

On the Comparison of User Space and Kernel Space

Traces in Identification of Software Anomalies
1
Syed Shariyar Murtaza,

2
Afroza Sultana,

2
Abdelwahab Hamou-Lhadj,

3
Mario Couture

1, 2
Software Behaviour Analysis (SBA) Research Lab, Concordia University, Montreal, QC, Canada

3
System of Systems Section, Software Analysis and Robustness Group, Defence Research and Development Canada,

Valcartier, Québec, QC, Canada

1
smurtaza@encs.concordia.ca,

2
{ af_sulta, abdelw}@ece.concordia.ca,

 3
 mario.couture@drdc-rddc.gc.ca

—Abstract: Corrective software maintenance consumes 30-60%

time of software maintenance activities. Automated failure

reporting has been introduced to facilitate developers in

debugging failures during corrective maintenance. However,

reports of software with large user bases overwhelm developers

in identification of the origins of faults, and in many cases it is not

known whether reports of failures contain information about

faults. Prior techniques employ different classification or

anomaly detection algorithms on user space traces (e.g., function

calls) or kernel space traces (e.g., system calls) to detect

anomalies in software behaviour. Each algorithm and type of

tracing (user space or kernel space) has its advantages and

disadvantages. For example, user space tracing is useful in

detailed analysis of anomalous (faulty) behaviour of a program

whereas kernel space tracing is useful in identifying system

intrusions, program intrusions, or malicious programs even if

source program code is different. If one type of tracing or

algorithm is infeasible to implement then it is important to know

whether we can substitute another type of tracing and algorithm.

In this paper, we compare user space and kernel space tracing by

employing different types of classification algorithms on the

traces of various programs. Our results show that kernel space

tracing can be used to identify software anomalies with better

accuracy than user space tracing. In fact, the majority of

software anomalies (approximately 90%) in a software

application can be best identified by using a classification

algorithm on kernel space traces.

Keywords-Tracing, classification algorithms, system call traces,

function call traces, failures, deployed software.

I. INTRODUCTION

Corrective maintenance, an activity that aims to rectify faults
in a program, can soak up to 30-60% [27][19] of software
maintenance time. Typically, maintainers collect data (such as
execution traces) related to software failures in order to fix faults.
Organizations of such applications as Firefox, NetBeans,
Microsoft Visual Studio.NET and others often employ automated
means to collect and report failure data. This is to reduce the cost
of software maintenance, facilitate debugging, and improve
software quality.

While such automation makes data collection and reporting
practical from numerous sources, it can also overwhelm
developers because manually interpreting such reports and
identifying origins of faults is resource draining for large systems
with huge user bases [26]. Moreover, it is not always known
whether a trace collected from the field actually contains a fault or
not. This is because the size of a trace buffer is limited, and a

failure could manifest itself well after the fault occurs, since many
faults do not necessarily crash the system. Thus, a trace might not
capture the faulty control flow (e.g., faulty function calls,
exceptions, etc.).

The importance of classifying a field trace into a ―passing‖ and
―failing‖ trace can help in many software engineering activities,
such as:

 Software Debugging: Remote analyses and fault localization
techniques (e.g., statistical debugging for fault isolation [2],
locating faulty functions [23] and faulty paths [5] in field
traces, and visualization of field traces [1]) need to know
whether a trace has come from a successful or failing
execution to facilitate debugging.

 Autonomic Computing: Self managing applications need to
know when a system enters an abnormal state [14][18] so
that they can automatically reconfigure the system to a
normal state.

 Software Intrusion: Anomaly detection systems raise alerts
when an execution trace is anomalous (faulty) by matching a
trace with past normal traces (e.g., using hidden Markov
models [29] and neural networks [13] on system calls to
detect anomalies).

Prior techniques employ different machine learning algorithms
on user space traces (e.g., function calls) or kernel space traces
(e.g., system calls) to detect anomalous software executions. These
technique include: (a) decision tree algorithms and Markov models
to classify user space traces (e.g., statement, branch or function
call traces) as passing or failing [3][14]; (b) pattern extraction
algorithms to detect abnormal behaviour such that the user space
trace collection for failures could be started at the right time [10];
and (c) hidden Markov models [29], neural networks [13], support
vector machines [35], decision trees [35] and k-nearest neighbor
[35] algorithms use on the system calls to classify abnormal and
normal software behavior from the perspective of software
security.

Zahalka et al. [36] identified in their experiments with user
space traces that the discriminating strength of failing and passing
traces significantly varies from program to program. This means a
technique that produces high accuracy on user space traces of one
program might yield low accuracy on other programs. Also, each
algorithm and type of tracing (e.g., user space or kernel space) has
different traits, and what is suitable in one situation might not be
suitable in another situation. For example, the user space tracing is
useful in detailed analysis (e.g., fault localization) of anomalous
(faulty) behaviour of a program; whereas, the kernel space tracing

is useful in identifying system intrusions, program intrusions, or
malicious programs even if the source program code is different.
Similarly, another example is that the kernel space tracing can be
used to trace all the applications in a system simultaneously with
lesser overhead than the user space tracing, but the kernel space
tracing misses control flow information that is not executed
through kernel (e.g., function calls executed directly by CPU).

Thus, the literature lacks information on the comparison of
kernel space and user space tracing in identification of anomalous
software behaviour. This will be useful in understanding if one
type of tracing is not feasible to implement, then how different
would the results of another type of tracing be? Thus, the main
research question of this paper is:

(Q1) Can kernel space tracing be used to classify pass fail
traces of a program with the same accuracy as user space
tracing?

We find the answer of this research question by evaluating six
classification algorithms on both user space and kernel space
traces. The six classification algorithms are C4.5 decision tree,
naïve Bayes classifier, neural network, Bayesian network, support
vector machine, and hidden Markov model. We evaluate these
algorithms by (a) training them on both passing and failing traces
and (b) training them only on normal traces. This is because in
some situations abnormal behaviour (traces) is not available for
training; e.g., in biometric password hardening system which
strengthens the login process when password is not type in a
correct rhythm [15] and in intrusion detection systems where
malicious program‘s (attack) behaviour is not known. Irrespective
of the training method, each type of algorithm has different
characteristics; e.g., hidden Markov models are slower to train but
they consider temporal relationship of attributes unlike other
algorithms. In finding out the answer to our main research
question, we identified a secondary novel research question on the
comparison of classification algorithms in identification of normal
and anomalous software behaviour:

(Q2) Can we substitute one classification algorithm with
another without affecting the accuracy of classification of
normal and anomalous traces?

These questions are important because efficient debugging and
anomaly detection systems can be built if we know that a
particular type of tracing and algorithm perform better or similar to
others. For example, if a particular algorithm and type of tracing
can be used to classify passing-failing traces with high accuracy,
then due to similar characteristics of traces that algorithm and
tracing will presumably be also able to perform better for further
analysis of traces, such as fault localization, finding origin of
software intrusions, etc.

