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Abstract 
Recovering behavioral design models from execution 

traces is not an easy task due to the sheer size of typical 
traces. In this paper, we describe a novel technique for 
achieving this. Our approach is based on filtering traces 
by distinguishing the utility components from the ones 
that implement high-level concepts. In the paper, we first 
define the concept of utilities; then we present an 
algorithm based on fan-in analysis that can be used for 
the detection of utilities. To represent the high-level 
behavioral models, we explore the Use Case Map (UCM) 
notation, which is a language used to describe and 
understand emergent behavior of complex and dynamic 
systems. Finally, we test the validity of our approach on 
an object-oriented system called TConfig.  

1. Introduction 
Dynamic analysis consists of understanding the 

behavior of a software system by analyzing the data 
generated from executing its features.  

Lately, there have been an increasing number of tools 
for analyzing traces generated from object-oriented (OO) 
systems [4, 5, 9, 12, 14, 18, 22]. This growing interest has 
been driven by the fact that OO concepts such as 
polymorphism and dynamic binding complicate the 
process of merely applying static analysis of the source 
code to understand such systems [19].  

To deal with the sheer size of typical traces, most 
existing tools rely on interactive features such as enabling 
the hiding of specific components, facilitating search of 
the traces, detecting patterns of execution, etc. The 
problem is that it is totally up to the analyst to combine 
all these features in order to manipulate the trace and 
reach the desired level of abstraction. This is usually hard 
to accomplish.  

In this paper, we propose an approach for recovering 
behavioral design models from execution traces based on 
the removal of utility components. For this purpose, we 
describe an algorithm based on fan-in analysis for the 
detection of utilities.  

To represent the resulting behavioral design models, 
we selected the Use Case Map (UCM) notation instead of 
the UML sequence diagram that has been extensively 
applied in this context. UCMs are part of the ITU-T 
family of languages for describing functional 
requirements and high-level designs [1, 6]. UCMs focus 
on causal sequences of responsibilities and abstract from 
message exchanges. The motivation behind using UCMs 
is further presented in Section 2.3.  

To validate our approach, we analyzed an execution 
trace of an OO system called TConfig [20, 21]. The 
results were validated by the main designer of TConfig. 

 The rest of this paper is organized as follows: the next 
section describes our approach, which includes a brief 
discussion of the traces used in this paper, the detection 
of utilities based on fan-in analysis, and a mapping 
between trace components and UCM elements. In Section 
3, we present the results of analyzing the execution trace 
of TConfig. 

2. Approach 
Figure 1 illustrates the approach described it this paper 

for recovering UCMs from execution traces. The main 
steps are: 

1. We generate the execution traces that correspond 
to the software features under study. 

2. We filter the traces by removing low-level 
implementation details such as utilities. In 
section 2.2, we discuss how we detect utilities.  

3. We extract UCMs from the resulting traces. In 
section 2.3, we discuss how trace elements can be 
mapped to UCM elements. 

4. We validate the results with the original 
developers of the systems. 

The validation step might lead to further filtering of 
the trace if the software engineer judges that the trace still 
contains too much detail.  



2.1. Traces of Method Calls  
To reproduce the execution of an object-oriented 

system, one needs to collect at least the events related to 
object construction and destruction, plus method entry 
and exit [3]. Traces, once generated, are usually saved in 
text files. A trace file contains a sequence of lines in 
which each line represents an event. An example of this 
representation is given by Richner and Ducasse in [12]. 
Each line records: The class of the sender, the identity of 
the sender, the class of the receiver, the identity of the 
receiver, and the method invoked.  

 

 

 

 

 

 

 

 

 

Figure 1. Approach for recovering UCMs 

However, one of the main characteristics of the UCM 
notation consists of showing guard conditions. Therefore, 
in addition to method entry and exit, we also keep track 
of the conditions that are executed.  

Figure 2 shows an example of a sample trace where 
specific objects are substituted by their class type – the 
term trace of class interactions would be more appropriate 
in this case. The figure shows an object of the class 
Screen that calls its init method, which in turn creates an 
instance of the class Shape and calls its update method. 
The update method calls the draw and refresh methods if 
the fitsScreen condition is evaluated to true.  

