neurons as they 
often yield optimum results [31], the weights are updated at a 
learning rate of 0.3 and a momentum of 0.2, and the number of 
epochs were 500.   

The support vector machine (SVM) was implemented using 
sequential minimal optimization algorithm (SMO) in Weka [31]. 
We also used polynomial kernel in SMO to train SVM, and 
applied a filter ―standardized training data‖ for data preprocessing. 

The hidden Markov model (HMM) was implemented by using 
a third party plugin

3
 available for Weka. We used 6 states to train 

HMM, built an Ergodic model in which every state was connected 
to every other state, and the state transition probabilities were 
initialized by k-means clustering. 

After applying classification algorithms, the next task was how 
to compare their results correctly. In our experiments, we had only 
two decisions to make; that is, classify a trace in a test set as 
normal or anomalous. In machine learning [31], usually the 
performance of classifiers is evaluated using true positives (TP) 
and false positives (FP). TP occurs when a normal trace in a test 
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set is classified as normal. FP occurs when an anomalous traces in 
a test set is classified as normal. We measured TP rate and FP rate 
by following two equations: 

        
                                          

                             
 

Equation 3: True positive rate. 

 

        
                                             

                                
 

Equation 4: False positive rate. 

       Another important characteristic to evaluate the results of 
machine learning algorithms is the Receiver Operating 
Characteristics (ROC) curve. The ROC curve depicts the 
performance of a classifier without regard to class distribution or 
error cost [31] by plotting the TP rate against the FP rate. 
However, often there is no clear better ROC curves of classifiers in 
the entire range of FP rate and TP rate.  In such situations, the area 
under the curve of ROC (simply AUC) provides a single number 
summary for the performance of a classifier [20]. Ling et al. [20] 
also formally proved that AUC is a better measure than accuracy, 
and the classifiers which produce better AUC also yield better 
accuracy. AUC is measured as [20]: 

    
           

   
 

Where N is the number of normal traces in the test set, A is the 

number of anomalous traces in the test set, Sp = ri and ri is the rank of 

ith positive example. 

Equation 5: AUC: Area Under the ROC Curve. 

In short, the larger the area under the curve (AUC), the better 
would be the classifier‘s model [31]. The AUC is actually the 
measure of the quality of ranking and can be interpreted as the 
probability that the classifier ranks a randomly chosen positive 
instance above a randomly chosen negative instance. In our 

experiments TP rate, FP rate and AUC were measured using 
Weka. 

VI. RESULTS 

In this section, we show the results for identification of 
anomalous and normal software behaviour of Gzip, Grep, Flex and 
Sed programs using user space and kernel space traces. (See 
Section III for a refresher on the subject programs and trace 

collection.) In Section VI.A, we show the results on user space and 
kernel space traces by training the classifiers on both normal and 
anomalous traces. In Section VI.B, we show the results by training 
classifiers only on normal traces. Finally, Section VI.C 
summarizes the results. 

A. Results of Classifiers When Trained on Both Normal and 

Anomalous Traces 

In Table 3, we show the TP rate, FP rate and AUC of six 
classification algorithms (C4.5 decision tree, Naïve Bayes, 
Bayesian network, multilayer perceptron, support vector machine, 
and hidden Markov model) on the function call level traces of the 
Flex, Grep, Gzip and Sed programs.  The results are obtained by 
using three fold cross validation (see Section IV.A).  

For example, when the C4.5 decision tree was applied on the 
user space traces of the program Flex, the TP rate was 0.924, FP 
rate was 0.099 and AUC was 0.925. Similarly the results can be 
interpreted for other algorithms and programs in Table 3. A special 
case occurred in the case of HMM when most of the traces, from 
54% to 88%, remained unclassified for the subject programs. This 
resulted in low false positive rate as Weka [31] counted FP and TP 
of those traces which were assigned a normal or anomalous labels; 
unclassified traces were not included by Weka. However, this 
resulted into lower accuracy and lower AUC values. 

 In a similar manner to user space traces, we have also 
evaluated the six classifiers on  kernel space traces. The results are 
shown in Table 4. In Table 4, the results are obtained by training 
the classifiers on extracted ―elements‖ from LTTng traces as 
mentioned in Section IV.B. In the case of HMM, similar to user 
space traces, some of the traces in the test set remained 
unclassified (from 0.4% to 2%). 

