

CrashAutomata: An Approach for the Detection of
Duplicate Crash Reports Based on Generalizable

Automata

Neda Ebrahimi Koopaei
Software Behaviour Analysis (SBA) Research Lab

ECE, Concordia University
Montréal, QC, Canada

n_ebr@encs.concordia.ca

Abdelwahab Hamou-Lhadj
Software Behaviour Analysis (SBA) Research Lab

ECE, Concordia University
Montréal, QC, Canada

abdelw@ece.concordia.ca

ABSTRACT
Crash reporting systems are useful tools that allow users to report

system failures, subsequently contacting the appropriate support

group for resolution. As a software system grows and becomes

more versatile, the number of crashes increases. A large software

company receives typically thousands of crashes a day, which

make it difficult for software engineers to address these reports in

a timely manner. Fortunately, not all reports are new; many of

them are duplicates of previously reported crashes. Research has

shown that early detection of duplicate reports can reduce the

effort and time it takes to handle crash reports. In this paper, we

propose a new approach for detecting duplicate crash reports,

called CrashAutomata. CrashAutomata builds a model from

historical crash reports (more precisely their stack traces) that is

used to classify an incoming report. The model is based on varied-

length n-grams and automata. Unlike existing techniques,

CrashAutomata takes advantage of the generalization aspect of

automata, making it possible to build a representative model of

crash reports, reducing the number of false positives. When

applied to crash reports of the Firefox system, CrashAutomata

results in very high precision and recall. It also outperforms

CrashGraph, a leading technique in the detection of duplicate

crash reports.

Keywords

Mining bug repositories, Duplicate bug reports, Automata-based

Modeling, Software maintenance.

1. INTRODUCTION
Most large software systems are equipped with a crash reporting

tool that generates automatically a crash report when a field

failure occurs. Examples of such tools include WER (Windows

Error Reporting) [15], Apple Crash Reporter [3] and Mozilla

Crash Reporter [17]. These tools can automatically collect a

variety of data about the crash including stack traces, memory

dumps, etc. This data is sent to a crash reporting server and

processed by the developers of the system in order to provide

fixes.

Analyzing crash reports, however, can be a tedious task. This is

because of the large number of reports that are submitted every

day, especially for software systems with a large user base.

Fortunately, not all these bugs are unique. Studies have shown

that many reported bugs are duplicates—the same fault causes

different running instances of the same system to crash [4, 14, 21].

Consider, for example, a popular web browser such as Firefox.

This system is used by millions of users. The same bug can trigger

many of the running instances of Firefox to fail. If a crash report is

submitted for each failure then the Firefox development team will be

swamped with reports. Research has shown that detecting duplicate

crash reports can significantly reduce the time and effort spent on

triaging and handling crashes [9, 24, 29]. This led to many studies that

aim to detect automatically duplicate crash (or bug) reports. These

techniques treat the problem as a classification problem by building a

model from historical bug reports, using machine learning techniques.

The model is used to classify incoming bugs.

Existing techniques for detecting duplicate reports can be divided into

two categories. The first category encompasses techniques that rely

solely on the description of the reports [1, 9, 18, 24–27]. The problem

with the description is that it is expressed in natural language and as

such it tends to be informal and hence not quite reliable. To address

this, researchers have turned to more formal crash report data such as

stack traces [7, 8, 14, 29]. These techniques model information in

historical stack traces and use the resulting model to classify incoming

reports. Perhaps, one of the most effective approaches is CrashGraph.

Introduce by Kim et al. [14], CrashGraph is used to detect duplicate

crash reports in WER (Windows Error Reporting System). The

approach aggregates multiple stack traces in the same group by

constructing a graph where the nodes represent the stack trace

functions and the edges represent the calling relationship. When

applied to crashes of two Windows products CrashGraph achieves

71.5% precision and 62.4% recall [14].

The problem with CrashGraph and similar approaches is that they

generate a training model that is too rigid, making them difficult to

generalize to unseen cases, which explains the low recall. What we

mean by generalization is the ability to model stack traces while

considering possible calls that are not necessarily in the training set.

Take for example the following fictive stack trace ABCDED used for

training. A model that represents this trace should classify traces

ABABCDED or AAABCDED as similar because they only differ

from ABCDED due to contiguous repetition of AB and A respectively.

Contiguous repetitions can be due to loops in the program. They did

not appear in the stack trace used for training just because the loop was

not exercised during the scenario that led to the crash. We will see in

the rest of the paper that generalization goes beyond considering just

contiguous repetitions.

In this paper, we propose an approach, called CrashAutomata that uses

a combination of varied-length n-grams and automata to model stack

traces. CrashAutomata is inspired by the work of Jiang et al. [10]. The

authors developed an algorithm for anomaly detection that can be

generalized to unseen cases by controlling a variable . We adopted

the algorithm to model stack traces and detect duplicate reports.

We experimented with various values of  to determine the most

suitable value that yields best detection accuracy. We also

compared CrashAutomata with CrashGraph. The results show that

our approach has a better recall than CrashCrash while keeping

the same precision.

The remaining parts of this paper are organized as follows: In

Section 2, we present background information on crash reports

and the Mozilla crash reporting system, used in this study. In

Section 3, we present CrashAutomata. In Section 4, we evaluate

the effectiveness of CrashAutomata when applied to stack traces

of the Firefox system. We also compare CrashAutomata to

CrashGraph. Section 5 discusses threats to validity, following by

related work. We conclude the paper and sketch future directions

in Section 7.

