
Recovering Behavioral Design Models from Execution Traces

Abdelwahab Hamou-Lhadj, Edna Braun, Daniel Amyot, and Timothy Lethbridge
University of Ottawa

SITE, 800 King Edward Avenue
Ottawa, Ontario, K1N 6N5 Canada

{ahamou, ebraun, damyot, tcl}@site.uottawa.ca

Abstract
Recovering behavioral design models from execution

traces is not an easy task due to the sheer size of typical
traces. In this paper, we describe a novel technique for
achieving this. Our approach is based on filtering traces
by distinguishing the utility components from the ones
that implement high-level concepts. In the paper, we first
define the concept of utilities; then we present an
algorithm based on fan-in analysis that can be used for
the detection of utilities. To represent the high-level
behavioral models, we explore the Use Case Map (UCM)
notation, which is a language used to describe and
understand emergent behavior of complex and dynamic
systems. Finally, we test the validity of our approach on
an object-oriented system called TConfig.

1. Introduction
Dynamic analysis consists of understanding the

behavior of a software system by analyzing the data
generated from executing its features.

Lately, there have been an increasing number of tools
for analyzing traces generated from object-oriented (OO)
systems [4, 5, 9, 12, 14, 18, 22]. This growing interest has
been driven by the fact that OO concepts such as
polymorphism and dynamic binding complicate the
process of merely applying static analysis of the source
code to understand such systems [19].

To deal with the sheer size of typical traces, most
existing tools rely on interactive features such as enabling
the hiding of specific components, facilitating search of
the traces, detecting patterns of execution, etc. The
problem is that it is totally up to the analyst to combine
all these features in order to manipulate the trace and
reach the desired level of abstraction. This is usually hard
to accomplish.

In this paper, we propose an approach for recovering
behavioral design models from execution traces based on
the removal of utility components. For this purpose, we
describe an algorithm based on fan-in analysis for the
detection of utilities.

To represent the resulting behavioral design models,
we selected the Use Case Map (UCM) notation instead of
the UML sequence diagram that has been extensively
applied in this context. UCMs are part of the ITU-T
family of languages for describing functional
requirements and high-level designs [1, 6]. UCMs focus
on causal sequences of responsibilities and abstract from
message exchanges. The motivation behind using UCMs
is further presented in Section 2.3.

To validate our approach, we analyzed an execution
trace of an OO system called TConfig [20, 21]. The
results were validated by the main designer of TConfig.

 The rest of this paper is organized as follows: the next
section describes our approach, which includes a brief
discussion of the traces used in this paper, the detection
of utilities based on fan-in analysis, and a mapping
between trace components and UCM elements. In Section
3, we present the results of analyzing the execution trace
of TConfig.

2. Approach
Figure 1 illustrates the approach described it this paper

for recovering UCMs from execution traces. The main
steps are:

1. We generate the execution traces that correspond
to the software features under study.

2. We filter the traces by removing low-level
implementation details such as utilities. In
section 2.2, we discuss how we detect utilities.

3. We extract UCMs from the resulting traces. In
section 2.3, we discuss how trace elements can be
mapped to UCM elements.

4. We validate the results with the original
developers of the systems.

The validation step might lead to further filtering of
the trace if the software engineer judges that the trace still
contains too much detail.

2.1. Traces of Method Calls
To reproduce the execution of an object-oriented

system, one needs to collect at least the events related to
object construction and destruction, plus method entry
and exit [3]. Traces, once generated, are usually saved in
text files. A trace file contains a sequence of lines in
which each line represents an event. An example of this
representation is given by Richner and Ducasse in [12].
Each line records: The class of the sender, the identity of
the sender, the class of the receiver, the identity of the
receiver, and the method invoked.

Figure 1. Approach for recovering UCMs

However, one of the main characteristics of the UCM
notation consists of showing guard conditions. Therefore,
in addition to method entry and exit, we also keep track
of the conditions that are executed.

Figure 2 shows an example of a sample trace where
specific objects are substituted by their class type – the
term trace of class interactions would be more appropriate
in this case. The figure shows an object of the class
Screen that calls its init method, which in turn creates an
instance of the class Shape and calls its update method.
The update method calls the draw and refresh methods if
the fitsScreen condition is evaluated to true.