 The rest of the paper is as follows: Section II describes related
work; Section III explains the four UNIX utilities (i.e., Flex, Grep,
Gzip, and Sed) that we used as subject programs; Section IV
explains our approach with working examples from the subject
program; Section V describes the evaluation criteria of our
approach, Section VI articulates results; Section VII discusses
threats to validity; and Section VIII concludes this paper with
directions to future work.

II. RELATED WORK

Prior empirical studies that classify normal and failing traces
have shown that failing execution traces have unusual
characteristics than normal execution traces (e.g., classifying

normal failing software behaviour using user space traces
[10][3][14] and detecting anomalous behaviour using kernel space
traces [29][34][30][13][35]). These studies can be divided into two
categories: techniques focusing on software maintenance, and
techniques focusing on software intrusion.

A. Techniques Focusing on Software Maintenance

Elbaum et al. [10] experiment with three different anomaly
detection methods on function call traces of a deployed system.
Their objective is to anticipate the occurrence of a failure in a
deployed system such that trace collection for the failure could be
automatically started at the right time. Bowring et al. [3] and
Haran et al. [14] develop techniques based on the Markov model
[3] and the decision tree [14] to classify (statement, branch and
function level) executions as being passing or failing. Jiang et al.
[18] extract varied length n-grams from function call traces of
normal behaviour, and build an automaton from the n-grams that
represent the generalized state of the normal traces: they use this
automaton to detect anomalous traces.

Zahalka et al. [36] determine the factors affecting the
differences between passing and failing user space traces. Zahalka
et al. [36] identify that the discriminating strength of failing and
passing traces is significantly different from a program to program.
They [36] also identify that the characteristics of the program has
more effect on the discriminating strength of failing and passing
traces than the number of (different) faults.

Podgurski et al. [26] form clusters of execution traces of field
failures based on common faulty source files. Podgurski et al. [26]
first employ logistic regression to classify passing and failing
traces, second they select relevant attributes from classification,
and third they employ k-medoid clustering to cluster failures. Liu
et al. [21] cluster failing runs of deployed systems according to a
rank list of assertions (check points) in source code by using a
statistical debugging technique. Statistical debugging [21], requires
a collection of passing and failing traces and Liu et al. assume that
passing and failing traces are provided. Apart from clustering,
there were researchers who use the C4.5 decision tree algorithm
[23]¸ statistical utility functions (HOLMES [5]), literal comparison
of traces [4][8] to identify fault locations of field failures. These
researchers also require a distinction between passing and failing
executions for their techniques.

B. Techniques Focusing on Software Intrusion

Our work is related to the type of intrusion detection systems
that focuses on detecting anomalous software behaviour by
measuring the deviations in system calls of a system from that of
normal behaviour of the same system [25]. They are called host
based anomaly detection systems [25] and techniques focusing on
them are described below.

Forrest et al.[12], Hofmeyr et al. [17] and Warrender et al.
[30] extract sequences of system calls from traces of a system and
compare them with the historical sequences of normal behaviour.
In the case of a mismatched sequence they raise alerts for
anomalous behaviour. This is called a sliding window technique.

Warrender et al. [30], Yeung and Ding [33] and Wang et al.
[29] also train hidden Markov model (HMM) on system call traces
and raise alerts when the probability of a system call in a sequence
is below a certain threshold [30] or the probability of whole system
call sequence is below a certain threshold [29]. Hoang et al. [16]
propose a multiple layer detection approach by using the sliding
window technique on the first layer and HMM on the second layer

and combining their output using fuzzy inference engine to predict
anomalous system call sequences.

 Ghosh et al. [13] employ standard multilayer perceptron and
Elman [11] recurrent neural network on system calls to detect
anomalous system calls in test data. Their results [13] show better
accuracy with recurrent neural networks but at the expense of
more time than the standard multilayer perceptron. Yuxin et al.
[35] use support vector machines, decision trees, and the k-nearest
neighbor algorithm to classify malicious software code (e.g., virus)
and normal code. They first extract static system call sequences for
a program (i.e., extract system calls without running a program)
and then train the algorithms for classification. They identify that
their static system call based technique produce better results than
dynamic system call based techniques. Tandon [28] and Warrender
et al. [30] use variations of association rules on system calls [28]
and system calls with arguments [28] to identify anomalous rules
of system calls.

C. Research Gap

Prior studies have used a variety of algorithms on system call
traces [29][35][30][13][33][28][12] and user space traces (e.g.,
function calls) [14][18][3][10] to identify anomalous software
executions. However, none of them compared user space and
kernel space traces. This paper aims to fill this void. Comparison
of user space and kernel space tracing is important to understand
the problem: when it is not feasible to collect one type of tracing
(e.g., user space tracing due to source instrumentation) then can
other type of tracing (e.g., kernel space tracing) be used with the
same efficacy to identify anomalies? This paper also helps in
understanding a novel issue: can we substitute classifiers when
identifying normal anomalous software behaviour? This is
important because some classifiers are faster to train and some are
slower to train.

III. SUBJECT PROGRAMS

In this section, we explain the subject programs used in our
study and how we collected traces. We present the subject
programs before explaining our approach (presented in the next
section) because we will be drawing examples from the subject
program in the next section. We used open source UNIX utilities
[9] Flex, Grep, Gzip and Sed for our experiments, which are
known commercial C language applications. The faults in these
programs were hand seeded by Do et al. [9] by using a specific
procedure to keep them realistic (described in their paper [9]). Do
et al. [9] used several releases of every program to insert faults.
The important steps of fault insertion procedure were: (a)
identification of the changes in source code of different releases;
(b) insertion of faults at the changes in the code by multiple
programmers working independently; (c) insertion of faults
associated with definition, redefinition, deletion, and change of
values of variables; (d) insertion of faults associated with control
flow, such as deletion of path, addition of new block of code,
redefinition of execution condition, modification to external
function-calls, etc.; (e) insertion of faults associated with memory,
such as erroneous use of pointers, memory not allocated, etc.; and
(f) merging of all the faults and removal of overlapping faults such
that programs should compile.

Flex, Grep, Gzip, and Sed [9] are made available in several
releases by Do et al. For our experiments, we randomly selected
one release of every program. The release numbers of each
program, used in our experiments, are shown in Table 1. Each
subject program comes with a test suite containing many test

cases, and source code of the program with a list of faults in a
header file—these faults were not active. We compiled each
program without activating faults and ran test cases on the faults
free programs. Since no faults were activated, the output of the
program for each test case considered normal and traces were
collected as normal traces. To collect failing traces, we activated
all the faults provided with the programs by Do et al. , and ran test
cases on the fault programs. If the output of a faulty program on a
particular test case differs from its fault free program then we
collected a trace as a failing trace. Mainly two main types of faults
were resulted when test cases were run: (a) crashing faults (e.g.,
segmentation faults); (b) non crashing faults (e.g., logical errors).
The details of each of the programs with number of faults, number
of test cases, and number of passing and failing traces that we
collected are shown in Table 1. In Table 1, in some cases the
number of passing traces is not equal to the total test cases because
some of the input files could not be run.