2. CRASH REPORTS AND STACK

TRACES IN MOZILLA
A typical crash report contains a crash signature, a description, a

submission date, a product number, a product version, the

operating system version, and a stack trace. WER (Windows Error

Reporting) [15], Apple Crash Reporter [3] and Mozilla Crash

Reporter [17] are good examples of widely deployed crash

reporting systems. Figure 1 gives an overview of how a crash

reporting system works. When a crash occurs in a software

system, a user submits a crash report for troubleshooting (note

that a crash report can also be generated automatically depending

on the how the settings of the system). A crash reporting system

receives the crash reports and groups them based on how similar

they are. This way, when a new crash arrives, it can be assigned to

the same developers who fixed similar crashes. The overall goal is

to speed up the process of handling crashes.

The grouping technique varies from one crash reporting system to

another. WER, for example, uses more than 500 proprietary

heuristics for organizing crash reports into buckets [7, 13].

Mozilla, the crash reporting system used in this paper, groups

crash reports based on stack trace information. More particularly,

it uses the last function that was executed when the crash occurred

as the main similarity criterion.

Fig. 1. An overview of how a crash reporting system works

Table 1 shows an excerpt of a stack trace in one of Mozilla’s

crash reports. The stack trace contains five frames; each contains

information about the executed function. A frame signature is

defined as the method signature (composed of the function name

and the module name). In this example, the program crashed at

Frame 0 (function signature mozglue.dll/mozalloc_abort). More

formally, a stack trace can be defined as an ordered set of frames,

F={f0, f1,…, fn}, where n is the number of functions in the stack trace

and f0 is the top frame of the stack trace.

Crash reports are examined by a team of triagers who decide whether

the crash is valid or not. Triagers turn valid crashes into bug reports,

assign to them a priority (severity) level, and assign them to the

appropriate developers. In the rest of the paper, we use the terms bug

reports and crash reports interchangeably.

It should be noted that Mozilla’s bucketing method may result in many

duplicate reports being spread over multiple buckets, just because the

top frames of their stack traces are different. Even worse, many

unrelated crashes may be grouped together, which defeats the purpose

of having a bucketing system in the first place. This awkward

bucketing can cause further problems for developers when attempting

to understand the fault by looking at crash traces that may in fact be

unrelated.

Table 1. An example of a bucket in Mozilla crash reports

Frame Module Signature

0 mozglue.dll mozalloc_abort(char const* const)

1 mozglue.dll mozalloc_handle_oom(unsigned int)

2 mozglue.dll moz_xmalloc

3 xul.dll

mozilla::net::CacheFileMetadata::WriteMetad

ata(unsigned int,

mozilla::net::CacheFileMetadataListener*)

4 xul.dll
mozilla::net::CacheFile::WriteMetadataIfNeed

edLocked(bool)

5 xul.dll
mozilla::net::CacheFile::DeactivateChunk(mo

zilla::net::CacheFileChunk*)

3. CRASHAUTOMATA APPROACH
Figure 2 shows an overview of our approach. The approach is divided

into two phases: training and testing (detection) phases. In the training

phase, we use historical crash reports to build a model that

characterizes the information contained in stack traces of duplicate

bugs. This phase is further divided into multiple steps. The first step

consists of collecting crash traces from the Mozilla Crash Reporter and

restructuring them to form valid grouping of duplicate bugs. In the

second step, we extract varied-length n-grams from stack traces of

each bucket. These n-grams will be used to construct an automaton for

each bucket. To control the level of generalization of the automaton,

we introduce a variable , which regulates the number of n-grams that

are extracted. We will describe this process in Section 3.2.1. The

testing phase consists of assessing the effectiveness of the model in

classifying unseen crash reports.

3.1 Training Phase: Collecting Stack Traces and

Creating Buckets
As discussed earlier, Mozilla crashes are grouped based on the top

frame signature (the last invoked function) of their corresponding

stack traces. As a result, many duplicate crashes may end up in

different buckets. This said, duplicate bug reports that are generated

from these crash reports may also be in different buckets. To test the

effectiveness of our approach, we need to have stack traces of all

duplicate bugs in the same bucket. To achieve this, we simply

reorganize Mozilla’s buckets by bringing together stack traces that

correspond to the same bugs into one bucket.

Crash

Reporting

System

Crash

Buckets

Crash

Reporter Crash Report

Bug

Reports

Developers

Software

crashes

3.2 Training Phase: Automata Construction
Once the buckets are reorganized, the next step is to build an automaton

from the stack traces of each bucket. One way to achieve this is to

simply consider each frame signature as a state in the automaton. A

transition from one state to another occurs between two consecutive

frame signatures.

This method, however, suffers from two limitations. First, it may result

in large automata, which may impact the scalability of the approach.

The second and perhaps most important limitation is that it tends to be

too rigid, meaning that the resulting automata cannot easily generalize

to unseen cases. To make this clear, take for example the stack trace

ABCDE, where A, B, C, D, and E are function calls (frame signatures

in a Mozilla stack trace). It is reasonable to assume that since AB was

invoked once it may also be invoked twice or more due to the presence

of loops in the code. Therefore, an incoming report with a stack trace

ABABABCDE should be deemed similar. We address both limitations

in CrashAutomata by building automata using varied-length n-gram

extracted from stack trace sequences. We also introduce a variable 

that controls the level of generalization of the automaton. These points

are further discussed in the next subsections.