Screen.init()

Shape.Shape()

Shape.update()

Shape.draw()

Shape.refresh()

<fitsScreen = true>

Figure 2. Trace of method calls with guard conditions

2.2. Detecting Utilities
In our previous work, we studied the concept of utility

components and how they differ from the other system
components [7]. This study was conducted at QNX
Software Systems (the company that supports our
research) and involved more than twenty software
engineers. Based on the results of this study, we define a
utility as: Any element of a program designed for the
convenience of the designer and implementer and
intended to be accessed from multiple places within a
certain scope of the program.

Many utilities will be designed to be reused in
multiple programs; this definition does not preclude that,
but does not require it. Also the definition allows a utility
to be a method, class, package or some other element, and
to be accessed from a scope that could be as narrow as a
class or as wide as the entire system. A key to the
definition is that a utility will be accessed from an
unknown number of places, not just one. The definition
allows such things as accessing methods to be considered
utilities, and does not require utilities to be grouped in
any way, although it does not preclude that.

In order to detect utility components, we have
developed an algorithm that is based on fan-in analysis.
Although most of the concepts presented here can easily
apply to detecting various types of utilities (e.g., utility
methods, packages, etc.), the rest of this subsection
focuses on detecting utility classes for simplicity reasons.

The fan-in analysis technique is based on the
exploration of the class dependency graph built from
static analysis of the system. It is used to extract the
classes that have a large number of incoming edges (i.e.,
many dependents). Computing fan-in is a typical way for
achieving this as it has already been shown in areas such
as software clustering [11, 16]. However, there is a need
to adjust this metric in order to consider the scope of a
utility. Obviously, using the same threshold for detecting
system-scope utilities as well as utilities that belong to
specific subsystems would be ineffective.

The class dependency graph is a directed graph where
the nodes are the system’s classes and the edges represent
a dependency relationship among the classes as shown in
Figure 3. Building a complete class dependency graph
may require parsing the source code (or bytecode files).
There are several types of static dependencies that may
exist between two given classes including method calls,
generalization, realization, etc. Additionally, the edges
might be weighted to represent the number of
dependencies that exist between two given classes.

To measure the extent to which a particular class can
be considered a utility, we suggest the following
utilityhood metric:

Execution
Traces

Utility
Removal

Generate
UCM

Validate
Results

This step is repeated until
the desired level of
abstraction is reached

Given a class C and the following sets:

 S = Set of classes considered in the analysis

 IN = A subset of S that consists of the classes that
depend on C (fan-in).

We define the utilityhood metric, U, of the class C as:

 U = |IN| / (|S|-1)

S is used to represent the scope considered in the
computation of U. For example, if we are looking for
system-level utilities, then S will contain all the system’s
classes. However, if the search for utilities is restricted to
a particular package, then S can be designated to contain
the classes of this particular package only.

C1

C2 C4

C5

C6

C7

C3

Figure 3. Class dependency graph

U ranges from 0 to 1. 0 indicates that the class has no
incoming edges. If the scope is the entire system then the
class that scores 0 must contain the entry point of the
system (or it is an unreachable class). If U is equal to 1
then the class is called by all other classes of S which is a
strong indicator that it is a utility class. Note that self
dependencies are not considered which explains |S| - 1.

Given the utilityhood metric and the class dependency
graph, the algorithm for detecting utility classes is rather
straightforward. The steps of the algorithm can be
summarized as follows:

1. Set utility_set (the set of utility classes) to empty

2. For every class C of the set S: Compute U

3. Identify the classes that have a U value greater
than or equal to a threshold D (that we will discuss
later) and add them to utility_set.

4. The classes that are in utility_set are the candidate
utility classes.

Step 1 simply creates an empty set that will contain the
candidate utility classes. Step 2 computes the utilityhood
metric (U) for every class of the set S. Step 3 identifies
the classes with a U value greater than or equal to a
certain threshold D. Suitable values of D need to be
determined by conducting experiments with different

systems. We anticipate that each system might have its
own threshold, and that software engineers exploring
systems will dynamically change D in order to vary the
amount of detail displayed. The final step (Step 4) of the
algorithm outputs the resulting utility classes.

 Table 1 shows the result of computing |IN| and U for
every class of the class dependency graph of Figure 3. S
contains all the classes that appear in the graph. We used
the standard deviation to easily spot the classes with a U
value that deviates significantly from the other values. To
standardize the results, the z-score was used [15]. The
classes that have a large and positive Z value are possible
utilities. Note that the components that have a negative Z
value are the ones that have a very low number of
incoming edges, which discounts them from being
candidate utilities.