Screen.init()

Shape.Shape()

Shape.update()

Shape.draw()

Shape.refresh()

<fitsScreen = true>

 
Figure 2. Trace of method calls with guard conditions 

2.2. Detecting Utilities 
In our previous work, we studied the concept of utility 

components and how they differ from the other system 
components [7]. This study was conducted at QNX 
Software Systems (the company that supports our 
research) and involved more than twenty software 
engineers. Based on the results of this study, we define a 
utility as: Any element of a program designed for the 
convenience of the designer and implementer and 
intended to be accessed from multiple places within a 
certain scope of the program.  

Many utilities will be designed to be reused in 
multiple programs; this definition does not preclude that, 
but does not require it. Also the definition allows a utility 
to be a method, class, package or some other element, and 
to be accessed from a scope that could be as narrow as a 
class or as wide as the entire system. A key to the 
definition is that a utility will be accessed from an 
unknown number of places, not just one. The definition 
allows such things as accessing methods to be considered 
utilities, and does not require utilities to be grouped in 
any way, although it does not preclude that.  

In order to detect utility components, we have 
developed an algorithm that is based on fan-in analysis. 
Although most of the concepts presented here can easily 
apply to detecting various types of utilities (e.g., utility 
methods, packages, etc.), the rest of this subsection 
focuses on detecting utility classes for simplicity reasons.  

The fan-in analysis technique is based on the 
exploration of the class dependency graph built from 
static analysis of the system. It is used to extract the 
classes that have a large number of incoming edges (i.e., 
many dependents). Computing fan-in is a typical way for 
achieving this as it has already been shown in areas such 
as software clustering [11, 16]. However, there is a need 
to adjust this metric in order to consider the scope of a 
utility. Obviously, using the same threshold for detecting 
system-scope utilities as well as utilities that belong to 
specific subsystems would be ineffective.  

The class dependency graph is a directed graph where 
the nodes are the system’s classes and the edges represent 
a dependency relationship among the classes as shown in 
Figure 3. Building a complete class dependency graph 
may require parsing the source code (or bytecode files). 
There are several types of static dependencies that may 
exist between two given classes including method calls, 
generalization, realization, etc. Additionally, the edges 
might be weighted to represent the number of 
dependencies that exist between two given classes.  

To measure the extent to which a particular class can 
be considered a utility, we suggest the following 
utilityhood metric:  
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Given a class C and the following sets: 

 S = Set of classes considered in the analysis 

 IN = A subset of S that consists of the classes that 
depend on C (fan-in).  

We define the utilityhood metric, U, of the class C as:  

 U = |IN| / (|S|-1) 

S is used to represent the scope considered in the 
computation of U. For example, if we are looking for 
system-level utilities, then S will contain all the system’s 
classes. However, if the search for utilities is restricted to 
a particular package, then S can be designated to contain 
the classes of this particular package only. 

C1

C2 C4

C5

C6

C7

C3

 

Figure 3. Class dependency graph 

U ranges from 0 to 1. 0 indicates that the class has no 
incoming edges. If the scope is the entire system then the 
class that scores 0 must contain the entry point of the 
system (or it is an unreachable class). If U is equal to 1 
then the class is called by all other classes of S which is a 
strong indicator that it is a utility class. Note that self 
dependencies are not considered which explains |S| - 1. 

Given the utilityhood metric and the class dependency 
graph, the algorithm for detecting utility classes is rather 
straightforward. The steps of the algorithm can be 
summarized as follows: 

1. Set utility_set (the set of utility classes) to empty 

2. For every class C of the set S: Compute U 

3. Identify the classes that have a U value greater 
than or equal to a threshold D (that we will discuss 
later) and add them to utility_set.  

4. The classes that are in utility_set are the candidate 
utility classes. 

Step 1 simply creates an empty set that will contain the 
candidate utility classes. Step 2 computes the utilityhood 
metric (U) for every class of the set S. Step 3 identifies 
the classes with a U value greater than or equal to a 
certain threshold D. Suitable values of D need to be 
determined by conducting experiments with different 

systems. We anticipate that each system might have its 
own threshold, and that software engineers exploring 
systems will dynamically change D in order to vary the 
amount of detail displayed. The final step (Step 4) of the 
algorithm outputs the resulting utility classes. 

 Table 1 shows the result of computing |IN| and U for 
every class of the class dependency graph of Figure 3. S 
contains all the classes that appear in the graph. We used 
the standard deviation to easily spot the classes with a U 
value that deviates significantly from the other values. To 
standardize the results, the z-score was used [15]. The 
classes that have a large and positive Z value are possible 
utilities. Note that the components that have a negative Z 
value are the ones that have a very low number of 
incoming edges, which discounts them from being 
candidate utilities.  