Table 1: Characteristics of the subject programs (UNIX utilities).

LOC excludes blank lines and comments

 Releases used: Flex 2.5.1; Grep 2.4; Gzip 1.1.2; Sed 4.0.7.

Prog. LOC #

Functions

Faults

Test

Cases

Passing

Traces

#Failed

Traces

Flex 9724 167 20 567 566 545

Grep 9041 149 18 809 799 710

Gzip 4032 88 16 214 214 204

Sed 4735 115 6 370 366 166

We used LTTng [22] to collect both user space (function call
traces—see Figure 2 for an example) and kernel-space traces (see
Figure 3 for an example). All of our experiments were performed
on Ubuntu 11.04. Kernel space tracing was specific to Linux
operating system as obtained using the LTTng tool, and user space
tracing was independent of the operating system. For user space
tracing we used a tool called Etrace

1
 [7] to collect function call

traces.

IV. APPROACH

In order to compare kernel and user space traces using different
classification algorithms we proceeded with the approach shown in
Figure 1. The steps of our approach were:

Figure 1: Steps of our approach.

1
 Etrace has a bug which prevents it from capturing traces of the

segmentation faults. We fixed it to collect such traces.

1) First, we collected user space and kernel space traces for a
program by running test cases (see Section III). The rationale
is that both user space and kernel space traces should be
collected on the same input. An example of user space traces
—i.e., function calls traces—is shown in Figure 2. An
example of kernel space traces collected using LTTng [22] is
shown in Figure 3. LTTng allowed us to collect system
calls, IRQs, trap, memory management, softIRQs,
scheduling, network management, file system management
and other events.

Function entry point shows when control enters a function
and function exit shows when control exits a function.

Figure 2: Function call trace at user space level.

Channels group events (i.e., handlers and methods in Linux OS code)
of a particular type; other variables are specific to events.

Figure 3: Trace containing system wide events associated to

gzipe.exe at kernel-space level.

2) Secondly, for user space traces, we extracted function calls

and their likelihood of occurrences in a trace and train
classification algorithms on them. Similarly, for kernel-space
traces, we extracted all the occurring events related to the
program under study (e.g., system calls, IRQs, etc.) and
measure their likelihood of occurrence in the traces. The
intuition is to transform traces into a form on which
classification algorithm can be trained.

3) Third, we trained classification algorithms on the extracted
data. In our experiments we used six classification
algorithms (see Section I) to compare the accuracy of
classification of user space and kernel space traces. We then
use the trained algorithms to classify traces present in a test
set. These classification algorithms are well known
algorithms and their details can be found in standard text
[31]; we do not provide their details to save space. Also,
recall from Section I, we employ the classification
algorithms from two different perspectives: (a) training and

testing on both normal and anomalous traces; and (b) training
on only normal traces and testing on both types of traces. The
rationale is to compare user space and kernel space tracing
from variety of perspectives as used by researchers.

In Section IV.A, we explain in detail our procedure for training
the classification algorithms on user space traces. Similarly, in
Section IV.B, we explain our approach for training the
classification algorithms on kernel space traces. Both Section IV.A
and Section IV.B describe classification form the perspective of
training on both normal and anomalous traces. In Section IV.C, we
describe how classifiers were trained only on normal traces and
tested on both types of traces.

A. User Space Tracing

At user space level we collected function call traces, see Figure
2, because prior researchers [10][3][14][36][23] have mostly used
function call traces from the field to classify passing and failing
traces. Also, function call traces are the commonly collected traces
from deployed software systems as they are easier to collect and
incur less overhead than finer grained traces, such as statements.

After collecting passing and failing user space traces, we
transformed them into a form on which classification algorithms
could be trained. This is shown in Figure 4. In Figure 4, each row
represents a trace, and each column shows the name of a function.
The last column in each row denotes whether a trace is a passing
trace or a failing trace. Each cell represents the chances of
occurrence of a function in a trace and it is measured by the
following equation:

*100

 Equation 1: Equation to measure the chances of a function’s

occurrence in a trace.

The Equation 1 simply measures the frequency of occurrences
of a function ‗f‘ in a trace and divides it by the total number of
function calls in the trace.

Figure 4: Function calls and their chances of occurrences in a

passing and failing traces of the Gzip program.

In Figure 4 we have used only function ―exit‖ events for
training; the term ―exit‖ is not shown in Figure 4. However, Figure
2 shows function ―entry‖ and function ―exit‖ events. The reason
for using only ―exit‖ events lies in our earlier experiments [23],

where we have found that when a classifier is trained on function
―entry or exit‖ and on both function ―entry and exit‖ then there is
no significant difference in the accuracy of the classification. This
discovery helps in reducing the size and overhead of a trace to
half, as the function ―entry‖ or function ―exit‖ events can be
removed from traces. Thus, in our experiments in this paper we
only used function ―exit‖ events.

Once traces were transformed into a form shown in Figure 4,
we then trained the classification algorithms on them. We actually
first divided the original dataset into two parts: training
(approximately 65%) and testing (approximately 35%). The
classification algorithms were trained on this 65% of the original
training data and tested on the remaining 35% traces. An example
of the C4.5 decision tree (a classification algorithm) trained on the
transformed traces of Gzip is shown in Figure 5. This tree was
obtained by applying the J48 algorithm in the data mining tool
Weka [31] which was an implementation of the C4.5 decision tree
algorithm.

Figure 5: C4.5 decision tree on function call traces of the Gzip

program.

Each line in Figure 5 contains a function name, its likelihood,
and a name of passing and failing trace after a colon sign if any.
The discovery of a faulty function was done by traversing this
trained tree (like If-then-else statements) according to the
likelihood values of functions. For example the decision tree of
Figure 5 shows that if in a trace, the likelihood value of a function
―fill_window‖ is less than or equal to ―0.004698‖ and the
likelihood value of ―clear_bufs‖ is less than or equal to ―3.448‖,
and the value of ―do_stat‖ is less than equal to ―0.005896‖ then the
trace is a passing trace.

After building classifier like the C4.5 decision tree, we
classified every trace in a test set as a passing or failing trace, and
recorded the accuracy of classification. Finally, we repeated the
above process two more times (three in all) every time with a
different 35% test set and 65% train set. The accuracy on the test
set was then averaged. This is called three fold cross validation.
Similarly, we repeated this procedure for all other classification
algorithms by using three fold cross validation and the results are
discussed in Section VI.