3.2.1 Varied-length n-gram extraction
We address the scalability issue by using an n-gram extraction

technique that identifies the frequent common sub-sequences or

patterns in a sequence, where the length of the patterns can vary from

one to n (the number of frame signatures in a trace). To this end, we

adopt the algorithm presented by Jiang et al. in [10], used to detect

anomalies in large datasets. This algorithm analyzes the training stack

trace sequences, and extracts from them frequent patterns as n-grams

according to a certain threshold α. The threshold is used to control the

level of generalization of the resulting automaton.

To illustrate the steps of the algorithm (see Algorithm 1), we use

the following three sequences (taken from [10]): T1: ABCDE, T2:

CDEA and T3: CDEBA. These sequences represent, in our case,

three stack traces of the same bucket, where A, B, C, D, and E are

frame signatures. At the beginning, the algorithm extracts all

unique frame signatures from the stack traces and labels them as 1-

gram.

Algorithm 1. Algorithm for varied-length n-gram extraction

(from [10])

Training Phase

 Testing (Detection) Phase

Pool of Varied-

Length N-grams

in each bucket Step 1: Collect crash

reports and extract Stack

traces

Step 2: N-gram extraction

Step 3: Automata construction

N-gram

Automata

Bucket 1 Bucket N 4 4 4

1 2

0 2 5 1 6

11 14

2 3 4

5 5

1 0 5 5 4

1 8 2 3 4 5

…

…

Step 4: Comparison

Test trace Compare to detect which

bucket it is assigned

Fig. 2. Overview of CrashAutomata

Stack traces

In the consecutive steps, two n-grams of length k (𝐶𝑘
𝑖 and 𝐶𝑘

𝑗
) are

combined to make an n-gram of length k+1. The new pattern, we refer

to it as pk+1, is retained in the list of final n-grams if the frequency of

pk+1 is greater than α multiplied by the minimum frequency of 𝐶𝑘
𝑖 and

𝐶𝑘
𝑗
. Otherwise, it is pruned. From the previous example, take α = 0.6. If

we combine the two valid 1-grams A and B, we obtain AB. However,

the frequency of AB in all traces is 1 (it only appears in T1), which is

less than α (= 0.6) * minimum frequency of A and B (= 1). Therefore,

AB will be pruned from the final list of n-grams that will form the

automaton. The pattern CD, on the other hand, which is a composition

of two valid 1-grams C and D, is retained because its frequency (which

is 3) is greater than α (= 0.6) * minimum frequency of C and D (= 3).

The process of constructing n-grams continues this way until there are

no n-grams to construct. In our case, the 3-gram CDE is the last n-gram

to be constructed. The final list of n-grams output by the algorithm

when using traces T1, T2, and T3 is shown in Figure 4.

K1 K2 K3

A (3)

B (2)

C (3)

D (3)

E (3)

AB (1)

BA (1)

BC (1)

CD (3)

DE (3)

EA (1)

EB (1)

CDE (3)

Fig. 4. The n-grams extracted using Algorithm 1 applied to T1, T2,

and T3

Note that the value of α varies from 0 to 1. A smaller α constructs a

more generalized model, whereas when α is closer to 1, the model

becomes more rigid. If α = 1, the longest n-gram is the trace length

itself, whereas when α = 1 the n-grams are all 1-grams in the sequence.

The challenge is to find an appropriate α that yields best accuracy when

classifying incoming reports. An automaton that is too general (α

converges to 0) will lead to many false negatives. On the other hand, an

automaton that is too strict (α converges to 1) will result in many false

positives. In the case study, we experiment with α varying from 0 to 1

in order to determine α that leads to best accuracy.

3.2.2 Automata Construction
To build the automaton from the list of the varied-length n-grams

extracted in the previous step, we adopt Jiang et al.’s algorithm in [10]

(see Algorithm 2).

The output of the algorithm is a state transition matrix E where the rows

and columns represent the n-grams extracted from the previous step.

The algorithm starts with the n-gram set that has the longest length k (in

the previous example, k would be 3). Within each set of k-grams, it

processes the k-grams in the descending order of their frequency (i.e.,

the k-gram that has the highest frequency is processed first). These

rules aim to minimize the final number of n-grams and edges in the

final automaton. The next steps of the algorithm are straightforward.

For each element 𝐶𝑘
𝑖 of a set of k-grams, we search in the trace if it

exists, and if so, it is replaced by a state number (state numbers can be

saved in a table along with the elements they represent).

When applied to traces T1, T2, and T3, the resulting E matrix with

𝛼 = 0.6 is shown is Table 1. Figure 5 shows the automaton extracted

from this matrix.

Algorithm 2. Automaton Construction

for 𝛼 𝑓𝑟𝑜𝑚 0 𝑡𝑜 1 step 0.1

Input: the set of unique traces and the sets of n-grams

Output: the automaton E

set 𝐸[𝑚][𝑛] = 0 for any two n-grams m, n

for each trace T

 set 𝑘 = 𝐿 and 𝑙 = 𝑇′𝑠 length

 do

 for each k-gram 𝐶𝑘
𝑖 selected from 𝐶𝑘 according to the

 sorted order (with the most frequent one first),

 search and replace all 𝐶𝑘
𝑖 in T with the assigned state

 number;

if the length of the replaced part equals l,

 then break from the inner loop.