For example, Table 1 clearly shows that the class C2
has a positive Z value: its U value deviates with 2
standard deviations from the mean, since it has a much
larger number of incoming edges (fan-in) compared to
other classes. This strongly suggests it is a utility class.
However, the class C1 deviates with 1 standard deviation
from the mean on the negative side, which strongly
suggests it is not a utility. In this case C1 has 0 incoming
edges.

Table 1. Example of applying fan-in analysis

 |IN| U Z
C1 0 0.00 -1.00
C2 6 1.00 2.00
C3 1 0.17 -0.50
C4 1 0.17 -0.50
C5 3 0.50 0.50
C6 2 0.33 0.00
C7 1 0.17 -0.50
 MEAN 0.33 0
 STDEV 0.33 1

However, U (and its corresponding Z value) is not the
only parameter that needs to be considered for efficient
detection of all utilities. It is important to consider how a
redefinition of the set S can be used to detect utilities that
exist in scopes narrower that the entire system. For
example, suppose that the classes C4, C5, C6 and C7 of
Figure 3 belong to the same package P and that we want
to detect possible utility classes that exist within P.

Table 2 shows the result of computing |IN| given that
the redefined S contains the classes of the package P
only. The class C5 has a large fan-in compared to the
other classes of the package P. This is also indicated by
its Z-score.

It is clear that we need to conduct empirical studies to
determine an appropriate threshold that will clearly

distinguish utilities from the other system’s components.
However, even if such a threshold exists we will still
need to allow enough flexibility so as the analyst can
adjust the amount of information contained in the traces
according to his or her needs. This is because, what might
be a utility for one maintenance task might not be for
another task.

One shortcoming of this approach is when it is applied
to systems that have a poor design. The problem is that
the scope of the components might be hard to determine
since it may not be clearly reflected in the source code.
For example, some classes might be placed in the wrong
packages. For this purpose, there is a need to investigate
techniques that are independent from the scope attribute.
We leave this point as future work.

Table 2. Fan-in analysis applied to a specific package

 |IN| U Z
C4 0 0.00 -0.99
C5 3 1.00 1.39
C6 1 0.33 -0.20
C7 1 0.33 -0.20
 MEAN 0.42 0
 STDEV 0.42 1

2.3. Representing Traces Using UCMs
Use Case Maps [6] allow one to model system

behavior in terms of causal flows of responsibilities,
which are activities that can be allocated to system
components.

We chose to use UCMs since they are a rich
requirements-level notation for showing at a glance the
various control-flow possibilities in a system. Unlike
UML 1.x sequence diagrams, UCMs abstract from inter-
component communication to focus on the business logic.
Like activity diagrams, they can integrate many scenarios
with operators for looping and for forking and joining
alternative or concurrent paths. Complex maps can also
be decomposed into sub-maps (with stubs).

UCMs can also represent the system architecture in a
2-dimensional way, with components containing sub-
components (in a way more understandable than what can
be achieved with UML 2.0 swimlanes). Moreover, the
UCM notation has special operators for describing timers
and for creating and manipulating objects (dynamic
responsibilities). Additionally, stubs may also contain
multiple sub-maps. This allows for flexible integration
and exploration of scenarios that have overlapping parts.

A first attempt at using UCMs for program
understanding is presented in [2]. The authors based their
approach on the static generation of scenarios from
manually tagged elements in the code, which is more

cumbersome and less prone to automation than the
dynamic approach suggested here.

Table 3 shows how we map traces to the various UCM
concepts. The case study described in the next section
will provide illustrations of typical UCMs for a single
trace.

Table 3. Mapping from traces to UCMs

Trace element UCM element
Package Component (Agent), shown as a

rectangle with thick border.
Class Component (Team), shown as a

rectangle with narrow border.
Object Component (Object), shown as a

rounded-corner rectangle.
Thread Component (Process), shown as a

parallelogram.
Beginning /
End of trace

Start point (circle) / End point (bar)
(also used as connectors for linking
sub-scenarios to the parent stub)

Instruction Responsibility (shown as a X on a
path)

Block of 3 or
more
instructions in
the same
class/object

Stub (diamond) with the name of the
first instruction that is not a
constructor. This stub contains a plug-
in (another sub-map) showing the
sub-sequence with one responsibility
per instruction.

Constructor Dynamic responsibility (arrow with +)
Destructor Dynamic responsibility (arrow with -)
Repeated
instruction

Responsibility with repetition count
(number between curly brackets)

Repeated
sequence

Loop (with loop count between curly
brackets)

Condition Condition (between square brackets)
Non-
continuous
repetition

Plug-in map corresponding to the
repeated sequence. A stub (with
repetition count if necessary) using
this plug-in is inserted in the path each
time this repetition occurs.

