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ABSTRACT 
Crash reporting systems are useful tools that allow users to report 

system failures, subsequently contacting the appropriate support 

group for resolution. As a software system grows and becomes 

more versatile, the number of crashes increases. A large software 

company receives typically thousands of crashes a day, which 

make it difficult for software engineers to address these reports in 

a timely manner. Fortunately, not all reports are new; many of 

them are duplicates of previously reported crashes. Research has 

shown that early detection of duplicate reports can reduce the 

effort and time it takes to handle crash reports. In this paper, we 

propose a new approach for detecting duplicate crash reports, 

called CrashAutomata. CrashAutomata builds a model from 

historical crash reports (more precisely their stack traces) that is 

used to classify an incoming report. The model is based on varied-

length n-grams and automata. Unlike existing techniques, 

CrashAutomata takes advantage of the generalization aspect of 

automata, making it possible to build a representative model of 

crash reports, reducing the number of false positives. When 

applied to crash reports of the Firefox system, CrashAutomata 

results in very high precision and recall. It also outperforms 

CrashGraph, a leading technique in the detection of duplicate 

crash reports.  

Keywords 

Mining bug repositories, Duplicate bug reports, Automata-based 

Modeling, Software maintenance. 

1. INTRODUCTION 
Most large software systems are equipped with a crash reporting 

tool that generates automatically a crash report when a field 

failure occurs. Examples of such tools include WER (Windows 

Error Reporting) [15], Apple Crash Reporter [3] and Mozilla 

Crash Reporter [17]. These tools can automatically collect a 

variety of data about the crash including stack traces, memory 

dumps, etc. This data is sent to a crash reporting server and 

processed by the developers of the system in order to provide 

fixes.  

Analyzing crash reports, however, can be a tedious task. This is 

because of the large number of reports that are submitted every 

day, especially for software systems with a large user base. 

Fortunately, not all these bugs are unique. Studies have shown 

that many reported bugs are duplicates—the same fault causes 

different running instances of the same system to crash [4, 14, 21]. 

Consider, for example, a popular web browser such as Firefox. 

This system is used by millions of users. The same bug can trigger 

many of the running instances of Firefox to fail. If a crash report is 

submitted for each failure then the Firefox development team will be 

swamped with reports. Research has shown that detecting duplicate 

crash reports can significantly reduce the time and effort spent on 

triaging and handling crashes [9, 24, 29]. This led to many studies that 

aim to detect automatically duplicate crash (or bug) reports. These 

techniques treat the problem as a classification problem by building a 

model from historical bug reports, using machine learning techniques. 

The model is used to classify incoming bugs.  

Existing techniques for detecting duplicate reports can be divided into 

two categories. The first category encompasses techniques that rely 

solely on the description of the reports [1, 9, 18, 24–27].  The problem 

with the description is that it is expressed in natural language and as 

such it tends to be informal and hence not quite reliable. To address 

this, researchers have turned to more formal crash report data such as 

stack traces [7, 8, 14, 29]. These techniques model information in 

historical stack traces and use the resulting model to classify incoming 

reports. Perhaps, one of the most effective approaches is CrashGraph. 

Introduce by Kim et al. [14], CrashGraph is used to detect duplicate 

crash reports in WER (Windows Error Reporting System). The 

approach aggregates multiple stack traces in the same group by 

constructing a graph where the nodes represent the stack trace 

functions and the edges represent the calling relationship. When 

applied to crashes of two Windows products CrashGraph achieves 

71.5% precision and 62.4% recall [14]. 

The problem with CrashGraph and similar approaches is that they 

generate a training model that is too rigid, making them difficult to 

generalize to unseen cases, which explains the low recall. What we 

mean by generalization is the ability to model stack traces while 

considering possible calls that are not necessarily in the training set. 

Take for example the following fictive stack trace ABCDED used for 

training. A model that represents this trace should classify traces 

ABABCDED or AAABCDED as similar because they only differ 

from ABCDED due to contiguous repetition of AB and A respectively. 