For example, Table 1 clearly shows that the class C2 
has a positive Z value: its U value deviates with 2 
standard deviations from the mean, since it has a much 
larger number of incoming edges (fan-in) compared to 
other classes. This strongly suggests it is a utility class. 
However, the class C1 deviates with 1 standard deviation 
from the mean on the negative side, which strongly 
suggests it is not a utility. In this case C1 has 0 incoming 
edges. 

Table 1. Example of applying fan-in analysis 

 |IN| U Z 
C1 0 0.00 -1.00 
C2 6 1.00 2.00 
C3 1 0.17 -0.50 
C4 1 0.17 -0.50 
C5 3 0.50 0.50 
C6 2 0.33 0.00 
C7 1 0.17 -0.50 
 MEAN 0.33 0 
 STDEV 0.33 1 

However, U (and its corresponding Z value) is not the 
only parameter that needs to be considered for efficient 
detection of all utilities. It is important to consider how a 
redefinition of the set S can be used to detect utilities that 
exist in scopes narrower that the entire system. For 
example, suppose that the classes C4, C5, C6 and C7 of 
Figure 3 belong to the same package P and that we want 
to detect possible utility classes that exist within P.  

Table 2 shows the result of computing |IN| given that 
the redefined S contains the classes of the package P 
only. The class C5 has a large fan-in compared to the 
other classes of the package P. This is also indicated by 
its Z-score.  

It is clear that we need to conduct empirical studies to 
determine an appropriate threshold that will clearly 



distinguish utilities from the other system’s components. 
However, even if such a threshold exists we will still 
need to allow enough flexibility so as the analyst can 
adjust the amount of information contained in the traces 
according to his or her needs. This is because, what might 
be a utility for one maintenance task might not be for 
another task. 

One shortcoming of this approach is when it is applied 
to systems that have a poor design. The problem is that 
the scope of the components might be hard to determine 
since it may not be clearly reflected in the source code. 
For example, some classes might be placed in the wrong 
packages. For this purpose, there is a need to investigate 
techniques that are independent from the scope attribute. 
We leave this point as future work. 

Table 2. Fan-in analysis applied to a specific package 

 |IN| U Z 
C4 0 0.00 -0.99 
C5 3 1.00 1.39 
C6 1 0.33 -0.20 
C7 1 0.33 -0.20 
 MEAN 0.42 0 
 STDEV 0.42 1 

2.3. Representing Traces Using UCMs 
Use Case Maps [6] allow one to model system 

behavior in terms of causal flows of responsibilities, 
which are activities that can be allocated to system 
components.  

We chose to use UCMs since they are a rich 
requirements-level notation for showing at a glance the 
various control-flow possibilities in a system. Unlike 
UML 1.x sequence diagrams, UCMs abstract from inter-
component communication to focus on the business logic. 
Like activity diagrams, they can integrate many scenarios 
with operators for looping and for forking and joining 
alternative or concurrent paths. Complex maps can also 
be decomposed into sub-maps (with stubs).  

UCMs can also represent the system architecture in a 
2-dimensional way, with components containing sub-
components (in a way more understandable than what can 
be achieved with UML 2.0 swimlanes). Moreover, the 
UCM notation has special operators for describing timers 
and for creating and manipulating objects (dynamic 
responsibilities). Additionally, stubs may also contain 
multiple sub-maps. This allows for flexible integration 
and exploration of scenarios that have overlapping parts. 

A first attempt at using UCMs for program 
understanding is presented in [2]. The authors based their 
approach on the static generation of scenarios from 
manually tagged elements in the code, which is more 

cumbersome and less prone to automation than the 
dynamic approach suggested here. 

Table 3 shows how we map traces to the various UCM 
concepts. The case study described in the next section 
will provide illustrations of typical UCMs for a single 
trace. 