3. Case Study
We analyzed an execution trace generated from an

object-oriented system called TConfig (ver. 2.1) [20, 21].
TConfig is a Java application used to generate the
minimum number of test configurations covering
component interactions of degree n, where n is defined by
the user. It uses advanced mathematical concepts such as
fields and Latin squares. TConfig contains 4 packages, 29

classes, and 407 methods. The size of TConfig is 6.56
KLOC.

3.1. Collecting the Traces
We used our own instrumentation tool based on the

BIT framework [10] to insert probes at the entry and exit
points of each system’s non-private methods and branch
of every condition statement. Constructors are treated in
the same way as regular methods. Although the system
comes with a GUI, we deliberately ignored the GUI
package to avoid encumbering the traces.

TConfig’s GUI supports various parameters which
allow to choose the number of components (and their
names), the number of values for each component (and
their names), the coverage degree (n), and the heuristic to
be used for generating test configurations (recursive
block or IPO). We decided to analyze the most feature-
rich set of options: named collection of three components
with two values for each component, pairwise
interactions (n = 2), and the recursive block heuristic. We
refer to this feature as the named-recursive feature and
we refer to the trace that corresponds to it as the named-
recursive trace.

The trace was generated as the system was running,
and was saved in a text file containing the following
information:

 Thread name
 Full class name (e.g., base.Value)
 Method name
 Condition if it is a condition statement
 A nesting level that maintains the order of calls

We noticed that the tool uses only one thread, which
made us ignore the thread information.

The initial statistics about the collected trace are
shown in table 4. The metrics used in the table are
described in what follows:

 N = initial size of the trace

 Nacc = size of the trace after removing accessing
methods. For this purpose, we used the set and get
naming convention to detect accessing methods

 Racc = 1 - Nacc /N

The initial size, N, of the named-recursive trace is
1029 which includes the method invocations as well as
the conditions that were executed. Obviously, this does
not reflect the size of typical and most interesting traces,
which can easily go beyond hundreds of thousands of
invocations. We deliberately choose a small system for
this preliminary study to confirm the idea that filtering
based on the detection of utilities is a promising approach

for future trace analysis techniques. Future work should
focus on analyzing large traces and investigating more
sophisticated utility detection techniques.

The removal of accessing methods results in a trace
that contains 203 invocations and conditions as
represented by Nacc. This represents a reduction ratio of
80%.

Table 4. Statistics of the named-recursive trace

Trace N Nacc Racc
named-recursive 1029 203 80%

3.2. Processing the trace
We used fan-in analysis to detect potential utilities that

can be removed from the named-recursive trace to
recover the corresponding Use Case Map. For this
purpose, we proceeded according to two phases. The first
phase consists of detecting system-scope utilities that we
simply refer to as global utilities. The second phase aims
to improve the result of the first phase by removing
utilities that may exist in specific packages. We refer to
these utilities as local utilities.

The result of each phase is presented to the main
designer of TConfig in the form of a UCM. The objective
is to evaluate whether the resulting UCM conveys the
main behavioral aspects of the traced software feature or
not. In other words, we want to know if the UCM had
enough information that will allow a designer to
understand the feature at a high level without diving into
the details. The expert’s comments are discussed in the
Section 3.4.

First phase: Detecting global utilities

Table 5 shows the results of applying fan-in analysis
to TConfig classes in order to detect system-scope
utilities (i.e., S is set to contain all the system’s classes).
The table is sorted according to the descending order of
Z.

Due to the absence of a utility threshold, we are left
with the only option of removing iteratively the classes
that have a large Z positive value. The trace resulting
after each iteration will need to be turned into a UCM and
presented to the expert for validation. The problem with
this approach is that we might end up having successive
iterations that result in traces that do not differ a lot from
each other. Validating each of these traces will certainly
be inefficient. To overcome this problem, we use the gain
in terms of size reached after the removal of a particular
class (or set of classes if they have identical Z value) to
help us decide when we need to produce the UCM. In
other words, if the removal of one class does not result in
an important reduction of the trace size then we proceed
with the removal of additional classes before producing
the corresponding UCM. This will prevent us from

having several UCMs that are only slightly different from
each other.