Contiguous repetitions can be due to loops in the program. They did 

not appear in the stack trace used for training just because the loop was 

not exercised during the scenario that led to the crash. We will see in 

the rest of the paper that generalization goes beyond considering just 

contiguous repetitions.  

In this paper, we propose an approach, called CrashAutomata that uses 

a combination of varied-length n-grams and automata to model stack 

traces. CrashAutomata is inspired by the work of Jiang et al. [10]. The 

authors developed an algorithm for anomaly detection that can be 

generalized to unseen cases by controlling a variable . We adopted 



 

 

the algorithm to model stack traces and detect duplicate reports. 

We experimented with various values of  to determine the most 

suitable value that yields best detection accuracy. We also 

compared CrashAutomata with CrashGraph. The results show that 

our approach has a better recall than CrashCrash while keeping 

the same precision.  

The remaining parts of this paper are organized as follows: In 

Section 2, we present background information on crash reports 

and the Mozilla crash reporting system, used in this study. In 

Section 3, we present CrashAutomata. In Section 4, we evaluate 

the effectiveness of CrashAutomata when applied to stack traces 

of the Firefox system. We also compare CrashAutomata to 

CrashGraph. Section 5 discusses threats to validity, following by 

related work. We conclude the paper and sketch future directions 

in Section 7. 

2. CRASH REPORTS AND STACK 

TRACES IN MOZILLA 
A typical crash report contains a crash signature, a description, a 

submission date, a product number, a product version, the 

operating system version, and a stack trace. WER (Windows Error 

Reporting) [15], Apple Crash Reporter [3] and Mozilla Crash 

Reporter [17] are good examples of widely deployed crash 

reporting systems. Figure 1 gives an overview of how a crash 

reporting system works. When a crash occurs in a software 

system, a user submits a crash report for troubleshooting (note 

that a crash report can also be generated automatically depending 

on the how the settings of the system). A crash reporting system 

receives the crash reports and groups them based on how similar 

they are. This way, when a new crash arrives, it can be assigned to 

the same developers who fixed similar crashes. The overall goal is 

to speed up the process of handling crashes. 

The grouping technique varies from one crash reporting system to 

another. WER, for example, uses more than 500 proprietary 

heuristics for organizing crash reports into buckets [7, 13]. 

Mozilla, the crash reporting system used in this paper, groups 

crash reports based on stack trace information. More particularly, 

it uses the last function that was executed when the crash occurred 

as the main similarity criterion.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. An overview of how a crash reporting system works 

Table 1 shows an excerpt of a stack trace in one of Mozilla’s 

crash reports. The stack trace contains five frames; each contains 

information about the executed function. A frame signature is 

defined as the method signature (composed of the function name 

and the module name). In this example, the program crashed at 

Frame 0 (function signature mozglue.dll/mozalloc_abort).  More 

formally, a stack trace can be defined as an ordered set of frames, 

F={f0, f1,…, fn}, where n is the number of functions in the stack trace 

and f0 is the top frame of the stack trace.  

Crash reports are examined by a team of triagers who decide whether 

the crash is valid or not. Triagers turn valid crashes into bug reports, 

assign to them a priority (severity) level, and assign them to the 

appropriate developers. In the rest of the paper, we use the terms bug 

reports and crash reports interchangeably. 

It should be noted that Mozilla’s bucketing method may result in many 

duplicate reports being spread over multiple buckets, just because the 

top frames of their stack traces are different. Even worse, many 

unrelated crashes may be grouped together, which defeats the purpose 

of having a bucketing system in the first place. This awkward 

bucketing can cause further problems for developers when attempting 

to understand the fault by looking at crash traces that may in fact be 

unrelated.  