Table 3. Mapping from traces to UCMs 

Trace element UCM element 
Package Component (Agent), shown as a 

rectangle with thick border. 
Class Component (Team), shown as a 

rectangle with narrow border. 
Object Component (Object), shown as a 

rounded-corner rectangle. 
Thread Component (Process), shown as a 

parallelogram. 
Beginning / 
End of trace

Start point (circle) / End point (bar) 
(also used as connectors for linking 
sub-scenarios to the parent stub) 

Instruction Responsibility (shown as a X on a 
path) 

Block of 3 or 
more 
instructions in 
the same 
class/object 

Stub (diamond) with the name of the 
first instruction that is not a 
constructor. This stub contains a plug-
in (another sub-map) showing the 
sub-sequence with one responsibility 
per instruction. 

Constructor Dynamic responsibility (arrow with +) 
Destructor Dynamic responsibility (arrow with -) 
Repeated 
instruction 

Responsibility with repetition count 
(number between curly brackets) 

Repeated 
sequence 

Loop (with loop count between curly 
brackets) 

Condition Condition (between square brackets) 
Non-
continuous 
repetition 

Plug-in map corresponding to the 
repeated sequence. A stub (with 
repetition count if necessary) using 
this plug-in is inserted in the path each 
time this repetition occurs. 

3. Case Study 
We analyzed an execution trace generated from an 

object-oriented system called TConfig (ver. 2.1) [20, 21].  
TConfig is a Java application used to generate the 
minimum number of test configurations covering 
component interactions of degree n, where n is defined by 
the user. It uses advanced mathematical concepts such as 
fields and Latin squares. TConfig contains 4 packages, 29 



classes, and 407 methods. The size of TConfig is 6.56 
KLOC. 

3.1. Collecting the Traces 
We used our own instrumentation tool based on the 

BIT framework [10] to insert probes at the entry and exit 
points of each system’s non-private methods and branch 
of every condition statement.  Constructors are treated in 
the same way as regular methods. Although the system 
comes with a GUI, we deliberately ignored the GUI 
package to avoid encumbering the traces.  

TConfig’s GUI supports various parameters which 
allow to choose the number of components (and their 
names), the number of values for each component (and 
their names), the coverage degree (n), and the heuristic to 
be used for generating test configurations (recursive 
block or IPO). We decided to analyze the most feature-
rich set of options: named collection of three components 
with two values for each component, pairwise 
interactions (n = 2), and the recursive block heuristic. We 
refer to this feature as the named-recursive feature and 
we refer to the trace that corresponds to it as the named-
recursive trace.  

The trace was generated as the system was running, 
and was saved in a text file containing the following 
information:  

 Thread name 
 Full class name (e.g., base.Value) 
 Method name  
 Condition if it is a condition statement 
 A nesting level that maintains the order of calls 

We noticed that the tool uses only one thread, which 
made us ignore the thread information.  

The initial statistics about the collected trace are 
shown in table 4. The metrics used in the table are 
described in what follows: 

 N = initial size of the trace 

 Nacc = size of the trace after removing accessing 
methods. For this purpose, we used the set and get 
naming convention to detect accessing methods 

 Racc = 1 - Nacc /N  

The initial size, N, of the named-recursive trace is 
1029 which includes the method invocations as well as 
the conditions that were executed. Obviously, this does 
not reflect the size of typical and most interesting traces, 
which can easily go beyond hundreds of thousands of 
invocations. We deliberately choose a small system for 
this preliminary study to confirm the idea that filtering 
based on the detection of utilities is a promising approach 

for future trace analysis techniques. Future work should 
focus on analyzing large traces and investigating more 
sophisticated utility detection techniques.  

The removal of accessing methods results in a trace 
that contains 203 invocations and conditions as 
represented by Nacc. This represents a reduction ratio of 
80%.  

Table 4. Statistics of the named-recursive trace 

Trace N Nacc Racc 
named-recursive 1029 203 80% 

3.2. Processing the trace 
We used fan-in analysis to detect potential utilities that 

can be removed from the named-recursive trace to 
recover the corresponding Use Case Map. For this 
purpose, we proceeded according to two phases. The first 
phase consists of detecting system-scope utilities that we 
simply refer to as global utilities. The second phase aims 
to improve the result of the first phase by removing 
utilities that may exist in specific packages. We refer to 
these utilities as local utilities.  

The result of each phase is presented to the main 
designer of TConfig in the form of a UCM. The objective 
is to evaluate whether the resulting UCM conveys the 
main behavioral aspects of the traced software feature or 
not. In other words, we want to know if the UCM had 
enough information that will allow a designer to 
understand the feature at a high level without diving into 
the details. The expert’s comments are discussed in the 
Section 3.4.  