In Figure 4, we showed that we extracted only single function
calls and their likelihood of occurrences to train a classifier. This
does not preserve the temporal order of function calls as they occur
in a trace. There are two possible solutions to keep the temporal
order of sequences in the model of a classifier: (a) use hidden
Markov model (HMM); and (b) extract temporal sequences of
function calls and train any classifier. First method is the use of
HMM as a classifier. HMM preserves the temporal order of

function calls, as they occur in a trace, in its model. Our results on
HMM are shown in Section VI.

Another method is to train every classifier on the patterns of
function calls. For example, consider an example of a pattern of
length three function calls: ―adddefelemdefwaitcont‖. This
pattern is read as ―adddef‖ precedes ―elemdef‖ and ―elemdef‖
precedes ―waitcont‖ in traces. If all such function-call patterns [23]
of different lengths are extracted from the failed traces and used
with the classifier to identify faulty functions, then our earlier
experiments show that results are not better than the use of single
function calls with the classifier, such as decision tree [23]. Thus,
we considered using only single function calls for classification in
this paper.

B. Kernel Space Tracing

Table 2: Extracted attributes for channels and events and

example of elements.

Channel Event Attribute Example

Element*

kernel syscall_entry syscall_id kernel:syscall_entry:10

kernel syscall_exit *ret kernel:syscall_exit:10_zero

kernel irq_entry irq_id kernel:irq_entry:20

kernel softirq_entry softirq_id kernel:softirq_entry:1

kernel softirq_raise softirq_id kernel_softirq_raise:1

task_state process_state *status Task_state:process_state:0

*fs *all *fd fs:open:3

*block *all *rw,

not_uptoda

te, error

block:rq_insert_fs:1

―fs‖ stands for file system,―block‖ stands for block IO devices,*―all‖

means all the events and channels, *―ret‖ stands for return value, *

―status‖ is for state of the process in system,*―fd‖ is file descriptor id,

*―rw‖ stands for read/write. *In element a number at the end indicates a

value of attribute.

In a similar manner to user space traces, we also collected
kernel space traces. An example of a kernel space trace is already
shown in Figure 3. Recall from Section III that we used LTTng to
collect kernel space traces. Kernel space traces are specific to an
operating system as they record functions of operating system‘s
source code. An LTTng trace actually groups different events (e.g.,
functions, handlers, etc.) executed by the Linux operating system
using a channel name. For example, in Figure 3, events related to a
file system are grouped under the channel ―fs‖, and events related
to core kernel functions (e.g., system calls, page_fault_entry,
soft_irq) are grouped under the channel ―kernel‖.

An LTTng trace also groups several associated attributes with
an event. For example: (a) whenever control enters a particular
function (system call) in operating system‘s code then the system
call ―name‖ and ―id‖ is recorded (see the event ―syscall_entry in
Figure 3); (b) when a control exits a function (system-call) in
operating system‘s code then its return value is recorded with the
―exit‖ event (see the event ―syscall_exit‖ in Figure 3); and (c)
whenever there is an event of a page fault then the specific trap
which caused the page fault along with the read-write status of the
page fault is recorded (see the event ―page_fault_entry‖ in Figure
3). In order to train a classifier on such kernel-space level traces,
we followed the following steps:

 First, we extracted only those channels, events and attributes
that were associated with the subject program under
investigation. For example, in Figure 3, all the events and
channels are associated with the process ―gzip.exe‖, and we
filtered out all other events.

 Second, we extracted the channel name (e.g., kernel), the event
name (e.g., syscall_entry) and the relevant attributes if found
any (e.g., syscall_id=6). We combined these to make one
single ―element‖. This is shown in Table 2. We extracted all
the channels and events associated to a program. We also
extracted attributes and for some channels and events that are
relevant for classification. For example, for the event
―syscall_entry‖ we extracted ―syscall_id‖ since it provides the
unique id of a system call. Similarly, for ―syscall_exit‖, we
extracted the return (―ret‖) value of a system-call. Moreover,
each system call returns a different value, such as error codes,
hardware specific locations (e.g., memory address, file
location, etc.). We categorized the return values into three
types: positive (for normal return values), negative (for errors),
and zero (for normal or no value). Table 2 shows the list of
attributes that we extracted for different channels and events.
For all other cases, we only extracted channels and events
(e.g., for events ―irq_exit‖, ―softirq_exit‖ in channel ―kernel‖
we only extracted their names as there was no relevant
attribute associated to them). We discarded all the page faults

2

and memory management events because they would vary
from machine to machine. Similarly, we discarded attributes
such as process-id, memory address, and thread-id as they were
dependent on a machine.

 Third, we transformed the extracted elements into a similar
form as in Figure 4. For each element we measured its
likelihood of occurrences in a trace by using Equation 2, which
is similar to Equation 1 (see Section IV.A).

Equation 2: Equation to measure the chances of an element’s

occurrence in a trace.

Finally, in the same manner to user space traces, we trained the

six classifiers (including hidden Markov model) on the
transformed traces and evaluated them using three fold cross
validation. The results are shown in Section VI.

C. Training on only Normal Traces

In identification of anomalous software behaviour, often there
are situations when only normal traces are available for training,
for example, in software intrusion detection and in self-healing
systems (autonomic computing). Such type of classification is
called anomaly detection or outlier detection. For outlier detection,
we have also trained classifiers only on normal traces by using one
class classifier [15] available in Weka [31]. The one-class
classifier works by transforming data of one class (normal traces)
into two-class data (normal-anomalous traces) for a two (or more)
class classifier (e.g., the C4.5 decision tree). The one-class
classifier works by taking data of a target class–the class on which
to train a classifier (normal traces in our case)—estimates the
probability density function of the target class, and generates

2 A page fault occurs when there is a request to swap a memory page

from disk to OS.

artificial data using the density function for an outlier class—in our
case outlier class corresponds to anomalous traces. This provides
a two-class (normal and anomalous trace) data to the two-class
classifier (e.g., C4.5) for training without the knowledge of data of
actual anomalous traces. Once the two-class classifier is trained
on such data then it is tested on the test set that contain all the
anomalous traces and a proportion of normal traces that are not
used for training. We again used three-fold cross validation in
which every time a different set of normal traces were used for
training but anomalous traces were always kept in the test set.

We were able to apply one-class classifier on the C4.5 decision
tree, naïve Bayes, Bayesian network, multilayer perceptron and
support vector machine. In the case of HMM, one-class classifier
did not work because of the sequential data format. Our results do
not contain results of HMM for outlier detection.

V. EVALUATION CRITERIA

In this section we explain different parameter settings we used
in Weka [31] for the six classification algorithms and what
measures we used to evaluate their results.