Table 1. An example of a bucket in Mozilla crash reports 

Frame Module Signature 

0 mozglue.dll mozalloc_abort(char const* const) 

1 mozglue.dll mozalloc_handle_oom(unsigned int) 

2 mozglue.dll moz_xmalloc 

3 xul.dll 

mozilla::net::CacheFileMetadata::WriteMetad

ata(unsigned int, 

mozilla::net::CacheFileMetadataListener*) 

4 xul.dll 
mozilla::net::CacheFile::WriteMetadataIfNeed

edLocked(bool) 

5 xul.dll 
mozilla::net::CacheFile::DeactivateChunk(mo

zilla::net::CacheFileChunk*) 

 

3. CRASHAUTOMATA APPROACH 
Figure 2 shows an overview of our approach. The approach is divided 

into two phases: training and testing (detection) phases. In the training 

phase, we use historical crash reports to build a model that 

characterizes the information contained in stack traces of duplicate 

bugs. This phase is further divided into multiple steps. The first step 

consists of collecting crash traces from the Mozilla Crash Reporter and 

restructuring them to form valid grouping of duplicate bugs. In the 

second step, we extract varied-length n-grams from stack traces of 

each bucket. These n-grams will be used to construct an automaton for 

each bucket. To control the level of generalization of the automaton, 

we introduce a variable , which regulates the number of n-grams that 

are extracted. We will describe this process in Section 3.2.1. The 

testing phase consists of assessing the effectiveness of the model in 

classifying unseen crash reports.  

3.1 Training Phase: Collecting Stack Traces and 

Creating Buckets 
As discussed earlier, Mozilla crashes are grouped based on the top 

frame signature (the last invoked function) of their corresponding 

stack traces. As a result, many duplicate crashes may end up in 

different buckets. This said, duplicate bug reports that are generated 

from these crash reports may also be in different buckets.  To test the 

effectiveness of our approach, we need to have stack traces of all 

duplicate bugs in the same bucket. To achieve this, we simply 

reorganize Mozilla’s buckets by bringing together stack traces that 

correspond to the same bugs into one bucket.  
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3.2 Training Phase: Automata Construction  
Once the buckets are reorganized, the next step is to build an automaton 

from the stack traces of each bucket. One way to achieve this is to 

simply consider each frame signature as a state in the automaton. A 

transition from one state to another occurs between two consecutive 

frame signatures.  

This method, however, suffers from two limitations. First, it may result 

in large automata, which may impact the scalability of the approach. 

The second and perhaps most important limitation is that it tends to be 

too rigid, meaning that the resulting automata cannot easily generalize 

to unseen cases. To make this clear, take for example the stack trace 

ABCDE, where A, B, C, D, and E are function calls (frame signatures 

in a Mozilla stack trace). It is reasonable to assume that since AB was 

invoked once it may also be invoked twice or more due to the presence 

of loops in the code. Therefore, an incoming report with a stack trace 

ABABABCDE should be deemed similar. We address both limitations 

in CrashAutomata by building automata using varied-length n-gram 

extracted from stack trace sequences. We also introduce a variable  

that controls the level of generalization of the automaton. These points 

are further discussed in the next subsections. 

3.2.1 Varied-length n-gram extraction 
We address the scalability issue by using an n-gram extraction 

technique that identifies the frequent common sub-sequences or 

patterns in a sequence, where the length of the patterns can vary from 

one to n (the number of frame signatures in a trace). To this end, we 

adopt the algorithm presented by Jiang et al. in [10], used to detect 

anomalies in large datasets. This algorithm analyzes the training stack 

trace sequences, and extracts from them frequent patterns as n-grams 

according to a certain threshold α. The threshold is used to control the 

level of generalization of the resulting automaton. 

To illustrate the steps of the algorithm (see Algorithm 1), we use 

the following three sequences (taken from [10]): T1: ABCDE, T2: 

CDEA and T3: CDEBA. These sequences represent, in our case, 

three stack traces of the same bucket, where A, B, C, D, and E are 

frame signatures. At the beginning, the algorithm extracts all 

unique frame signatures from the stack traces and labels them as 1-

gram.  