First phase: Detecting global utilities 

Table 5 shows the results of applying fan-in analysis 
to TConfig classes in order to detect system-scope 
utilities (i.e., S is set to contain all the system’s classes). 
The table is sorted according to the descending order of 
Z.  

Due to the absence of a utility threshold, we are left 
with the only option of removing iteratively the classes 
that have a large Z positive value. The trace resulting 
after each iteration will need to be turned into a UCM and 
presented to the expert for validation. The problem with 
this approach is that we might end up having successive 
iterations that result in traces that do not differ a lot from 
each other. Validating each of these traces will certainly 
be inefficient. To overcome this problem, we use the gain 
in terms of size reached after the removal of a particular 
class (or set of classes if they have identical Z value) to 
help us decide when we need to produce the UCM. In 
other words, if the removal of one class does not result in 
an important reduction of the trace size then we proceed 
with the removal of additional classes before producing 
the corresponding UCM. This will prevent us from 



having several UCMs that are only slightly different from 
each other. 

We applied this technique to the classes of TConfig 
system. The first iteration is concerned with the removal 
of the ‘base.ParameterSet’ class since it is the one that 
has the highest Z value (3.04).  However, the reduction 
ratio attained after removing this class is Rps = 7% (the 
raw number of invocations and conditions is Nps = 188) as 
shown in Table 6.  

Table 5. Applying fan-in analysis to TConfig system 

Class |IN| U Z 
base.ParameterSet 8 0.29 3.04 
base.ConfigurationSet 5 0.18 1.40 
gui.ItemListDialog 5 0.18 1.40 
recursive.Messages 5 0.18 1.40 
recursive.PolyMod 4 0.14 0.85 
recursive.Utility 4 0.14 0.85 
base.Generator 3 0.11 0.30 
base.Messages 3 0.11 0.30 
base.Parameter 3 0.11 0.30 
base.Value 3 0.11 0.30 
gui.TConfigUI 3 0.11 0.30 
recursive.IntMod 3 0.11 0.30 
recursive.RemainderPoly 3 0.11 0.30 
base.Document 2 0.07 -0.25 
gui.ParmSetDialog 2 0.07 -0.25 
gui.ValuesDifferDialog 2 0.07 -0.25 
gui.ValuesSameDialog 2 0.07 -0.25 
ipo.InteractionElement 2 0.07 -0.25 
ipo.TestValue 2 0.07 -0.25 
recursive.Field 2 0.07 -0.25 
gui.ParameterDialog 1 0.04 -0.79 
ipo.IPOGenerator 1 0.04 -0.79 
recursive.LatinSquares 1 0.04 -0.79 
recursive.OrthogonalArray 1 0.04 -0.79 
recursive.RecursiveGenerator 1 0.04 -0.79 
gui.TConfig 0 0.00 -1.34 
gui.TConfigApplet 0 0.00 -1.34 
ipo.IESet 0 0.00 -1.34 
recursive.GFPolynomial 0 0.00 -1.34 
 MEAN 0.09 0 
 STDEV 0.07 1 

Table 6. Results after removing system-scope utilities 

Trace Nacc Nps Rps Ng-util Rg-util 
named-recursive 203 188 7% 99 51% 

We did not attempt to represent the corresponding 
UCM simply because it will look similar to the original 

trace. On the other hand, the removal of the 
‘base.ParameterSet’ in addition to the classes that have 
the second highest Z score namely, ‘base.ParameterSet’, 
‘base.ConfigurationSet’, ‘gui.ItemListDialog’, and 
‘recursive.Messages’ results in a reduction ratio of Rg-util 
= 51% (the number of invocations and conditions Ng-util = 
99) as shown in Table 6. This high reduction ratio is a 
strong indicator that many low-level details have been 
removed from the original trace. Therefore, we have 
decided to transform the resulting trace into a UCM that 
is shown in Figure 4. 

Second phase: Detecting local utilities 

The named-recursive trace invokes methods of two 
packages which are ‘base’ and ‘recursive’. We applied 
fan-in analysis for each of these packages.  