𝑘 = 𝑘 − 1.

 while the length of the replaced part ≠ l and k ≥ 1.

 from left to right, set E[m][n] = 1 if an n-gram n follows another

 n-gram m contiguously in the trace T

remove the unused n-grams/states from E

return the matrix E

Algorithm 2. Automaton construction algorithm used in

CrashAutomata (taken from [10])

Table 2. The E matrix constructed with CrashAutomata from

traces T1, T2, and T3

n-gram A B C D E CD DE CDE

A 0 1 0 0 0 0 0 0

B 1 0 0 0 0 0 0 1

C 0 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0 0

CD 0 0 0 0 0 0 0 0

CDE 1 1 0 0 0 0 0 0

Fig. 5. The automaton that is extracted from T1, T2, and T3

with 𝜶 = 𝟎. 𝟔.

As we can see, this automaton generalizes to sequences that are

not in T1, T2, and T3. For example, the sequence ABCDEBCDE

would be considered a valid sequence.

A
B

CDE

3.3 Testing (Detection) Phase
Once we construct the automata for the buckets of the dataset, we use

them to classify incoming crash reports (more precisely, by using their

stack traces). For this, we need to change the sequences of an incoming

stack trace into the extracted n-grams identified in the previous step. If

the trace contains non-defined n-grams (due for example to new

functions that were not encountered during the training phase), we

simply assign to them a new ID. We compare the sequence of n-grams

in the new trace with the ones in the corresponding automaton. We

introduce a new threshold, , beyond which we deem that an incoming

trace is supported by the automaton.

We measure the effectiveness of CrashAutomata using precision and

recall and the F-measure, which are defined using true positive (TP),

false positive (FP), and false negative (FN) (see [20] for more details on

these measures). For a bucket Bi, we measure TP, FP, and FN as

follows:

 TPBi = The number of traces that are correctly classified

 FPBi = The number of traces of the other buckets that are

classified as bucket Bi

 FNBi = The number of traces of bucket Bi that were classified

as belonging to other buckets other than Bi

We derive precision and recall for each Bucket, Bi, as follows. Note that

a high FP will reduce precision, whereas a high FN will reduce recall:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐵𝑖) =
𝑇𝑃𝐵𝑖

𝑇𝑃𝐵𝑖 + 𝐹𝑃𝐵𝑖

𝑅𝑒𝑐𝑎𝑙𝑙 (𝐵𝑖) =
𝑇𝑃𝐵𝑖

𝑇𝑃𝐵𝑖 + 𝐹𝑁𝐵𝑖

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝐵𝑖) = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐵𝑖) ∗ 𝑅𝑒𝑐𝑎𝑙𝑙(𝐵𝑖)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐵𝑖) + 𝑅𝑒𝑐𝑎𝑙𝑙(𝐵𝑖)

4. CASE STUDY
The objective of the case study is to assess the accuracy of

CrashAutomata using the F-measure. We also determine the most

suitable  and  values that yield best accuracy. In addition, we

compare CrashAutomata to CrashGraph. We chose CrashGraph

because (a) it relies only on stack traces, and (b) it provides the best

accuracy so far compared to other techniques.

4.1 Dataset
We chose in this study to use crash reports of the Firefox system, which

are managed using the Socorro server [23], used for collecting,

processing and reporting crashes in Mozilla Crash Reporter. We

restructured the buckets of Firefox crash reports as discussed in Section

3.1. To achieve this, we, first, selected Firefox bug reports with more

than one linked signature. Then for each signature (bucket), we

randomly downloaded 200 stack traces of its crash reports from Mozilla

Crash Reporter. For those buckets with less than 200 crash reports, we

downloaded all of their stack traces. Stack traces can be downloaded

from the Mozilla system using a simple script that fetches each crash

report.

We generated our new buckets according to the stack traces that are

related to duplicate bugs. In total, we downloaded 5,706 stack traces

and created nine (9) new buckets in which their stack traces were

grouped according to their related bug IDs. In the next sections, we

refer to these newly constructed buckets as B1, B2,…, B9.

Table 1 shows the properties of the newly constructed buckets of

Firefox. Bucket 1 contains the largest number of stack traces. We

downloaded these stack traces from 29 different signatures in

Mozilla, which are related to the same bug.

Table 2. Properties of the dataset.

Bucket ID Total # of Traces

B1 3,221

B2 293

B3 524

B4 534

B5 300

B6 172

B7 178

B8 243

B9 241

4.2 Results of Applying CrashAutomata
For each bucket, we chose 70% of the stack traces for training and

used the remaining 30% for testing (this is a typical practice in

machine learning [30]). We construct an automaton for each

bucket. We run CrashAutomata using different values of α in order

to determine the most suitable α that yields best classification. We

also examine different values of the threshold . Table 3 shows an

example of the result of CrashAutomata when used with α=1 and

τ=0.95. The row and columns show the buckets. A cell 𝑀𝑖𝑗 in the

table shows the number of stack traces in Bucket Bi that are

assigned to Bucket Bj by CrashAutomata. For example, Cell M11

shows the number of stack traces of Bucket B1 that are correctly

classified. Cell M18 shows that 2 traces of Bucket B1 are

misclassified as belonging to Bucket B8. The column ‘U’

(Unspecified) refers to traces that were not classified in any of the

buckets.