We applied this technique to the classes of TConfig
system. The first iteration is concerned with the removal
of the ‘base.ParameterSet’ class since it is the one that
has the highest Z value (3.04). However, the reduction
ratio attained after removing this class is Rps = 7% (the
raw number of invocations and conditions is Nps = 188) as
shown in Table 6.

Table 5. Applying fan-in analysis to TConfig system

Class |IN| U Z
base.ParameterSet 8 0.29 3.04
base.ConfigurationSet 5 0.18 1.40
gui.ItemListDialog 5 0.18 1.40
recursive.Messages 5 0.18 1.40
recursive.PolyMod 4 0.14 0.85
recursive.Utility 4 0.14 0.85
base.Generator 3 0.11 0.30
base.Messages 3 0.11 0.30
base.Parameter 3 0.11 0.30
base.Value 3 0.11 0.30
gui.TConfigUI 3 0.11 0.30
recursive.IntMod 3 0.11 0.30
recursive.RemainderPoly 3 0.11 0.30
base.Document 2 0.07 -0.25
gui.ParmSetDialog 2 0.07 -0.25
gui.ValuesDifferDialog 2 0.07 -0.25
gui.ValuesSameDialog 2 0.07 -0.25
ipo.InteractionElement 2 0.07 -0.25
ipo.TestValue 2 0.07 -0.25
recursive.Field 2 0.07 -0.25
gui.ParameterDialog 1 0.04 -0.79
ipo.IPOGenerator 1 0.04 -0.79
recursive.LatinSquares 1 0.04 -0.79
recursive.OrthogonalArray 1 0.04 -0.79
recursive.RecursiveGenerator 1 0.04 -0.79
gui.TConfig 0 0.00 -1.34
gui.TConfigApplet 0 0.00 -1.34
ipo.IESet 0 0.00 -1.34
recursive.GFPolynomial 0 0.00 -1.34
 MEAN 0.09 0
 STDEV 0.07 1

Table 6. Results after removing system-scope utilities

Trace Nacc Nps Rps Ng-util Rg-util
named-recursive 203 188 7% 99 51%

We did not attempt to represent the corresponding
UCM simply because it will look similar to the original

trace. On the other hand, the removal of the
‘base.ParameterSet’ in addition to the classes that have
the second highest Z score namely, ‘base.ParameterSet’,
‘base.ConfigurationSet’, ‘gui.ItemListDialog’, and
‘recursive.Messages’ results in a reduction ratio of Rg-util
= 51% (the number of invocations and conditions Ng-util =
99) as shown in Table 6. This high reduction ratio is a
strong indicator that many low-level details have been
removed from the original trace. Therefore, we have
decided to transform the resulting trace into a UCM that
is shown in Figure 4.

Second phase: Detecting local utilities

The named-recursive trace invokes methods of two
packages which are ‘base’ and ‘recursive’. We applied
fan-in analysis for each of these packages.

Table 7 shows the result of applying fan-in analysis to
the ‘recursive’ package. The class ‘recursive.Messages’
was already removed during the detection of global
utilities. Similar to the detection of global utilities, we
have decided to consider the classes ‘recursive.PolyMod’
and ‘recursive.Utility’ as candidate utilities. However, we
notice from the result of removing global utilities as
illustrated in Figure 4 that the classes ‘recursive.IntMod’
and ‘recursive.RemainderPoly’ are behind many
interactions. We therefore assume that these are low-level
interactions and decide to add the two classes to the
utility set as well. This assumption will need to be
verified by the expert when validating the resulting UCM.

Table 7. Applying fan-in analysis to the ‘recursive’
package

Class |IN| U Z
recursive.Messages 5 0.56 1.53
recursive.PolyMod 4 0.44 0.96
recursive.Utility 4 0.44 0.96
recursive.IntMod 3 0.33 0.40
recursive.RemainderPoly 3 0.33 0.40
recursive.Field 2 0.22 -0.17
recursive.LatinSquares 1 0.11 -0.74
recursive.OrthogonalArray 1 0.11 -0.74
recursive.GFPolynomial 0 0.00 -1.30
recursive.RecursiveGenerator 0 0.00 -1.30
 MEAN 0.26 0
 STDEV 0.20 1

Table 8 shows the result of applying fan-in analysis to
the ‘base’ package. The class ‘base.ConfiugrationSet’
was already removed during the detection of global
utilities. We next decide to remove the ‘base.Messages’
class since it is the one that has a high Z value. We also
decide to remove the ‘base.Value’ class in an attempt to
better abstract out the interaction between the Parameter
class and the Value class.