It can be observed both from Table 3 and Table 4 that the 
results obtained using kernel space traces are better than user space 
traces. In order to ascertain this, we performed a Wilcoxon singed 
rank test [32] between AUC values of six classifiers on four 
subject programs of kernel space and user space traces (i.e., 24 

observations for both type of traces). We chose AUC values 
because in the case of HMM, TP and FP values were not 
completely representative of all the traces in the test set. We chose 
the Wilcoxon signed rank test because the dataset was small and it 
was not known if the data belonged to a normal distribution. We 
state null hypothesis as ―there is no significant difference between 
the AUC values obtained for user space traces and kernel space 
traces at the significance level (alpha) 0.05.‖ 

Table 3: Results of the classification algorithms on user space (function call) traces of the subject programs. 
Where NB = Naïve  Bayes; BBN= Bayesian Belief network; MP= Multilayer Perceptron; SVM=Support Vector Machine; HMM= Hidden Markov Model  

 C4.5 NB BBN MP SVM HMM 

Prog. TP FP AUC TP FP AUC TP FP AUC TP FP AUC TP FP AUC TP FP AUC 

Flex 0.924 0.099 0.925 0.159 0.053 0.609 0.371 0.145 0.675 0.981 0.804 0.646 0.721 0.323 0.699 0.706 0 0.416 

Grep 0.96 0.044 0.992 0.921 0.227 0.919 0.96 0.044 0.992 0.95 0.113 0.972 0.935 0.075 0.93 0.122 0 0.428 

Gzip 0.967 0.02 0.974 0.698 0.594 0.663 0.939 0.035 0.989 0.528 0.144 0.819 0.962 0.015 0.974 0.727 0.258 0.471 

Sed 0.849 0.693 0.714 0.321 0.151 0.630 0.61 0.331 0.694 0.819 0.711 0.72 0.808 0.759 0.524 0.964 0.917 0.651 

 

Table 4: Results of the classification algorithms on kernel space traces of the subject programs. 
Where NB = Naïve  Bayes; BBN= Bayesian Belief network; MP= Multilayer Perceptron; SVM=Support Vector Machine; HMM= Hidden Markov Model  

 C4.5 NB BBN MP SVM HMM 

Prog. TP FP AUC TP FP AUC TP FP AUC TP FP AUC TP FP AUC TP FP AUC 

Flex 1.00 0.002 0.998 1.00 0.002 0.999 0.993 0.004 0.999 0.998 0.002 1.00 0.998 0.002 0.998 1.00 0.002 0.996 

Grep 0.977 0.027 0.981 1.00 0.114 0.942 0.994 0.082 0.996 0.961 0.075 0.992 0.955 0.037 0.959 0.87 0.008 0.913 

Gzip 0.953 0.034 0.953 0.682 0.338 0.717 0.883 0.059 0.950 0.963 0.049 0.972 0.963 0.039 0.962 0.256 0.079 0.528 

Sed 0.918 0.337 0.813 0.492 0.133 0.727 0.91 0.313 0.872 0.943 0.277 0.863 0.929 0.289 0.82 0.424 0.303 0.548 

 



 

 

A Wilcoxon [32] signed rank test on 24 AUC observations of 
classifiers between kernel space and user space tracing resulted 
into Z=3.371 and two sided p=0.001 < 0.05. This means the null 
hypothesis is rejected as p < 0.05 and identification of normal and 
anomalous behaviour can be done accurately with kernel space 
tracing than user space tracing. Kernel space tracing is better when 
classifiers are trained on both normal and anomalous traces. 

We also measured the standardize effect size of AUC between 
kernel space tracing and user space tracing.  Nakagawa [24]  
mentioned that the advantage of using standardized effect size is 
that results are comparable across different studies even with 
different sample sizes [24]. In our case, we calculated the effect 
size using the Cohen‘s d measure [6] and the effect size is 0.866 
between kernel space tracing and user space tracing. It can be 
interpreted as the average AUC values obtained using kernel space 
tracing will be 0.866 standard deviations above than the average 
AUC values of user space tracing. In terms of percentile standing 
[6], the results are interpreted as the average result obtained using 
the kernel space tracing would be better than more than 79% 
results of user space tracing when identifying normal-anomalous 
software behaviour using classification algorithms. 