Table 3. An example of a classification result of

CrashAutomata

Bucket B1 B2 B3 B4 B5 B6 B7 B8 B9 U

B1 852 0 0 0 0 0 1 2 40 72

B2 0 88 0 0 0 0 0 0 0 0

B3 1 0 157 0 0 0 0 0 0 0

B4 6 0 0 148 0 0 0 0 0 7

B5 2 0 0 0 63 0 7 0 0 19

B6 0 0 1 0 0 49 0 0 1 1

B7 12 0 0 0 0 0 39 0 0 3

B8 12 0 0 0 0 0 0 61 0 0

B9 1 0 0 0 0 0 0 0 69 3

We calculate the F-measure for all buckets and the average F-

measure. Figure 6 shows the average F-measure obtained for all

buckets by varying α from 0 to 1 with a 0.1 step and  = 90%. We

believe that 90% similarity is a strong indication that the incoming

stack trace should indeed belong to the bucket.

Fig. 6. Average F-measure by varying α and τ= 0.9.

As we can see from Figure 6, the best accuracy (97% accuracy) is

obtained when  = 0.9. Figure 7 shows the F-measure for each bucket

with  = 0.9 and  = 90%. The results show that the accuracy of

CrashAutomata is more than 96% for all buckets, except for Bucket B5

(the accuracy is 88%). By analyzing the stack traces of Bucket B5, we

realized that these traces contain many signatures where only the

function names are indicated, without specifying the module names. We

believe that this may have caused many traces in the testing phase to be

classified as unspecified.

Fig. 7. F-measure for each bucket, τ=0.9 and =0.9.

We also examined whether a higher threshold τ can lead to better

results. We experimented with τ = 95%. Figures 8 and 9 show the

results. As we can see, we obtained similar results as for τ = 90%.

Fig. 8. Average F-measure by varying α and τ= 0.95.

Fig. 9. F-measure for each bucket, τ=0.95 and =0.9.

4.3 Comparison with CrashGraph
Kim et al. [14] introduced CrashGraph to detect duplicate crash

reports in WER (Windows Reporting System). The approach

aggregates the view of multiple crash traces in the same bucket by

constructing a graph where the nodes are the frame signatures and

the edges represent the calling relationship. CraphGraph uses a

similarity threshold, just like the one we use in CrashAutomata, τ,

when measuring the similarity between an incoming stack trace

and the constructed graph.

We implemented CrashGraph and applied it to our dataset with the

objective of comparing its accuracy with CrashAutomata. The

results obtained by CrashGraph using a similarity metric of τ=0.9

and τ=0.95 are shown in Figures 10 and 11 respectively.

86%

88%

90%

92%

94%

96%

98%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Alpha

τ = 0.9 F-measure

80%

82%

84%
86%
88%

90%

92%
94%

96%
98%

100%

1 2 3 4 5 6 7 8 9

Bucket ID

α=0.9 , τ=0.9
 F-measure

84%

86%

88%

90%

92%

94%

96%

98%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Alpha

80%

85%

90%

95%

100%

1 4 2 3 5 6 7 8 9

Bucket ID

α=0.9 , τ>=0.95 F-measure

Fig. 10. CrashGraph vs. CrashAutomata F-measure for each

bucket with τ= 0.90

As we can see, in both cases, CrashGraph achieves between 83% and

100% accuracy depending on the bucket. It is interesting to see that

worse accuracy is obtained for Bucket 5, just like in CrashAutomata.

CrashAutomata performs the same or better than CrashGraph for all

buckets when τ= 0.90 (Figure 10). By increasing the threshold to

τ=0.95, CrashGraph performs slightly better than CrashAutomata for

buckets 2, 7, and 8.

Fig. 11. CrashGraph vs. CrashAutomata F-measure for each

bucket with τ= 0.95.

We examined the average precision, recall, and F-measure of both

approach with τ= 0.95 (we used this because CrashGraph performs well

using this threshold). The result is shown in Figure 12. As we can see,

both approaches have high accuracy (100%), but the recall of

CrashAutomata is 4% in average higher than CrashGraph. We attribute

this to the generalization ability of CrashAutomata.

Furthermore, we studied the number of false negatives of both

approaches to pinpoint the buckets that caused the low recall. It should

be noted that false negatives include two groups of stack traces. The

first type is stack traces that CrashAutomata assigns wrongly to other

buckets (referred to in Figure 13 as Misclassified). The second type

consists of stack traces that are labelled as Unspecified, i.e., they were

not classified in any bucket. Figure 13 (and Table 4) compares the

percentage of both types in both CrashAutomata and CrashGraph.

The results show that in almost all buckets, CrashAutomata

performs better than CrashGraph. In CrashGraph many stack

traces are unspecified. The highest number of unspecified stack

traces belongs to Bucket B5 in which CrashGraph has around 10%

more stack traces than our approach. For Bucket B1,

CrashAutomata shows 10% unspecified stack traces while in

CrashGraph, this value reaches to 25%, which is a noticeable

difference between the two methods. The other significant

difference is related to Bucket B3, where the number of falsely

assigned stack traces in CrashAutomata is around zero whereas

this percentage in CrashGraph is 12%. This concludes that the

generalization aspect of CrashAutomata reduces significantly the

number of false negatives, which explains the better recall.