 

Algorithm 1. Algorithm for varied-length n-gram extraction 

(from  [10]) 

Training Phase 

 Testing (Detection) Phase 

Pool of Varied-

Length N-grams 

in each bucket Step 1: Collect crash 

reports and extract Stack 

traces 

Step 2: N-gram extraction 

Step 3: Automata construction 

N-gram 

Automata 

Bucket 1 Bucket N 4 4 4 

1 2 

0 2 5 1 6 

11 14 

2 3 4 

5 5 

1 0 5 5 4 

1 8 2 3 4 5 

… 

… 

Step 4: Comparison 

Test trace Compare to detect which 

bucket it is assigned 

Fig. 2. Overview of CrashAutomata 

Stack traces 



 

 

In the consecutive steps, two n-grams of length k (𝐶𝑘
𝑖  and 𝐶𝑘

𝑗
) are 

combined to make an n-gram of length k+1. The new pattern, we refer 

to it as pk+1, is retained in the list of final n-grams if the frequency of 

pk+1 is greater than α multiplied by the minimum frequency of 𝐶𝑘
𝑖  and 

𝐶𝑘
𝑗
. Otherwise, it is pruned. From the previous example, take α = 0.6. If 

we combine the two valid 1-grams A and B, we obtain AB. However, 

the frequency of AB in all traces is 1 (it only appears in T1), which is 

less than α (= 0.6) * minimum frequency of A and B (= 1).  Therefore, 

AB will be pruned from the final list of n-grams that will form the 

automaton. The pattern CD, on the other hand, which is a composition 

of two valid 1-grams C and D, is retained because its frequency (which 

is 3) is greater than α (= 0.6) * minimum frequency of C and D (= 3). 

The process of constructing n-grams continues this way until there are 

no n-grams to construct. In our case, the 3-gram CDE is the last n-gram 

to be constructed. The final list of n-grams output by the algorithm 

when using traces T1, T2, and T3 is shown in Figure 4. 

K1 K2 K3 

A (3)  

B (2)  

C (3)  

D (3)  

E  (3)  

AB (1)  

BA (1)  

BC (1)  

CD (3)  

DE (3)  

EA (1)   

EB (1)  

CDE (3)  

Fig. 4. The n-grams extracted using Algorithm 1 applied to T1, T2, 

and T3 

Note that the value of α varies from 0 to 1. A smaller α constructs a 

more generalized model, whereas when α is closer to 1, the model 

becomes more rigid. If α = 1, the longest n-gram is the trace length 

itself, whereas when α = 1 the n-grams are all 1-grams in the sequence. 

The challenge is to find an appropriate α that yields best accuracy when 

classifying incoming reports. An automaton that is too general (α 

converges to 0) will lead to many false negatives. On the other hand, an 

automaton that is too strict (α converges to 1) will result in many false 

positives. In the case study, we experiment with α varying from 0 to 1 

in order to determine α that leads to best accuracy. 

3.2.2 Automata Construction 
To build the automaton from the list of the varied-length n-grams 

extracted in the previous step, we adopt Jiang et al.’s algorithm in [10] 

(see Algorithm 2).  

The output of the algorithm is a state transition matrix E where the rows 

and columns represent the n-grams extracted from the previous step. 

The algorithm starts with the n-gram set that has the longest length k (in 

the previous example, k would be 3). Within each set of k-grams, it 

processes the k-grams in the descending order of their frequency (i.e., 

the k-gram that has the highest frequency is processed first). These 

rules aim to minimize the final number of n-grams and edges in the 

final automaton. The next steps of the algorithm are straightforward. 

For each element 𝐶𝑘
𝑖  of a set of k-grams, we search in the trace if it 

exists, and if so, it is replaced by a state number (state numbers can be 

saved in a table along with the elements they represent). 

When applied to traces T1, T2, and T3, the resulting E matrix with 

𝛼 = 0.6 is shown is Table 1. Figure 5 shows the automaton extracted 

from this matrix. 