The Bayesian belief network (BBN) was implemented by
using the K2 algorithm in Weka [31] to learn the network structure
from the data. We started the K2 algorithm by initializing the class
node as a parent node and all other attributes as a child node. We
set the maximum number of parents to two, the ordering of nodes
to random, and the calculated conditional probabilities by using
simple estimator in Weka. The goodness of fit of the network
structure was measured by the Bayes score [31] .

The C4.5 decision tree [31] was implemented by using Weka
J48 [31] algorithm. To avoid over-fitting the tree, we used sub tree
raising, 25% confidence interval to prune the tree, and used MDL
correction for finding splits on numeric attributes leaves.

The naïve Bayes (NB) algorithm estimated prior and
conditional probabilities for each attribute by using Gaussian
distribution, and Bayes rule was used to measure probabilities of
test traces [31].

We implemented the artificial neural network (ANN) by using
back propagation feed forward multilayer perceptron (MP) in
Weka [31]. We selected only two hidden layers of neurons as they
often yield optimum results [31], the weights are updated at a
learning rate of 0.3 and a momentum of 0.2, and the number of
epochs were 500.

The support vector machine (SVM) was implemented using
sequential minimal optimization algorithm (SMO) in Weka [31].
We also used polynomial kernel in SMO to train SVM, and
applied a filter ―standardized training data‖ for data preprocessing.

The hidden Markov model (HMM) was implemented by using
a third party plugin

3
 available for Weka. We used 6 states to train

HMM, built an Ergodic model in which every state was connected
to every other state, and the state transition probabilities were
initialized by k-means clustering.

After applying classification algorithms, the next task was how
to compare their results correctly. In our experiments, we had only
two decisions to make; that is, classify a trace in a test set as
normal or anomalous. In machine learning [31], usually the
performance of classifiers is evaluated using true positives (TP)
and false positives (FP). TP occurs when a normal trace in a test

3
 http://www.doc.gold.ac.uk/~mas02mg/software/hmmweka/

set is classified as normal. FP occurs when an anomalous traces in
a test set is classified as normal. We measured TP rate and FP rate
by following two equations:

Equation 3: True positive rate.

Equation 4: False positive rate.

 Another important characteristic to evaluate the results of
machine learning algorithms is the Receiver Operating
Characteristics (ROC) curve. The ROC curve depicts the
performance of a classifier without regard to class distribution or
error cost [31] by plotting the TP rate against the FP rate.
However, often there is no clear better ROC curves of classifiers in
the entire range of FP rate and TP rate. In such situations, the area
under the curve of ROC (simply AUC) provides a single number
summary for the performance of a classifier [20]. Ling et al. [20]
also formally proved that AUC is a better measure than accuracy,
and the classifiers which produce better AUC also yield better
accuracy. AUC is measured as [20]:

Where N is the number of normal traces in the test set, A is the

number of anomalous traces in the test set, Sp = ri and ri is the rank of

ith positive example.

Equation 5: AUC: Area Under the ROC Curve.

In short, the larger the area under the curve (AUC), the better
would be the classifier‘s model [31]. The AUC is actually the
measure of the quality of ranking and can be interpreted as the
probability that the classifier ranks a randomly chosen positive
instance above a randomly chosen negative instance. In our

experiments TP rate, FP rate and AUC were measured using
Weka.

VI. RESULTS

In this section, we show the results for identification of
anomalous and normal software behaviour of Gzip, Grep, Flex and
Sed programs using user space and kernel space traces. (See
Section III for a refresher on the subject programs and trace

collection.) In Section VI.A, we show the results on user space and
kernel space traces by training the classifiers on both normal and
anomalous traces. In Section VI.B, we show the results by training
classifiers only on normal traces. Finally, Section VI.C
summarizes the results.

A. Results of Classifiers When Trained on Both Normal and

Anomalous Traces

In Table 3, we show the TP rate, FP rate and AUC of six
classification algorithms (C4.5 decision tree, Naïve Bayes,
Bayesian network, multilayer perceptron, support vector machine,
and hidden Markov model) on the function call level traces of the
Flex, Grep, Gzip and Sed programs. The results are obtained by
using three fold cross validation (see Section IV.A).

For example, when the C4.5 decision tree was applied on the
user space traces of the program Flex, the TP rate was 0.924, FP
rate was 0.099 and AUC was 0.925. Similarly the results can be
interpreted for other algorithms and programs in Table 3. A special
case occurred in the case of HMM when most of the traces, from
54% to 88%, remained unclassified for the subject programs. This
resulted in low false positive rate as Weka [31] counted FP and TP
of those traces which were assigned a normal or anomalous labels;
unclassified traces were not included by Weka. However, this
resulted into lower accuracy and lower AUC values.

 In a similar manner to user space traces, we have also
evaluated the six classifiers on kernel space traces. The results are
shown in Table 4. In Table 4, the results are obtained by training
the classifiers on extracted ―elements‖ from LTTng traces as
mentioned in Section IV.B. In the case of HMM, similar to user
space traces, some of the traces in the test set remained
unclassified (from 0.4% to 2%).

It can be observed both from Table 3 and Table 4 that the
results obtained using kernel space traces are better than user space
traces. In order to ascertain this, we performed a Wilcoxon singed
rank test [32] between AUC values of six classifiers on four
subject programs of kernel space and user space traces (i.e., 24

observations for both type of traces). We chose AUC values
because in the case of HMM, TP and FP values were not
completely representative of all the traces in the test set. We chose
the Wilcoxon signed rank test because the dataset was small and it
was not known if the data belonged to a normal distribution. We
state null hypothesis as ―there is no significant difference between
the AUC values obtained for user space traces and kernel space
traces at the significance level (alpha) 0.05.‖

Table 3: Results of the classification algorithms on user space (function call) traces of the subject programs.
Where NB = Naïve Bayes; BBN= Bayesian Belief network; MP= Multilayer Perceptron; SVM=Support Vector Machine; HMM= Hidden Markov Model

 C4.5 NB BBN MP SVM HMM

Prog. TP FP AUC TP FP AUC TP FP AUC TP FP AUC TP FP AUC TP FP AUC

Flex 0.924 0.099 0.925 0.159 0.053 0.609 0.371 0.145 0.675 0.981 0.804 0.646 0.721 0.323 0.699 0.706 0 0.416

Grep 0.96 0.044 0.992 0.921 0.227 0.919 0.96 0.044 0.992 0.95 0.113 0.972 0.935 0.075 0.93 0.122 0 0.428

Gzip 0.967 0.02 0.974 0.698 0.594 0.663 0.939 0.035 0.989 0.528 0.144 0.819 0.962 0.015 0.974 0.727 0.258 0.471

Sed 0.849 0.693 0.714 0.321 0.151 0.630 0.61 0.331 0.694 0.819 0.711 0.72 0.808 0.759 0.524 0.964 0.917 0.651