In a similar manner to the comparison of user space and kernel 
space tracing we also compared classification algorithms using the 
Wilcoxon [32] signed rank test. We selected the AUC values of 
both kernel space and user space tracing for every classifier. This 
resulted into eight observations for each classifier. The p values 
obtained using Wilcoxon signed rank test for every pair of 
algorithms are shown in Table 5. 

Table 5: P values obtained using Wilcoxon signed rank test for 

pair wise comparison of classifiers. 

 HMM SVM MP BBN NB 

C4.5 0.012 0.116 0.779 1.00 0.017 

NB 0.025 0.123 0.012 0.018 

BBN 0.012 0.093 0.401 

MP 0.012 0.484 

SVM 0.036 

In statistics, if more than one comparison is performed than 
statistical significance is often measured using Bonferroni 
correction. In Bonferroni correction, the significance level alpha is 
divided by n (alpha/n) then p value is tested at that significance 
level. The reason is that if ‗n‘ tests are performed then there is a 
random chance that at least one of them out of ‗n‘ will be 
significant. In our case ‗n‘ is five as there are five comparisons, 
which means the new alpha level is 0.01. At this alpha level no 
significant difference exists between the AUC values of all the 
classifiers in Table 5, as p > 0.01.  

However, Nakagawa [24] argued that using Bonferroni 
correction reduces statistical power and increases the chances of 
Type II error (false negative) to unacceptable level. Therefore they 
[24] suggested that the emphasis should be placed more on 
(standardized) effect sizes and practical significance related to the 
field of study. We can also observe from Table 5 (and from Table 
4 and Table 3 too) that HMM did not perform better than other 
algorithms at alpha=0.05. Thus, we measured the effect sizes 
between all the classifiers and found out that C4.5 and Bayesian 

belief network (BBN) yield closer results and C4.5 results are 
better than other classifiers.  Due to the lack of space we have 
avoided showing effect sizes between all the algorithms; however, 
the effect size between C4.5 and BBN is 0.18, C4.5 and NB is 
1.09, C4.5 and MP is 0.38, C4.5 and SVM is 0.43, and C4.5 and 
HMM is 1.74.  

Thus, based on significance test none of the classifiers 
performed better than each other, but the measurement of effect 
size reveals that C4.5 should be preferred over other classifiers.  

B. Results of Classifiers When Trained on Normal Traces 

Recall from Section IV.C, we used one-class classifier [15] to 
train all the two-class classifiers we studied (except HMM) on 
normal traces. The test sets contained both normal and anomalous 
traces. The TP rate, FP rate and AUC for one-class classification 
are shown in Table 6 for user space traces and in Table 7 for kernel 
spaces traces. These results are also obtained using three fold cross 
validation. A well known problem in one-class classification 
(called anomaly detection) is high rate of false positives. This can 
also be observed in both Table 6 and Table 7. If you take a close 
look then the results obtained using kernel space traces are better 
than user space traces, and multilayer perceptron (artificial neural 
network) outperforms other algorithms as it has a high AUC than 
other classifiers—in some cases close to 1.00.  

We again conducted a Wilcxon signed rank test on AUC 
values for both kernel and user space traces at alpha = 0.05. A 
Wilcoxon sign test with 24 observations resulted into Z= 2.073 and 
(two sided) p=0.03 < 0.05. This implies that there is a significant 
difference between the results obtained using kernel space traces 
and user space traces when classifiers were trained on only normal 
class—kernel space tracing yield better results with an  effect size 
[6] of 0.51 (69% in percentile standing) over user space traces.  

A Wilcoxon signed rank test, in a similar manner to Section 
VI.A with Bonferroni correction, resulted into no significant 
difference among classifiers. Due to lack of space we omitted the 
details of the tests. However the effect size reveals us that 
multilayer perceptron fares better than other classifiers when 
trained only on normal traces. The standardized effect size using 
Cohen‘s d measure [6] between multi layer perceptron (MP) and 
C4.5 is 0.557, MP and NB is 0.57, MP and BBN is 1.18, MP and 
SVM is 1.17. Thus based on the effect size we can say that multi 
layer perceptron is better than other classification algorithms 
studied in this section; however, again there is no significant 
difference among classifiers in general. 