Algorithm 2. Automaton Construction 

for  𝛼 𝑓𝑟𝑜𝑚 0 𝑡𝑜 1 step 0.1 

Input: the set of unique traces and the sets of n-grams 

Output: the automaton E 

 

set 𝐸[𝑚][𝑛] = 0 for any two n-grams m, n 

for each trace T 

     set 𝑘 = 𝐿 and 𝑙 = 𝑇′𝑠 length 

    do 

            for each k-gram 𝐶𝑘
𝑖  selected from 𝐶𝑘 according to the   

               sorted order (with the most frequent one first), 

                 

                search and replace all 𝐶𝑘
𝑖  in T with the assigned state  

                number; 

 

if the length of the replaced part equals l, 

       then break from the inner loop. 

 

𝑘 = 𝑘 − 1. 

     while the length of the replaced part ≠ l and k ≥ 1. 

      

     from left to right, set E[m][n] = 1 if an n-gram n follows another    

     n-gram m contiguously in the trace T   

 

remove the unused n-grams/states from E 

return the matrix E 

Algorithm 2. Automaton construction algorithm used in 

CrashAutomata (taken from [10]) 

 

Table 2. The E matrix constructed with CrashAutomata from 

traces T1, T2, and T3 

n-gram A B C D E CD DE CDE 

A 0 1 0 0 0 0 0 0 

B 1 0 0 0 0 0 0 1 

C 0 0 0 0 0 0 0 0 

D 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 0 0 

CD 0 0 0 0 0 0 0 0 

CDE 1 1 0 0 0 0 0 0 

 

 

 

 

 

 

 

 

Fig. 5. The automaton that is extracted from T1, T2, and T3 

with  𝜶 = 𝟎. 𝟔.   

As we can see, this automaton generalizes to sequences that are 

not in T1, T2, and T3. For example, the sequence ABCDEBCDE 

would be considered a valid sequence.  

   

A 
B 

CDE 



 

 

3.3 Testing (Detection) Phase 
Once we construct the automata for the buckets of the dataset, we use 

them to classify incoming crash reports (more precisely, by using their 

stack traces). For this, we need to change the sequences of an incoming 

stack trace into the extracted n-grams identified in the previous step. If 

the trace contains non-defined n-grams (due for example to new 

functions that were not encountered during the training phase), we 

simply assign to them a new ID. We compare the sequence of n-grams 

in the new trace with the ones in the corresponding automaton. We 

introduce a new threshold, , beyond which we deem that an incoming  

trace is supported by the automaton.  

We measure the effectiveness of CrashAutomata using precision and 

recall and the F-measure, which are defined using true positive (TP), 

false positive (FP), and false negative (FN) (see [20] for more details on 

these measures). For a bucket Bi, we measure TP, FP, and FN as 

follows: 

 TPBi = The number of traces that are correctly classified 

 FPBi = The number of traces of the other buckets that are 

classified as bucket Bi 

 FNBi = The number of traces of bucket Bi that were classified 

as belonging to other buckets other than Bi 

We derive precision and recall for each Bucket, Bi, as follows. Note that 

a high FP will reduce precision, whereas a high FN will reduce recall: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐵𝑖) =  
𝑇𝑃𝐵𝑖

𝑇𝑃𝐵𝑖 + 𝐹𝑃𝐵𝑖
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝐵𝑖) =  
𝑇𝑃𝐵𝑖

𝑇𝑃𝐵𝑖 + 𝐹𝑁𝐵𝑖
 

 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝐵𝑖) =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐵𝑖) ∗ 𝑅𝑒𝑐𝑎𝑙𝑙(𝐵𝑖)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐵𝑖) + 𝑅𝑒𝑐𝑎𝑙𝑙(𝐵𝑖)
 

 

4. CASE STUDY 
The objective of the case study is to assess the accuracy of 

CrashAutomata using the F-measure. We also determine the most 

suitable  and  values that yield best accuracy. In addition, we 

compare CrashAutomata to CrashGraph. We chose CrashGraph 

because (a) it relies only on stack traces, and (b) it provides the best 

accuracy so far compared to other techniques. 