Table 4: Results of the classification algorithms on kernel space traces of the subject programs.
Where NB = Naïve Bayes; BBN= Bayesian Belief network; MP= Multilayer Perceptron; SVM=Support Vector Machine; HMM= Hidden Markov Model

 C4.5 NB BBN MP SVM HMM

Prog. TP FP AUC TP FP AUC TP FP AUC TP FP AUC TP FP AUC TP FP AUC

Flex 1.00 0.002 0.998 1.00 0.002 0.999 0.993 0.004 0.999 0.998 0.002 1.00 0.998 0.002 0.998 1.00 0.002 0.996

Grep 0.977 0.027 0.981 1.00 0.114 0.942 0.994 0.082 0.996 0.961 0.075 0.992 0.955 0.037 0.959 0.87 0.008 0.913

Gzip 0.953 0.034 0.953 0.682 0.338 0.717 0.883 0.059 0.950 0.963 0.049 0.972 0.963 0.039 0.962 0.256 0.079 0.528

Sed 0.918 0.337 0.813 0.492 0.133 0.727 0.91 0.313 0.872 0.943 0.277 0.863 0.929 0.289 0.82 0.424 0.303 0.548

A Wilcoxon [32] signed rank test on 24 AUC observations of
classifiers between kernel space and user space tracing resulted
into Z=3.371 and two sided p=0.001 < 0.05. This means the null
hypothesis is rejected as p < 0.05 and identification of normal and
anomalous behaviour can be done accurately with kernel space
tracing than user space tracing. Kernel space tracing is better when
classifiers are trained on both normal and anomalous traces.

We also measured the standardize effect size of AUC between
kernel space tracing and user space tracing. Nakagawa [24]
mentioned that the advantage of using standardized effect size is
that results are comparable across different studies even with
different sample sizes [24]. In our case, we calculated the effect
size using the Cohen‘s d measure [6] and the effect size is 0.866
between kernel space tracing and user space tracing. It can be
interpreted as the average AUC values obtained using kernel space
tracing will be 0.866 standard deviations above than the average
AUC values of user space tracing. In terms of percentile standing
[6], the results are interpreted as the average result obtained using
the kernel space tracing would be better than more than 79%
results of user space tracing when identifying normal-anomalous
software behaviour using classification algorithms.

In a similar manner to the comparison of user space and kernel
space tracing we also compared classification algorithms using the
Wilcoxon [32] signed rank test. We selected the AUC values of
both kernel space and user space tracing for every classifier. This
resulted into eight observations for each classifier. The p values
obtained using Wilcoxon signed rank test for every pair of
algorithms are shown in Table 5.

Table 5: P values obtained using Wilcoxon signed rank test for

pair wise comparison of classifiers.

 HMM SVM MP BBN NB

C4.5 0.012 0.116 0.779 1.00 0.017

NB 0.025 0.123 0.012 0.018

BBN 0.012 0.093 0.401

MP 0.012 0.484

SVM 0.036

In statistics, if more than one comparison is performed than
statistical significance is often measured using Bonferroni
correction. In Bonferroni correction, the significance level alpha is
divided by n (alpha/n) then p value is tested at that significance
level. The reason is that if ‗n‘ tests are performed then there is a
random chance that at least one of them out of ‗n‘ will be
significant. In our case ‗n‘ is five as there are five comparisons,
which means the new alpha level is 0.01. At this alpha level no
significant difference exists between the AUC values of all the
classifiers in Table 5, as p > 0.01.

However, Nakagawa [24] argued that using Bonferroni
correction reduces statistical power and increases the chances of
Type II error (false negative) to unacceptable level. Therefore they
[24] suggested that the emphasis should be placed more on
(standardized) effect sizes and practical significance related to the
field of study. We can also observe from Table 5 (and from Table
4 and Table 3 too) that HMM did not perform better than other
algorithms at alpha=0.05. Thus, we measured the effect sizes
between all the classifiers and found out that C4.5 and Bayesian

belief network (BBN) yield closer results and C4.5 results are
better than other classifiers. Due to the lack of space we have
avoided showing effect sizes between all the algorithms; however,
the effect size between C4.5 and BBN is 0.18, C4.5 and NB is
1.09, C4.5 and MP is 0.38, C4.5 and SVM is 0.43, and C4.5 and
HMM is 1.74.

Thus, based on significance test none of the classifiers
performed better than each other, but the measurement of effect
size reveals that C4.5 should be preferred over other classifiers.

B. Results of Classifiers When Trained on Normal Traces

Recall from Section IV.C, we used one-class classifier [15] to
train all the two-class classifiers we studied (except HMM) on
normal traces. The test sets contained both normal and anomalous
traces. The TP rate, FP rate and AUC for one-class classification
are shown in Table 6 for user space traces and in Table 7 for kernel
spaces traces. These results are also obtained using three fold cross
validation. A well known problem in one-class classification
(called anomaly detection) is high rate of false positives. This can
also be observed in both Table 6 and Table 7. If you take a close
look then the results obtained using kernel space traces are better
than user space traces, and multilayer perceptron (artificial neural
network) outperforms other algorithms as it has a high AUC than
other classifiers—in some cases close to 1.00.

We again conducted a Wilcxon signed rank test on AUC
values for both kernel and user space traces at alpha = 0.05. A
Wilcoxon sign test with 24 observations resulted into Z= 2.073 and
(two sided) p=0.03 < 0.05. This implies that there is a significant
difference between the results obtained using kernel space traces
and user space traces when classifiers were trained on only normal
class—kernel space tracing yield better results with an effect size
[6] of 0.51 (69% in percentile standing) over user space traces.

A Wilcoxon signed rank test, in a similar manner to Section
VI.A with Bonferroni correction, resulted into no significant
difference among classifiers. Due to lack of space we omitted the
details of the tests. However the effect size reveals us that
multilayer perceptron fares better than other classifiers when
trained only on normal traces. The standardized effect size using
Cohen‘s d measure [6] between multi layer perceptron (MP) and
C4.5 is 0.557, MP and NB is 0.57, MP and BBN is 1.18, MP and
SVM is 1.17. Thus based on the effect size we can say that multi
layer perceptron is better than other classification algorithms
studied in this section; however, again there is no significant
difference among classifiers in general.

C. Summary of Results

In this paper we raise two research questions (Q1) and (Q2)
(see Section I) and our results answer them as:

 Kernel space tracing can detect anomalous (failing) software
behaviour better than user space tracing. The average result
obtained using the kernel space tracing would be better than
more than 69%-79% results of user space tracing (see Section
VI.A and VI.B) when identifying anomalous software
behaviour. This answers (Q1). Moreover our data shows that,
after selecting relevant information for evaluation, the file sizes
of kernel space traces of a program were 40-60% smaller than
user space traces of the same program. Similarly the training
time of different algorithms for kernel space tracing was 30-70%
lesser than user space tracing.