Fig. 12. Comparison between CrashAutomata (=0.9, =0.95)

and CrashGraph (=0.95).

Fig. 13. Comparing false negatives in CrashAutomata and

CrashGraph

80%

85%

90%

95%

100%

1 2 3 4 5 6 7 8 9

Bucket ID

Crash Graph
τ=0.90

CrashGraph

CrashAutomata

80%

85%

90%

95%

100%

1 2 3 4 5 6 7 8 9

Bucket ID

Crash Graph
τ=0.95

CrashGraph

CrashAutomata

97%

95%

100% 100%

94%

90%

84%

86%

88%

90%

92%

94%

96%

98%

100%

CrashAutomata CrashGraph

F-measure Precision Recall

0%

5%

10%

15%

20%

25%

30%

B1 B2 B3 B4 B5 B6 B7 B8 B9

CrashAutomata (Unspecified)

CrashAutomata (Misclassified)

CrashGraph (Unspecified)

CrashGraph (Misclassified)

Table 4. Comparing false negatives in CrashAutomata and

CrashGraph

CrashAutomata CrashGraph

Bucket Unspecified Misclassified Unspecified Misclassified

B1 10% 0% 24% 0%

B2 0% 0% 0% 0%

B3 0% 0% 0% 12%

B4 6% 0% 5% 1%

B5 22% 0% 29% 1%

B6 2% 0% 4% 0%

B7 9% 0% 9% 0%

B8 3% 0% 1% 0%

B9 5% 0% 5% 0%

4.4 Discussion

The case study shows promising results. CrashAutomata was able to

achieve 100% precision and between 86% and 100% recall. We showed

that it has a better recall than CrashGraph, which does not support any

generalization of the trained model. In what follows, we discuss two

aspects of CrashAutomata that may need further research.

Generalization of the automata: The goal of CrashAutomata is to

detect duplicate reports early in the crash handling process to save

software developers time and effort. Unlike existing techniques,

CrashAutomata is built with generalization in mind by modeling stack

traces in a way that unseen traces can be easily classified. Since not

every normal trace is seen and collected in the training data, a certain

capacity of generalization is desirable to reduce false positives and false

negatives in detection. The question is how much generalization the

automata should have in order to obtain good detection accuracy. In this

paper, we experimented with various values of  to find the most

suitable one. We expect that  changes from one dataset to another. The

danger with generalization is that it may lead to automata that are too

loose, which may affect the true positives (true duplicates may end up

classified as non-duplicates). It is therefore recommended to keep a

tight representation of the automata to guarantee an adequate true

positive rate.

Unspecified stack traces: During the experiments, the traces that were

misclassified by CrashAutomata were all labelled as ‘Unspecified’, i.e.,

they were not classified as belonging to any other buckets. Unspecified

traces may be an indication that new buckets are needed. These traces

were wrongly assigned to existing buckets (again because of the way

the Mozilla crash reporter assigns crash reports to buckets, which is

based on the top frame signature). This said, we can use the actual

representation of buckets to design a new bucketing system that relies

on the automata representation to classify incoming crashes. The new

system starts with a reliable set of buckets (just like the ones we

constructed from the Mozilla crash reporting system) and classifies

incoming crash reports by measuring the similarity between the stack

traces and the automata representation. Traces that show a high degree

of dissimilarity with all existing buckets should lead to the creation of

new buckets.

5. THREATS TO VALIDITY
The selection of the dataset is one of the common threats to

validity for a classification approach in machine learning. It is

possible that the crash reports of the selected system (Firefox) may

be biased by sharing common properties that we are not aware of

and therefore, invalidate our results. However, Firefox is used in

many similar studies so we believe that it is a representative

system for this research. This said, we acknowledge that we need
to apply our approach to other datasets.

Another threat to validity lies in the way we have selected the

stack traces in this study. We selected the stack traces randomly to

avoid any bias. One may argue that a better approach would be to

select stack traces based on other criteria such as the size of the

traces or the number of distinct functions they contain, etc. We

believe that longer and more complex traces may perhaps have an

impact on the running time of the approach, but we are not

convinced that the accuracy of our approach depends on the

complexity or the stack traces. Besides, having 200 traces in each

bucket, as it is the case in our approach, should provide good
coverage of the running system.

In addition, we see a threat to validity that stems from the fact that

we implemented CrashGraph based on the description of the

approach in the paper [14]. Unfortunately, we were not able to

have access to the implementation of the authors. CrashGraph is a

very simple approach, which consists of building a dynamic graph

from multiple traces. The algorithms and the implementation are

straightforward. We tested our implementation on many examples
to make sure it works properly.

The use of the threshold, , may be a threat to validity since a

different threshold may lead to different results. We mitigated this

threat by testing with  = 90% and  = 95%. A lower threshold

may result in less accuracy.

The real link between crash reports and their bug in not defined in

Mozilla and Bugzilla [6]. Therefore, we assumed that the selected

crash reports were related to the corresponding bug. This could be

a threat to the validity of the study. However, the results of the

study (100% precision) seem to suggest that this is a valid

assumption. A similar assumption was made by other researchers

such as [8, 28].

Finally, we see a threat to validity that stems from the fact that we

only used crashes from the Mozilla web site, which is an open

source repository. The results may not be generalizable to

industrial systems. Unfortunately, we do not have access to

industrial systems to experiment with and mitigate this threat.