Table 7 shows the result of applying fan-in analysis to 
the ‘recursive’ package. The class ‘recursive.Messages’ 
was already removed during the detection of global 
utilities. Similar to the detection of global utilities, we 
have decided to consider the classes ‘recursive.PolyMod’ 
and ‘recursive.Utility’ as candidate utilities. However, we 
notice from the result of removing global utilities as 
illustrated in Figure 4 that the classes ‘recursive.IntMod’ 
and ‘recursive.RemainderPoly’ are behind many 
interactions. We therefore assume that these are low-level 
interactions and decide to add the two classes to the 
utility set as well. This assumption will need to be 
verified by the expert when validating the resulting UCM. 

Table 7. Applying fan-in analysis to the ‘recursive’ 
package 

Class |IN| U Z 
recursive.Messages 5 0.56 1.53 
recursive.PolyMod 4 0.44 0.96 
recursive.Utility 4 0.44 0.96 
recursive.IntMod 3 0.33 0.40 
recursive.RemainderPoly 3 0.33 0.40 
recursive.Field 2 0.22 -0.17 
recursive.LatinSquares 1 0.11 -0.74 
recursive.OrthogonalArray 1 0.11 -0.74 
recursive.GFPolynomial 0 0.00 -1.30 
recursive.RecursiveGenerator 0 0.00 -1.30 
 MEAN 0.26 0 
 STDEV 0.20 1 

Table 8 shows the result of applying fan-in analysis to 
the ‘base’ package. The class ‘base.ConfiugrationSet’ 
was already removed during the detection of global 
utilities. We next decide to remove the ‘base.Messages’ 
class since it is the one that has a high Z value. We also 
decide to remove the ‘base.Value’ class in an attempt to 
better abstract out the interaction between the Parameter 
class and the Value class.  



Table 8. Applying fan-in analysis to the ‘base’ package 

Class |IN| U Z 
base.Messages 3 0.50 1.61 
base.ConfigurationSet 2 0.33 0.59 
base.Value 2 0.33 0.59 
base.Generator 1 0.17 -0.44 
base.Parameter 1 0.17 -0.44 
base.ParameterSet 1 0.17 -0.44 
base.Document 0 0.00 -1.46 
 MEAN 0.24 0 
 STDEV 0.16 1 

To summarize, the detection of local utilities has 
resulted in the removal of six additional classes, which 
are: ‘base.Messages’, ‘base.Value’, ‘recursive.PolyMod’, 
‘recursive.IntMod’, ‘recursive.RemainderPoly’, and 
‘recursive.Utility’. The removal of local utilities from the 
trace (resulting after the removal of global utilities) 
results in a trace whose size is Nl-util = 66, which 
represents a reduction ratio of Rl-util = 38%. The resulting 
UCM is shown in Figure 5. 

3.3. Generating UCMs 
  We used a tool called UCMNav [17] to draw and 

export the UCMs that were recovered from the named-
recursive trace (Figures 4 and 5). We carefully followed 
the mapping rules in Table 3 to reproduce the UCMs that 
correspond correctly to the content of the traces. Arrows 
were added to some lengthy path segments to clarify their 
direction. Additional plug-in UCMs were generated for 
each stub found in Figures 4 and 5. They include 
sequences of responsibilities capturing blocks of 
instructions in the same class. These more detailed views 
are not shown here for simplicity. 

Although UCMNav allows great flexibility for 
manipulating the various UCMs elements, we hope to be 
able to generate the UCMs automatically from the traces 
in future studies. A standard exchange format for 
representing traces of method calls such as CTF [8] could 
help here. 

3.4. Validating the results 
We showed the UCM that resulted from the removal 

of global utilities (Figure 4) to the expert (who was 
familiar with this notation) to assess whether it was a 
good high-level representation of the traced scenario or 
not. In general, the expert was able to trace the main 
responsibilities of the different components (i.e., classes 
and packages) with respect to the traced scenario. He also 
said that the content of the UCM was a good high-level 

description of the scenario, and he was glad to see the 
loops used for the creation of parameter values. He 
appreciated the layout, especially as he could clearly 
distinguish the input of parameters and the processing 
with a specific heuristic (recursive generation in this 
trace). The expert, who is also familiar with UML 1 and 
UML 2 sequence diagrams and with Message Sequence 
Charts, mentioned that he did not miss the inter-
component interactions (messages) as he was more 
interested in the flow of activities for understanding (and 
explaining) this application. The details of the stubs 
found in the plug-in maps were of limited interest 
compared to the top-level UCMs found in Figures 4 and 
5. 