 According to statistical significance test, six classification
algorithms yield same results and any one can be substituted
with another (see Section VI.A and VI.B) when identifying
anomalous software behaviour. This answers (Q2).

VII. THREATS TO VALIDITY

In this section we describe threats to validity of our
experiments according to four categories: conclusion validity,
internal validity, construct validity, and external validity [32].

A threat to the validity of our conclusions exists because we
use the traces of multiple faults for classification, rather than the
traces of single faults. Accuracy could be different between traces
of single faults and passing traces. However, this threat is
mitigated by evidence in the literature that variability of execution
profiles increase with multiple faults which actually decreases the
discriminating strength of passing-failing traces[36]. This means
with traces of single faults the accuracy will be higher.

A threat to internal validity exists in the collection of traces
and implementation of programs. This is because we automated
this procedure by writing shell scripts and Java code. We have
minimized this threat by manually investigating the outputs.

A threat to construct validity exists in how we measured
normal behaviour and anomalous behaviour. We collected passing
traces when there were no faults in a program and failing traces
when the programs were seeded with faults. Another approach is
to collect passing traces from the program containing faults when
test cases did not fail and failing traces from the same faulty
program when test cases failed. This threat is mitigated by the fact
that in the later approach different test cases fail and pass on a
program resulting in discriminating execution flow, and hence will
result in higher accuracy than the former approach. In the former
approach same test cases pass and fail and the discriminating
strength could be less in some situations.

A threat to external validity exists in generalizing the results of
this study as we have only experimented on medium size
commercial programs, and evaluation on large industrial
applications is yet to be done.

VIII. CONCLUSION AND FUTURE WORK

Time spent in corrective maintenance (30-60%)[27][19] often
exceeds the time spent in other activities of software maintenance.
Prior researchers [26][10][3][14][21][5][23] have proposed variety
of techniques using different type of algorithms on user space
tracing (e.g., function calls) to reduce this time. Prior researchers
focusing on software security [29][34][30][13][35] have also used
different machine learning algorithms on kernel space tracing to
classify normal-anomalous software traces—these techniques can

be used to reduce the time spent in corrective maintenance.
However, a comparison of user space and kernel space tracing
does not exist in the literature. The primary research question of
this paper is: (1) Can kernel space tracing be used to classify pass-
fail traces of a program with the same accuracy as user space
tracing? We evaluated six different classifiers on kernel space and
user space traces to find out that kernel space tracing yields better
accuracy than user space tracing (see Section VI). In fact the
average result obtained using the kernel space tracing would be
better than more than 69%-79% results of user space tracing (see
Section VI.A and VI.B). We also identified a secondary research
question during our experiments: (2) Can we substitute one
classification algorithm with another without affecting the
accuracy of classification of normal-anomalous traces? Our results
show that (see Section VI) no classifier yields better results than
other classifiers according to significance test; however, according
to effect size, the C4.5 algorithm yields better results than other
algorithms in two-class classification (see Section VI.A) and the
multilayer perceptron produces better results (see Section VI.B)
than other algorithms in one-class classification.

 Our findings are limited to evaluation on medium size
programs. In future, we would like to extend the scope of these
findings to large industrial scale applications.

Acknowledgment: This research is partly supported by the
Natural Sciences and Engineering Research Council of Canada
(NSERC) and Defence R&D Canada (DRDC), Valcartier, QC.

IX. REFERENCES

[1] J. A. Jones, M. J. Harrold A. Orso, "Visualization of program-

execution data for deployed software," in Proc. of the ACM

symposium on Soft. Visualization, San Diego, USA, June 2003,

pp. 67-76.

[2] M. Naik, A. X. Zheng, A. Aiken, M. I. Jordan B. Liblit,

"Scalable statistical bug isolation," in Proc. of Conf. on

Programming Language Design and Implementation, Chicago,

USA, June 2005, pp. 15-26.

[3] J.F. Bowring, J.M. Rehg, and M.J Harrold., "Active Learning

for Automatic Classification of Software Behavior," SIGSOFT

Soft. Eng. Notes, vol. 29, no. 4, pp. 195-204, July 2004.

[4] M. Brodie et al., "Quickly Finding Known Software Problems

via Automated Symptom Matching," in Proc. of Second Int’l

Conf. on Autonomic Computing, Seattle, USA, June 2005, pp.

101-110.

[5] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K

Vaswani, "HOLMES: Effective Statistical Debugging via

Efficient Path Profiling," in Proc. of 31st Intl. Conf. on Soft.

Eng., Vancouver, Canada, May 2009, pp. 34-44.

Table 6: Results of the classification algorithms when trained on normal user space traces only.

 C4.5 NB BBN MP (ANN) SVM

Prog. TP FP AUC TP FP AUC TP FP AUC TP FP AUC TP FP AUC

Flex 0.996 0.996 0.500 0.917 0.765 0.577 0.998 0.998 0.500 0.924 0.767 0.578 1.000 1.000 0.500

Grep 1.000 0.999 0.501 0.611 0.496 0.584 1.000 1.000 0.500 0.912 0.635 0.751 1.000 1.000 0.500

Gzip 0.976 0.995 0.491 0.444 0.418 0.500 1.000 1.000 0.500 0.877 0.842 0.515 1.000 1.000 0.500

Sed 0.997 1.000 0.499 0.621 0.608 0.515 0.997 1.000 0.499 0.896 0.886 0.509 1.000 1.000 0.500

Table 7: Results of the classification algorithms when trained on normal kernel space traces only.
 C4.5 NB BBN MP (ANN) SVM

Prog. TP FP AUC TP FP AUC TP FP AUC TP FP AUC TP FP AUC

Flex 1.000 0.002 0.999 0.954 0.332 0.811 1.000 1.000 0.500 0.926 0.000 0.972 1.000 1.000 0.500

Grep 1.000 1.000 0.500 1.000 0.807 0.597 1.000 1.000 0.500 0.882 0.110 0.953 1.000 1.000 0.500

Gzip 1.000 1.000 0.496 1.000 1.000 0.497 1.000 1.000 0.491 1.000 1.000 0.510 1.000 1.000 0.505

Sed 0.000 0.000 0.500 0.932 0.958 0.516 1.000 1.000 0.500 0.863 0.837 0.540 1.000 1.000 0.500

Where NB = Naïve Bayes; BBN= Bayesian Belief network; MP= Multilayer Perceptron; SVM=Support Vector Machine; HMM= Hidden Markov Model

[6] J. Cohen, Statistical power analysis for the behavioral sciences,

2nd ed. NJ, USA: Lawrence Earlbaum Associates, 1988.