4.1 Dataset 
We chose in this study to use crash reports of the Firefox system, which 

are managed using the Socorro server [23], used for collecting, 

processing and reporting crashes in Mozilla Crash Reporter. We 

restructured the buckets of Firefox crash reports as discussed in Section 

3.1. To achieve this, we, first, selected Firefox bug reports with more 

than one linked signature. Then for each signature (bucket), we 

randomly downloaded 200 stack traces of its crash reports from Mozilla 

Crash Reporter. For those buckets with less than 200 crash reports, we 

downloaded all of their stack traces. Stack traces can be downloaded 

from the Mozilla system using a simple script that fetches each crash 

report.  

We generated our new buckets according to the stack traces that are 

related to duplicate bugs. In total, we downloaded 5,706 stack traces 

and created nine (9) new buckets in which their stack traces were 

grouped according to their related bug IDs. In the next sections, we 

refer to these newly constructed buckets as B1, B2,…, B9.  

Table 1 shows the properties of the newly constructed buckets of 

Firefox.  Bucket 1 contains the largest number of stack traces. We 

downloaded these stack traces from 29 different signatures in 

Mozilla, which are related to the same bug.  

Table 2. Properties of the dataset. 

Bucket ID Total # of Traces 

B1 3,221 

B2 293 

B3 524 

B4 534 

B5 300 

B6 172 

B7 178 

B8 243 

B9 241 

 

4.2 Results of Applying CrashAutomata 
For each bucket, we chose 70% of the stack traces for training and 

used the remaining 30% for testing (this is a typical practice in 

machine learning [30]). We construct an automaton for each 

bucket. We run CrashAutomata using different values of α in order 

to determine the most suitable α that yields best classification. We 

also examine different values of the threshold . Table 3 shows an 

example of the result of CrashAutomata when used with α=1 and 

τ=0.95. The row and columns show the buckets. A cell 𝑀𝑖𝑗 in the 

table shows the number of stack traces in Bucket Bi that are 

assigned to Bucket Bj by CrashAutomata. For example, Cell M11 

shows the number of stack traces of Bucket B1 that are correctly 

classified. Cell M18 shows that 2 traces of Bucket B1 are 

misclassified as belonging to Bucket B8. The column ‘U’ 

(Unspecified) refers to traces that were not classified in any of the 

buckets.   

Table 3. An example of a classification result of 

CrashAutomata 

Bucket B1 B2 B3 B4 B5 B6 B7 B8 B9 U 

B1 852 0 0 0 0 0 1 2 40 72 

B2 0 88 0 0 0 0 0 0 0 0 

B3 1 0 157 0 0 0 0 0 0 0 

B4 6 0 0 148 0 0 0 0 0 7 

B5 2 0 0 0 63 0 7 0 0 19 

B6 0 0 1 0 0 49 0 0 1 1 

B7 12 0 0 0 0 0 39 0 0 3 

B8 12 0 0 0 0 0 0 61 0 0 

B9 1 0 0 0 0 0 0 0 69 3 
 

We calculate the F-measure for all buckets and the average F-

measure. Figure 6 shows the average F-measure obtained for all 

buckets by varying α from 0 to 1 with a 0.1 step and  = 90%. We 

believe that 90% similarity is a strong indication that the incoming 

stack trace should indeed belong to the bucket.  

 



 

 

 

Fig. 6. Average F-measure by varying α and τ= 0.9.  

As we can see from Figure 6, the best accuracy (97% accuracy) is 

obtained when  = 0.9. Figure 7 shows the F-measure for each bucket 

with  = 0.9 and  = 90%. The results show that the accuracy of 

CrashAutomata is more than 96% for all buckets, except for Bucket B5 

(the accuracy is 88%). By analyzing the stack traces of Bucket B5, we 

realized that these traces contain many signatures where only the 

function names are indicated, without specifying the module names. We 

believe that this may have caused many traces in the testing phase to be 

classified as unspecified.  