Table 8. Applying fan-in analysis to the ‘base’ package

Class |IN| U Z
base.Messages 3 0.50 1.61
base.ConfigurationSet 2 0.33 0.59
base.Value 2 0.33 0.59
base.Generator 1 0.17 -0.44
base.Parameter 1 0.17 -0.44
base.ParameterSet 1 0.17 -0.44
base.Document 0 0.00 -1.46
 MEAN 0.24 0
 STDEV 0.16 1

To summarize, the detection of local utilities has
resulted in the removal of six additional classes, which
are: ‘base.Messages’, ‘base.Value’, ‘recursive.PolyMod’,
‘recursive.IntMod’, ‘recursive.RemainderPoly’, and
‘recursive.Utility’. The removal of local utilities from the
trace (resulting after the removal of global utilities)
results in a trace whose size is Nl-util = 66, which
represents a reduction ratio of Rl-util = 38%. The resulting
UCM is shown in Figure 5.

3.3. Generating UCMs
 We used a tool called UCMNav [17] to draw and

export the UCMs that were recovered from the named-
recursive trace (Figures 4 and 5). We carefully followed
the mapping rules in Table 3 to reproduce the UCMs that
correspond correctly to the content of the traces. Arrows
were added to some lengthy path segments to clarify their
direction. Additional plug-in UCMs were generated for
each stub found in Figures 4 and 5. They include
sequences of responsibilities capturing blocks of
instructions in the same class. These more detailed views
are not shown here for simplicity.

Although UCMNav allows great flexibility for
manipulating the various UCMs elements, we hope to be
able to generate the UCMs automatically from the traces
in future studies. A standard exchange format for
representing traces of method calls such as CTF [8] could
help here.

3.4. Validating the results
We showed the UCM that resulted from the removal

of global utilities (Figure 4) to the expert (who was
familiar with this notation) to assess whether it was a
good high-level representation of the traced scenario or
not. In general, the expert was able to trace the main
responsibilities of the different components (i.e., classes
and packages) with respect to the traced scenario. He also
said that the content of the UCM was a good high-level

description of the scenario, and he was glad to see the
loops used for the creation of parameter values. He
appreciated the layout, especially as he could clearly
distinguish the input of parameters and the processing
with a specific heuristic (recursive generation in this
trace). The expert, who is also familiar with UML 1 and
UML 2 sequence diagrams and with Message Sequence
Charts, mentioned that he did not miss the inter-
component interactions (messages) as he was more
interested in the flow of activities for understanding (and
explaining) this application. The details of the stubs
found in the plug-in maps were of limited interest
compared to the top-level UCMs found in Figures 4 and
5.

At a certain point the expert thought that the
responsibilities confined to the ‘OrthogonalArray’ class
were too abstract and that we might have removed
important information. However, after examining the
source code, he confirmed that the UCM showed what
was actually happening in the code which was different
from what he initially thought. We found this last point
particularly interesting because it suggests that we can
use dynamic analysis to improve existing program
comprehension models that are based on static analysis
only [13].

However, the expert disagreed with the fact the
‘base.ConfigurationSet’ class should be completely
removed from the UCM. According to him, while most
methods of this class can be considered as utilities, he
wished that the UCM included two methods of this class:
mergeConfigurationsWith and mergeParametersWith.
We attribute the absence of these methods to the fact that
the analysis is done at the class level rather than the
method level. Therefore, a class that contains many utility
methods is automatically considered as a utility class
although it may contain some methods that are important
to the understanding of the scenario. Our approach could
easily be adapted to work at the method level, or a
combination of class and method level. We leave this for
future research.

Finally, the expert pointed out that the classes
‘IntPoly’, ‘RemainderPoly’, and ‘PolyMod’ are his
implementation of some kind of a mathematical field,
which is used to compute Latin squares.

The expert’s feedback with respect to the UCM
generated from removing global as well as local utilities
(Figure 5) indicates that the model is now much clearer: It
represents a better description of the high-level model of
the scenario. The expert agreed particularly with the
removal of the ‘base.Value’ class. He said that this class
can be inferred from the ‘Parameter’ class since all it does
is create values that are added to the parameters.