[7] N. Devillard and V. Chudnovsky. (2004, March) Etrace--

Runtime Tracing Tool. [Online]. http://ndevilla.free.fr/etrace/

[March,2008]

[8] X. Ding, H. Huang, Y. Ruan, A. Shaikh, and X. Zhang,

"Automatic Software Fault Diagnosis by Exploiting Application

Signatures," in Proc. 22nd Conf. on Large Installation System

Admin., San Diego, USA, Nov. 2008, pp. 23-39.

[9] H. Do, S. G. Elbaum, and G. Rothermel, "Supporting controlled

experimentation with testing techniques: An infrastructure and

its potential impact," Journal of Empirical Soft. Eng., vol. 10,

no. 4, pp. 405-435, Oct. 2005.

[10] S. Elbaum, S. Kanduri, and A. Andrews, "Trace anomalies as

precursors of field failures: an empirical study," Journal of

Empirical Soft. Engg., vol. 12, no. 5, pp. 447-469, Oct. 12.

[11] J. L. Elman, "Finding structure in time," Cognitive Science, vol.

14, no. 2, pp. 179-211, April 1990.

[12] S. Forrest, S.A. Hofmeyr, A. Somayaji, and T.A. Longstaff, "A

sense of self for Unix processes," in Proc. of the 1996 IEEE

Symp. on Security and Privacy, Washington, DC, USA, May

1996, pp. 120-128.

[13] A. K. Ghosh, C. Michael, M. Schatz, and l, "A Real-Time

Intrusion Detection System Based on Learning Program

Behavior," in Proc. of the third Intl. Workshop on Recent

Advances in Intrusion Detection, Toulouse, France, Oct. 2000,

pp. 93-109.

[14] M. Haran et al., "Techniques for Classifying Executions of

Deployed Software to Support Software Engineering Tasks,"

IEEE Trans. on Soft. Engg., vol. 33, no. 5, pp. 287-304, May

2007.

[15] K. Hempstalk and I. H. Witten E. Frank, "One-class

Classification by Combining Density and Class Probability

Estimation.," in Proc.12th European Conf. on Principles and

Practice of Knowledge Discovery in Databases, Berlin, 2008,

pp. 505-519.

[16] X. D. Hoang, J. Hu, and and P. Bertok., "A program-based

anomaly intrusion detection scheme using multiple detection

engines and fuzzy inference," J. Netw. Comput. Appl, vol. 32,

no. 6, pp. 1219-1228, Nov. 2009.

[17] S. A. Hofmeyr, S. Forrest, and and A. Somayaji, "Intrusion

detection using sequences of system calls," J. Comput. Security,

vol. 6, no. 3, pp. 151-180, Aug. 1998.

[18] G. Jiang and C. Ungureanu, and K.i Yoshihira H. Chen, "Multi-

resolution Abnormal Trace Detection Using Varied-length N-

grams and Automata," in Proc. 2nd Intl. Conf. on Automatic

Comp., Seattle, USA, June 2005, pp. 111-122.

[19] M. G. Lee and T. L. Jefferson, "An Empirical Study of Software

Maintenance of a Web-based Java Application," in Proc. of Int’l

Conf. on Soft. Maint. (ICSM), Budapest, Hungary, Sep. 2005,

pp. 571-576.

[20] C. X. Ling, J. Huang, and H. Zhang, "AUC: a statistically

consistent and more discriminating measure than accuracy," in

Proc. 18th Intl. Conf. on Artificial Intelligence (IJCAI'03),

2003, pp. 519-524.

[21] C. Liu and J. Han, "Failure proximity: a fault localization-based

approach," in Proc. of 14th SIGSOFT Sym. on Foundations of

Software Engineering, Portland, USA, Nov. 2006, pp. 45-56.

[22] LTTng. (2011) http://lttng.org/.

[23] S. S. Murtaza, M. Gittens, and Z., Madhavji, N. H. Li, "F007:

Finding Rediscovered Faults from the Field using Function-

level Failed Traces of Software in the Field," in Proc. of

CASCON 2010, Toronto, Canada, Oct. 2010, pp. 57-71.

[24] S. Nakagawa, "A farewell to Bonferroni: the problems of low

statistical power and publication bias," Behavioral Ecology, vol.

15, no. 6, pp. 1044-1045, 2004.

[25] A. Patcha and J.,M. Park, "An overview of anomaly detection

techniques: Existing solutions and latest technological trends,"

Computer Networks, vol. 51, no. 12, pp. 3448-3470, Aug. 2007.

[26] A. Podgurski et al., "Automated Support for Classifying

Software Failure Reports," in Proc. Intl. Conf. on Software

Eng., Portland, US, May 2003, pp. 465-475.

[27] S. R. Schach, B. Jin, L. Yu, G. Z. Heller, and J. Offutt,

"Determining the Distribution of Maintenance Categories:

Survey versus Measurement," Journal of Empirical Soft. Engg.,

vol. 8, no. 4, pp. 351-365, Dec. 2003.

[28] Tandon, G., "Machine Learning for Host-based Anomaly

Detection," Florida Institue of Technology, Melbourne, Florida,

USA, Ph.D. thesis 2008.

[29] W. Wang, X. H. Guan, and X. L. Zhang, "Modeling program

behaviors by hidden Markov models for intrusion detection," in

Proc. of Intl. Conf. on Machine Learning and Cybernetics,

Shanghai, China, Aug. 2004, pp. 2830-2835.

[30] C. Warrender, S. Forrest, and B. Pearlmutter, "Detecting

intrusions using system calls: alternative data models," in Proc.

of 1999 IEEE Symposium on Security and Privacy, Oakland,

USA, May 1999, pp. 133-145.

[31] I. H. Witten and E. Frank, Data Mining: Practical Machine

Learning Tools and Techniques. USA: Morgan Kaufmann

Publisher, 2005.

[32] C. Wohlin et al., Experimentation in Software Engineering: An

Introduction. Norwell, USA: Kluwer Academic Pub., 2000.

[33] D. Y. Yeung and Y Ding., "Host-based intrusion detection using

dynamic and static behavioral models," Pattern Recognition,

vol. 36, no. 1, pp. 229-243, Jan. 2003.

[34] D. Y. Yeung and D. Yuxin, "Host-based intrusion detection

using dynamic and static behavioral models," Pattern

Recognition, vol. 36, no. 1, pp. 229-243, Jan. 2003.

[35] D. Yuxin, Y. Xuebing, Z. Di, D. Li, and A. Zhanchao, "Feature

representation and selection in malicious code detection

methods based on static system calls," Computers & Security,

pp. in-press, 2011.

[36] A. Zahalka, K. Goševa-Popstojanova, and J. Zemerick,

""Empirical Evaluation of Factors Affecting Distinction

between Failing and Passing Executions," in Intl. Symp. on Soft.

Reliability Engg., San Jose, USA, Nov. 2010, pp. 259-268.