 

 

Fig. 7. F-measure for each bucket, τ=0.9 and =0.9. 

We also examined whether a higher threshold τ  can lead to better 

results. We experimented with τ = 95%. Figures 8 and 9 show the 

results. As we can see, we obtained similar results as for τ = 90%.  

 

 

Fig. 8. Average F-measure by varying α and τ= 0.95.  

 

 

Fig. 9. F-measure for each bucket, τ=0.95 and =0.9. 

4.3 Comparison with CrashGraph 
Kim et al. [14] introduced CrashGraph to detect duplicate crash 

reports in WER (Windows Reporting System). The approach 

aggregates the view of multiple crash traces in the same bucket by 

constructing a graph where the nodes are the frame signatures and 

the edges represent the calling relationship. CraphGraph uses a 

similarity threshold, just like the one we use in CrashAutomata,  τ, 

when measuring the similarity between an incoming stack trace 

and the constructed graph.  

We implemented CrashGraph and applied it to our dataset with the 

objective of comparing its accuracy with CrashAutomata. The 

results obtained by CrashGraph using a similarity metric of τ=0.9 

and τ=0.95 are shown in Figures 10 and 11 respectively.  
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Fig. 10. CrashGraph vs. CrashAutomata F-measure for each 

bucket with τ= 0.90 

As we can see, in both cases, CrashGraph achieves between 83% and 

100% accuracy depending on the bucket. It is interesting to see that 

worse accuracy is obtained for Bucket 5, just like in CrashAutomata. 

CrashAutomata performs the same or better than CrashGraph for all 

buckets when τ= 0.90 (Figure 10). By increasing the threshold to 

τ=0.95, CrashGraph performs slightly better than CrashAutomata for 

buckets 2, 7, and 8. 

 

Fig. 11. CrashGraph vs. CrashAutomata F-measure for each 

bucket with τ= 0.95. 

   

We examined the average precision, recall, and F-measure of both 

approach with τ= 0.95 (we used this because CrashGraph performs well 

using this threshold). The result is shown in Figure 12. As we can see, 

both approaches have high accuracy (100%), but the recall of 

CrashAutomata is 4% in average higher than CrashGraph. We attribute 

this to the generalization ability of CrashAutomata. 

Furthermore, we studied the number of false negatives of both 

approaches to pinpoint the buckets that caused the low recall. It should 

be noted that false negatives include two groups of stack traces. The 

first type is stack traces that CrashAutomata assigns wrongly to other 

buckets (referred to in Figure 13 as Misclassified). The second type 

consists of stack traces that are labelled as Unspecified, i.e., they were 

not classified in any bucket. Figure 13 (and Table 4) compares the 

percentage of both types in both CrashAutomata and CrashGraph. 

The results show that in almost all buckets, CrashAutomata 

performs better than CrashGraph. In CrashGraph many stack 

traces are unspecified. The highest number of unspecified stack 

traces belongs to Bucket B5 in which CrashGraph has around 10% 

more stack traces than our approach. For Bucket B1, 

CrashAutomata shows 10% unspecified stack traces while in 

CrashGraph, this value reaches to 25%, which is a noticeable 

difference between the two methods. The other significant 

difference is related to Bucket B3, where the number of falsely 

assigned stack traces in CrashAutomata is around zero whereas 

this percentage in CrashGraph is 12%. This concludes that the 

generalization aspect of CrashAutomata reduces significantly the 

number of false negatives, which explains the better recall. 

 

Fig. 12. Comparison between CrashAutomata (=0.9, =0.95) 

and CrashGraph (=0.95). 