Figure 4. UCM corresponding to the trace after removing system-scope utilities

Figure 5. UCM corresponding to the trace after removing system-scope as well as local utilities

R e c u r s iv e

S ta r t

E n d

P o ly M o d

e n u m e r a te

R e m a in d e r P o ly t im e s
p lu s

{ 3 } R e m a in d e r P o ly

r e s id u e

z e r o
p u tM o d u lu s

In tM o d

a t

a t

g e n e r a teg e n e r a te

L a t in S q u a r e s F ie ldO r th o g o n a lA r r a y

O r th o g o n a lA r r a y

g e n e r a te

o r th o g o n a lA r r a y

R e m a in d e r P o lyP o ly M o d

a d ju s tV a lu e s

g e n e r a te C o n f ig u r a t io n s

R e c u r s iv e G e n e r a to r

p o w e r
U t i l i ty

g e n e r a te C o n f ig u r a t io n s

g e n e r a te O u tp u t is N u llP a r m S e t { 2 x }

{ 4 x }

e n te r N a m e d M o d e
D o c u m e n t P a r a m e te r

P a r a m e te r

{ 2 x }

V a lu e

V a lu e

a d d V a lu e

B a s e

Base

Document
enterNamedMode

Parameter

Parameter

addValue {2x}

{4x}
isNullParmSet {2x}generateOutput

generateConfigurations

Recursive

RecursiveGenerator OrthogonalArray

OrthogonalArray

orthogonalArray

generate

generate

generate

LatinSquares Field

generateConfigurations

adjustValues

[roundNum = 0]

Start

End

 The expert found that the removal of the
‘recursive.Utility’ class was definitely a good decision
since it only contains a set of static methods that are used
by the other classes of the ‘recursive’ package.

The removal of the classes ‘IntMod’, ‘PolyMod’, and
‘RemainderPoly’ was seen by the expert as a way to hide
the details of the implementation of the fields that are
used to compute the Latin squares. He was especially
glad to see the zigzagging path segments involving these
three classes (bottom of Figure 4) disappear as they were
not contributing that much to the high-level logic of the
application.

4. Conclusions and Future Work
In this paper, we discuss how behavioral design

models can be build from execution traces using filtering
techniques based on the detection of utilities. For this
purpose, we presented a precise definition of the concept
of utilities and discussed an algorithm that detects them.
Our algorithm is based on fan-in analysis and takes two
parameters: the component dependency graph and the set
of components that are included in the analysis. The latter
is used to adjust fan-in metric to detect utilities that exist
in a scope narrower than the entire system.

Additionally, we chose to represent the high-level
behavioral models using the UCM notation as opposed to
the UML sequence diagram that are usually used in this
context. UCMs provide a compact and hierarchical view
of the main sequences of responsibilities combined with
architectural components. They abstract from details
related to message exchanges while providing means of
visualizing dynamic aspects (such as the creation and
destruction of objects) in a static way.

The analysis of a small-sized trace generated from the
TConfig system has resulted in two UCMs. The first
UCM is generated after the removal of system-scope
utilities whereas the second UCM considers the removal
of system-scope utilities as well as utilities that belong to
specific packages. The two UCMs were presented to the
designer of TConfig to validate their content. The
designer found the two UCMs very descriptive of the
traced scenario although the second UCM represents a
much clearer picture of the scenario.

Future work should focus on experimenting with the
concept of filtering based on utilities on large traces. We
anticipate that there is a need to more advanced utility
detection techniques. We also need to adapt our approach
to the detection of other types of utilities such as utility
methods and packages.

On the visualization side, the automated generation of
UCMs from traces represents interesting challenges from
a layout point of view. We also need to explore different
ways of structuring traces into different levels of parent

maps and sub-maps based on different (user-driven)
criteria such as the nesting of invocations. A UCM can
also combine several scenarios in a single view (with
alternative paths and dynamic stubs). This feature could
be used to explore more complete design views where
similarities and variations in a set of scenarios generated
from traces would be emphasized.

Finally, we need to investigate how the utility
detection capabilities can be incorporated into a trace
analysis tool.

Acknowledgments
This work was supported financially by NSERC and

QNX Software Systems. We are most thankful to Alan
Williams for taking the time to review and evaluate the
traces and UCMs generated from TConfig.

References
[1] D. Amyot, “Introduction to the User Requirements

Notation: Learning by Example”. Computer
Networks, 42(3), 285-301, 21 June 2003.

[2] D. Amyot, G. Mussbacher, and N. Mansurov,
“Understanding Existing Software with Use Case
Map Scenarios”. In 3rd SDL and MSC Workshop
(SAM’02), Aberystwyth, U.K., June 2002. LNCS
2599, pp. 124-140.