6. RELATED WORK
Detecting duplicate crash reports and grouping them effectively

improve the duplicate bug detection as well. To detect duplicates,

methods use information inside crash reports such as stack traces

or information from bug reports,e.g., comments and descriptions.

Schröter et al. [22] proposed a study on the usage of stack traces

by developers from the Eclipse project. They showed the

usefulness of stack traces in fixing bugs by only examining key

patterns in the stack traces.

Jalbert et al. [9] introduced an approach to detect duplicate bug

reports using a classifier. The classifier combines features of

reports and uses textual similarity metrics and graph clustering

algorithms. Similar to Jalbert et al. [9], Bartz et al. [13] trained a

classifier on WER failure reports that predicts the similarity

between two failure reports considering the call stack as the key

feature. Another method by Sureka et al. [26] uses character n-gram-

based modes for duplicate bug detection. Instead of using words in

feature selection, they use characters. The method searches for top-N

bug reports and visualizes them with numerical scores to the triagers.

Wang et al. [28], improved bug localization by detecting different crash

types related to a same bug. If the occurrence of one bug causes the

other bug to occur, this bug is referred to as correlated. The authors

proposed an algorithm to improve the bug localization using crash

correlation groups.

The method proposed by Wang et al. [29] detects duplicate bug reports

by combining both natural language information and execution

information of existing bug reports in the Firefox bug reporting. They

used natural language processing techniques together with stack trace

similarity measurements to identify the duplicate bug reports from the

non-duplicate ones.

There are many other techniques [1, 2, 5, 11, 12, 16, 19] which use

either the contextual parts of bug reports or stack traces from passing

and failing execution traces. They usually dependent on

instrumentation, predicates, and coverage reports of successful traces.

These methods are not applicable to crash reports, since only failing

crash reports are available.

Dhaliwal et al. [8] applied two level grouping on Mozilla Firefox

buckets. The first level is a grouping done according to the crash

signature. The second level is to subgroup stack traces based on their

similarities. Like our approach they generate a representative stack

trace for each subgroup, however, the representative trace contains the

frequency of each module in each frame.

Although WER uses strong heuristics in generating its buckets,

sometimes crashes caused by the same bug are put in different buckets.

In addition WER may generate many buckets that contain only one or a

few number of crash reports. To improve the accuracy of bucketing in

WER, Rebucket [7] was proposed by Dang et al. for clustering crash

reports based on call stack similarity. Rebucket measures the similarity

between call stacks in WER and assigns crash reports to the buckets

according to similarity values.

The most similar work to our work as discussed before is CrashGraph

[14]. Although CrashGraph could achieve better results than previous

methods in WER, we showed that in Mozilla the results obtained by our

approach outperform the results by CrashGraph. In comparison with

WER, our CrashAutomata is a simpler and independent from

developers’ investigations.

7. CONCLUSION AND FUTURE WORK
In this paper, we presented CrashAutomata, a technique for detecting

duplicate crash (bug) reports using stack traces. Unlike other

techniques, CrashAutomata is built with generalization in mind. Stack

traces are first processed to extract varied-length n-grams, used to form

automata. The extract algorithm relies on a variable  that controls the

level of generalization of the automaton. The idea is to have a model

that can be general enough to classify similar traces that were unseen

during training. Once the automata are built, every time a new stack

trace (crash report) arrives, instead of comparing crashes one by one to

detect the duplicates, crashes could be assigned to a bucket with high

accuracy of being duplicate of bugs related to that bucket. This

approach can facilitate the triaging process and other crash handling

tasks.

We experimented with CrashAutomata on crash reports of the Firefox

system (downloaded from the Mozilla crash reporting system). The F-

measure of our approach is in average 97%. We showed that

CrashAutomata outperforms CrashGraph. It results in better recall than

CrashGraph while keeping the same precision. We attributed this

to the generalization power of CrashAutomata.

In future, we will experiment with CrashAutomata on other

systems. We will also investigate the variables that can lead to a

generalizable model that has high true positive rate while reducing

false positives and negatives.

ACKNOWLEDGMENT
This study was partly supported by a grant from NSERC (the

Canadian Natural Sciences and Engineering Council).

8. REFERENCES
[1] Aggarwal, K., Rutgers, T., Timbers, F., Hindle, A.,

Greiner, R. and Stroulia, E. 2015. Detecting Duplicate

Bug Reports with Software Engineering Domain

Knowledge. (2015), 211–220.

[2] Alipour, A., Hindle, A. and Stroulia, E. 2013. A

contextual approach towards more accurate duplicate bug

report detection. IEEE International Working Conference

on Mining Software Repositories. (2013), 183–192.

[3] Apple Crash Reporter:

https://developer.apple.com/library/ios/documentation/ID

Es/Conceptual/AppDistributionGuide/AnalyzingCrashRe

ports/AnalyzingCrashReports.html.

[4] Bettenburg, N., Premraj, R., Zimmermann, T. and Kim, S.

2008. Duplicate bug reports considered harmful... Really?

IEEE International Conference on Software Maintenance,

ICSM. (2008), 337–345.

[5] Brodie, M., Ma, S., Rachevsky, L. and Champlin, J. 2005.

Automated problem determination using call-stack

matching. Journal of Network and Systems Management.

13, 2 (2005), 219–236.