At a certain point the expert thought that the 
responsibilities confined to the ‘OrthogonalArray’ class 
were too abstract and that we might have removed 
important information. However, after examining the 
source code, he confirmed that the UCM showed what 
was actually happening in the code which was different 
from what he initially thought. We found this last point 
particularly interesting because it suggests that we can 
use dynamic analysis to improve existing program 
comprehension models that are based on static analysis 
only [13].  

However, the expert disagreed with the fact the 
‘base.ConfigurationSet’ class should be completely 
removed from the UCM. According to him, while most 
methods of this class can be considered as utilities, he 
wished that the UCM included two methods of this class: 
mergeConfigurationsWith and mergeParametersWith. 
We attribute the absence of these methods to the fact that 
the analysis is done at the class level rather than the 
method level. Therefore, a class that contains many utility 
methods is automatically considered as a utility class 
although it may contain some methods that are important 
to the understanding of the scenario. Our approach could 
easily be adapted to work at the method level, or a 
combination of class and method level. We leave this for 
future research. 

Finally, the expert pointed out that the classes 
‘IntPoly’, ‘RemainderPoly’, and ‘PolyMod’ are his 
implementation of some kind of a mathematical field, 
which is used to compute Latin squares. 

The expert’s feedback with respect to the UCM 
generated from removing global as well as local utilities 
(Figure 5) indicates that the model is now much clearer: It 
represents a better description of the high-level model of 
the scenario. The expert agreed particularly with the 
removal of the ‘base.Value’ class. He said that this class 
can be inferred from the ‘Parameter’ class since all it does 
is create values that are added to the parameters.  



Figure 4. UCM corresponding to the trace after removing system-scope utilities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. UCM corresponding to the trace after removing system-scope as well as local utilities 
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 The expert found that the removal of the 
‘recursive.Utility’ class was definitely a good decision 
since it only contains a set of static methods that are used 
by the other classes of the ‘recursive’ package.  

The removal of the classes ‘IntMod’, ‘PolyMod’, and 
‘RemainderPoly’ was seen by the expert as a way to hide 
the details of the implementation of the fields that are 
used to compute the Latin squares. He was especially 
glad to see the zigzagging path segments involving these 
three classes (bottom of Figure 4) disappear as they were 
not contributing that much to the high-level logic of the 
application. 

4. Conclusions and Future Work  
In this paper, we discuss how behavioral design 

models can be build from execution traces using filtering 
techniques based on the detection of utilities. For this 
purpose, we presented a precise definition of the concept 
of utilities and discussed an algorithm that detects them. 
Our algorithm is based on fan-in analysis and takes two 
parameters: the component dependency graph and the set 
of components that are included in the analysis. The latter 
is used to adjust fan-in metric to detect utilities that exist 
in a scope narrower than the entire system.  

Additionally, we chose to represent the high-level 
behavioral models using the UCM notation as opposed to 
the UML sequence diagram that are usually used in this 
context. UCMs provide a compact and hierarchical view 
of the main sequences of responsibilities combined with 
architectural components. They abstract from details 
related to message exchanges while providing means of 
visualizing dynamic aspects (such as the creation and 
destruction of objects) in a static way. 

The analysis of a small-sized trace generated from the 
TConfig system has resulted in two UCMs. The first 
UCM is generated after the removal of system-scope 
utilities whereas the second UCM considers the removal 
of system-scope utilities as well as utilities that belong to 
specific packages. The two UCMs were presented to the 
designer of TConfig to validate their content. The 
designer found the two UCMs very descriptive of the 
traced scenario although the second UCM represents a 
much clearer picture of the scenario. 

Future work should focus on experimenting with the 
concept of filtering based on utilities on large traces. We 
anticipate that there is a need to more advanced utility 
detection techniques. We also need to adapt our approach 
to the detection of other types of utilities such as utility 
methods and packages. 

On the visualization side, the automated generation of 
UCMs from traces represents interesting challenges from 
a layout point of view. We also need to explore different 
ways of structuring traces into different levels of parent 

maps and sub-maps based on different (user-driven) 
criteria such as the nesting of invocations. A UCM can 
also combine several scenarios in a single view (with 
alternative paths and dynamic stubs). This feature could 
be used to explore more complete design views where 
similarities and variations in a set of scenarios generated 
from traces would be emphasized. 

Finally, we need to investigate how the utility 
detection capabilities can be incorporated into a trace 
analysis tool.  
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