[3] W. De Pauw, R. Helm, D. Kimelman, J. Vlissides,
“Visualizing the Behaviour of Object-Oriented
Systems”. In Proc. of the 8th Conference on Object-
Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Washington, DC, 1993, pp.
326-337.

[4] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J.
Vlissides, J. Yang, “Visualizing the Execution of
Java Programs”. In Proc. International Seminar on
Software Visualization, Dagstuhl Castle, Wadern,
2002, pp. 151-162.

[5] W. De Pauw, D. Lorenz, J. Vlissides, M. Wegman,
“Execution Patterns in Object-Oriented
Visualization”. In Proc. of the 4th USENIX
Conference on Object-Oriented Technologies and
Systems, COOTS, 1998, pp. 219-234.

[6] ITU-T, Draft Recommendation Z.152 (Use Case
Maps), Sept. 2003.
http://www.UseCaseMaps.org/urn

[7] A. Hamou-Lhadj, T. C. Lethbridge, “Reasoning
about the Concept of Utilities”. In Proc. of the 1st
ECOOP Workshop on Practical Problems of
Programming in the Large, Oslo, Norway, June
2004

[8] A. Hamou-Lhadj, T. C. Lethbridge, “A Metamodel
for Dynamic Information Generated from Object-
Oriented Systems”. In Proc. of the 1st International
Workshop on Meta-models and Schemas for Reverse
Engineering (ATEM), Victoria, Canada, published by
Electronic Notes in Theoretical Computer Science
(ENTCS),94: 59-69, 2004.

[9] D. Jerding, S. Rugaber, "Using Visualization for
Architecture Localization and Extraction". In Proc.
4th Working Conference on Reverse Engineering,
Amsterdam, Netherlands, Oct. 1997, pp. 56-65.

[10] H. B. Lee, B. G. Zorn, “BIT: A tool for
Instrumenting Java Bytecodes”. USENIX Sympo-
sium on Internet Technologies and Systems,
Monterey, California, 1997, pp. 73-82.

[11] H. A. Müller, M. A. Orgun, S. Tilley, J. Uhl, “A
Reverse Engineering Approach to Subsystem
Structure Identification”. Journal of Software
Maintenance: Research and Practice, Vol 5, No 4,
December 1993, pp. 181-204.

[12] T. Richner, S. Ducasse, “Using Dynamic
Information for the Iterative Recovery of
Collaborations and Roles”. In Proc. of the 18th
International Conference on Software Maintenance
(ICSM), Montréal, Canada, 2002, pp. 34-43.

[13] M.-A.D. Storey, K. Wong, H. A. Müller, “How Do
Program Understanding Tools Affect How
Programmers Understand Programs?”. In Proc. 4th
Working Conference on Reverse Engineering,
Amsterdam, Holland, 1997, pp. 12-21.

[14] T. Systä, “Understanding the Behavior of Java
Programs”. In Proc. 7th Working Conference on
Reverse Engineering, Australia, Brisbane, 2000, pp.
214-223.

[15] M. Triola, Elementary Statistics, 9th edition,
Addison-Wesley, 2003.

[16] V. Tzerpos, R. C. Holt, “ACDC: An Algorithm for
Comprehension-Driven Clustering”. In Proc. of the
7th Working Conference on Reverse Engineering,
Brisbane, Australia, November 2000, pp. 258-267.

[17] UCMNav:
http://www.usecasemaps.org/tools/ucmnav

[18] R. J. Walker, G. C. Murphy, B. Freeman-Benson,
D. Swanson, and J. Isaak, “Visualizing Dynamic
Software System Information through High-level
Models”. In Proc. of the ACM Conference on
Object-Oriented Programming, Systems,

Languages, and Applications, British Columbia,
Canada, October 1998, pp. 271-283.

[19] N. Wilde, and R. Huitt, “Maintenance Support for
Object-Oriented Programs”. Transactions on
Software Engineering, 18(12):1038–1044, Dec.
1992.

[20] A. W. Williams, “Software Component Interaction
Testing: Coverage Measurement and Generation of
Configurations”. Ph.D. thesis, University of Ottawa,
2002, http://www.site.uottawa.ca/~awilliam/papers/

[21] A. W. Williams, “TConfig”, 2004,
http://www.site.uottawa.ca/~awilliam/TConfig.jar

[22] I. Zayour, Reverse Engineering: A Cognitive
Approach, a Case Study and a Tool. Ph.D.
dissertation, University of Ottawa, 2002,
http://www.site.uottawa.ca/~tcl/gradtheses/izayour