[6] Bugzilla: https://bugzilla.mozilla.org/.

[7] Dang, Y., Wu, R., Zhang, H., Zhang, D. and Nobel, P.

2012. ReBucket: A method for clustering duplicate crash

reports based on call stack similarity. Proceedings -

International Conference on Software Engineering.

(2012), 1084–1093.

[8] Dhaliwal, T., Khomh, F. and Zou, Y. 2011. Classifying

field crash reports for fixing bugs: A case study of

Mozilla Firefox. IEEE International Conference on

Software Maintenance, ICSM. November 2009 (2011),

333–342.

[9] Jalbert, N. and Weimer, W. 2008. Automated duplicate

detection for bug tracking systems. Proceedings of the

International Conference on Dependable Systems and

Networks. (2008), 52–61.

[10] Jiang, G., Chen, H., Ungureanu, C. and Yoshihira, K.

2007. Trace analysis for fault detection for application

server. CRC Press.

[11] Jones, J. a., Harrold, M.J. and Stasko, J. 2002.

Visualization of test information to assist fault

localization. Proceedings of the 24th International

Conference on Software Engineering. ICSE 2002. (2002),

467–477.

[12] Jones, J. a. J. a and Harrold, M.J.M.J. 2005. Empirical

evaluation of the tarantula automatic fault-localization

technique. Automated Software Engineering. (2005),

282–292.

[13] Kevin Bartz, Jack W. Stokes, John C. Platt,Ryan Kivett, David

Grant, Silviu Calinoiu, G.L. 2008. Finding Similar Failures

Using Callstack Similarity. SysML. (2008).

[14] Kim, S., Zimmermann, T. and Nagappan, N. 2011. Crash

graphs: An aggregated view of multiple crashes to improve

crash triage. Proceedings of the International Conference on

Dependable Systems and Networks. (2011), 486–493.

[15] Kinshumann, K., Glerum, K., Greenberg, S., Aul, G.,

Orgovan, V., Nichols, G., Grant, D., Loihle, G. and Hunt, G.

2011. Debugging in the (very) large. Communications of the

ACM. 54, 7 (2011), 111.

[16] Liblit, B., Naik, M., Zheng, A.X., Aiken, A. and Jordan, M.I.

2005. Scalable statistical bug isolation. ACM SIGPLAN

Notices. 40, 6 (2005), 15.

[17] Mozilla Crash Reporter: https://crash-

stats.mozilla.com/home/products/Firefox.

[18] Nguyen, A.T., Nguyen, T.T.T.N., Lo, D. and Sun, C. 2012.

Duplicate bug report detection with a combination of

information retrieval and topic modeling. Proceedings of the

27th IEEE/ACM International Conference on Automated

Software Engineering - ASE 2012. (2012), 70.

[19] Podgurski, A., Leon, D., Francis, P., Masri, W., Minch, M.,

Sun, J.S.J. and Wang, B.W. Bin 2003. Automated support for

classifying software failure reports. 25th International

Conference on Software Engineering, 2003. Proceedings.

(2003), 465–475.

[20] Powers, D.M.. 2011. Evaluation: From Precision, Recall and

F-Measure to ROC, Informedness, Markedness & Correlation.

Journal of Machine Learning Technologies. 2, 1 (2011), 37–

63.

[21] Runeson, P., Alexandersson, M. and Nyholm, O. 2007.

Detection of duplicate defect reports using natural language

processing. Proceedings - International Conference on

Software Engineering. (2007), 499–508.

[22] Schröter, A., Bettenburg, N. and Premraj, R. 2010. Do

stack traces help developers fix bugs? Proceedings -

International Conference on Software Engineering.

(2010), 118–121.

[23] Socorro: http://socorro.readthedocs.org/en/latest/.

[24] Sun, C., Lo, D., Khoo, S.C. and Jiang, J. 2011. Towards

more accurate retrieval of duplicate bug reports. 2011

26th IEEE/ACM International Conference on Automated

Software Engineering, ASE 2011, Proceedings. (2011),

253–262.

[25] Sun, C., Lo, D., Wang, X., Jiang, J. and Khoo, S.-C.

2010. A discriminative model approach for accurate

duplicate bug report retrieval. 2010 ACM/IEEE 32nd

International Conference on Software Engineering. 1,

(2010), 45–54.

[26] Sureka, A. and Jalote, P. 2010. Detecting duplicate bug

report using character N-gram-based features.

Proceedings - Asia-Pacific Software Engineering

Conference, APSEC. (2010), 366–374.

[27] Tian, Y., Sun, C. and Lo, D. 2012. Improved duplicate

bug report identification. Proceedings of the European

Conference on Software Maintenance and Reengineering,

CSMR. (2012), 385–390.

[28] Wang, S., Khomh, F. and Zou, Y. 2013. Improving bug

localization using correlations in crash reports. IEEE

International Working Conference on Mining Software

Repositories. (2013), 247–256.

[29] Wang, X.W.X., Zhang, L.Z.L., Xie, T.X.T., Anvik, J. and

Sun, J.S.J. 2008. An approach to detecting duplicate bug

reports using natural language and execution information.

2008 ACM/IEEE 30th International Conference on

Software Engineering. (2008).

[30] Witten, I.H., Eibe, F. and Hall, M.A. 2011. Data Mining:

Practical Machine Learning Tools and Techniques.

Morgan Kaufmann.