C. Summary of Results 

In this paper we raise two research questions (Q1) and (Q2) 
(see Section I) and our results answer them as: 

 Kernel space tracing can detect anomalous (failing) software 
behaviour better than user space tracing. The average result 
obtained using the kernel space tracing would be better than 
more than 69%-79% results of user space tracing (see Section 
VI.A and VI.B) when identifying anomalous software 
behaviour. This answers (Q1). Moreover our data shows that, 
after selecting relevant information for evaluation, the file sizes 
of kernel space traces of a program were 40-60% smaller than 
user space traces of the same program. Similarly the training 
time of different algorithms for kernel space tracing was 30-70% 
lesser than user space tracing.  



 

 

 According to statistical significance test, six classification 
algorithms yield same results and any one can be substituted 
with another (see Section VI.A and VI.B) when identifying 
anomalous software behaviour. This answers (Q2). 

VII. THREATS TO VALIDITY 

In this section we describe threats to validity of our 
experiments according to four categories: conclusion validity, 
internal validity, construct validity, and external validity [32]. 

A threat to the validity of our conclusions exists because we 
use the traces of multiple faults for classification, rather than the 
traces of single faults. Accuracy could be different between traces 
of single faults and passing traces. However, this threat is 
mitigated by evidence in the literature that variability of execution 
profiles increase with multiple faults which actually decreases the 
discriminating strength of passing-failing traces[36]. This means 
with traces of single faults the accuracy will be higher.  

A threat to internal validity exists in the collection of traces 
and implementation of programs. This is because we automated 
this procedure by writing shell scripts and Java code. We have 
minimized this threat by manually investigating the outputs. 

A threat to construct validity exists in how we measured 
normal behaviour and anomalous behaviour. We collected passing 
traces when there were no faults in a program and failing traces 
when the programs were seeded with faults. Another approach is 
to collect passing traces from the program containing faults when 
test cases did not fail and failing traces from the same faulty 
program when test cases failed. This threat is mitigated by the fact 
that in the later approach different test cases fail and pass on a 
program resulting in discriminating execution flow, and hence will 
result in higher accuracy than the former approach. In the former 
approach same test cases pass and fail and the discriminating 
strength could be less in some situations. 

A threat to external validity exists in generalizing the results of 
this study as we have only experimented on medium size 
commercial programs, and evaluation on large industrial 
applications is yet to be done. 

VIII. CONCLUSION AND FUTURE WORK 

Time spent in corrective maintenance (30-60%)[27][19] often 
exceeds the time spent in other activities of software maintenance. 
Prior researchers [26][10][3][14][21][5][23] have proposed variety 
of techniques using different type of algorithms on user space 
tracing (e.g., function calls) to reduce this time. Prior researchers 
focusing on software security [29][34][30][13][35] have also used 
different machine learning algorithms on kernel space tracing to 
classify normal-anomalous software traces—these techniques can 

be used to reduce the time spent in corrective maintenance. 
However, a comparison of user space and kernel space tracing 
does not exist in the literature. The primary research question of 
this paper is: (1) Can kernel space tracing be used to classify pass-
fail traces of a program with the same accuracy as user space 
tracing? We evaluated six different classifiers on kernel space and 
user space traces to find out that kernel space tracing yields better 
accuracy than user space tracing (see Section VI). In fact the 
average result obtained using the kernel space tracing would be 
better than more than 69%-79% results of user space tracing (see 
Section VI.A and VI.B). We also identified a secondary research 
question during our experiments: (2) Can we substitute one 
classification algorithm with another without affecting the 
accuracy of classification of normal-anomalous traces? Our results 
show that (see Section VI) no classifier yields better results than 
other classifiers according to significance test; however, according 
to effect size, the C4.5 algorithm yields better results than other 
algorithms in two-class classification (see Section VI.A) and the 
multilayer perceptron produces better results (see Section VI.B) 
than other algorithms in one-class classification. 

 Our findings are limited to evaluation on medium size 
programs. In future, we would like to extend the scope of these 
findings to large industrial scale applications. 
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