 

 

Fig. 13.  Comparing false negatives in CrashAutomata and 

CrashGraph  
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Table 4. Comparing false negatives in CrashAutomata and 

CrashGraph 

 
CrashAutomata CrashGraph 

Bucket Unspecified Misclassified Unspecified Misclassified 

B1 10% 0% 24% 0% 

B2 0% 0% 0% 0% 

B3 0% 0% 0% 12% 

B4 6% 0% 5% 1% 

B5 22% 0% 29% 1% 

B6 2% 0% 4% 0% 

B7 9% 0% 9% 0% 

B8 3% 0% 1% 0% 

B9 5% 0% 5% 0% 

4.4 Discussion 
 

The case study shows promising results. CrashAutomata was able to 

achieve 100% precision and between 86% and 100% recall. We showed 

that it has a better recall than CrashGraph, which does not support any 

generalization of the trained model.  In what follows, we discuss two 

aspects of CrashAutomata that may need further research. 

 

Generalization of the automata: The goal of CrashAutomata is to 

detect duplicate reports early in the crash handling process to save 

software developers time and effort. Unlike existing techniques, 

CrashAutomata is built with generalization in mind by modeling stack 

traces in a way that unseen traces can be easily classified. Since not 

every normal trace is seen and collected in the training data, a certain 

capacity of generalization is desirable to reduce false positives and false 

negatives in detection. The question is how much generalization the 

automata should have in order to obtain good detection accuracy. In this 

paper, we experimented with various values of  to find the most 

suitable one. We expect that  changes from one dataset to another. The 

danger with generalization is that it may lead to automata that are too 

loose, which may affect the true positives (true duplicates may end up 

classified as non-duplicates). It is therefore recommended to keep a 

tight representation of the automata to guarantee an adequate true 

positive rate.  

 

Unspecified stack traces: During the experiments, the traces that were 

misclassified by CrashAutomata were all labelled as ‘Unspecified’, i.e., 

they were not classified as belonging to any other buckets. Unspecified 

traces may be an indication that new buckets are needed. These traces 

were wrongly assigned to existing buckets (again because of the way 

the Mozilla crash reporter assigns crash reports to buckets, which is 

based on the top frame signature). This said, we can use the actual 

representation of buckets to design a new bucketing system that relies 

on the automata representation to classify incoming crashes. The new 

system starts with a reliable set of buckets (just like the ones we 

constructed from the Mozilla crash reporting system) and classifies 

incoming crash reports by measuring the similarity between the stack 

traces and the automata representation. Traces that show a high degree 

of dissimilarity with all existing buckets should lead to the creation of 

new buckets.  

 

 

5. THREATS TO VALIDITY 
The selection of the dataset is one of the common threats to 

validity for a classification approach in machine learning. It is 

possible that the crash reports of the selected system (Firefox) may 

be biased by sharing common properties that we are not aware of 

and therefore, invalidate our results. However, Firefox is used in 

many similar studies so we believe that it is a representative 

system for this research. This said, we acknowledge that we need 
to apply our approach to other datasets.   

Another threat to validity lies in the way we have selected the 

stack traces in this study. We selected the stack traces randomly to 

avoid any bias. One may argue that a better approach would be to 

select stack traces based on other criteria such as the size of the 

traces or the number of distinct functions they contain, etc. We 

believe that longer and more complex traces may perhaps have an 

impact on the running time of the approach, but we are not 

convinced that the accuracy of our approach depends on the 

complexity or the stack traces. Besides, having 200 traces in each 

bucket, as it is the case in our approach, should provide good 
coverage of the running system. 

In addition, we see a threat to validity that stems from the fact that 

we implemented CrashGraph based on the description of the 

approach in the paper [14]. Unfortunately, we were not able to 

have access to the implementation of the authors. CrashGraph is a 

very simple approach, which consists of building a dynamic graph 

from multiple traces. The algorithms and the implementation are 

straightforward. We tested our implementation on many examples 
to make sure it works properly.  

The use of the threshold, , may be a threat to validity since a 

different threshold may lead to different results. We mitigated this 

threat by testing with  = 90% and  = 95%. A lower threshold 

may result in less accuracy.  

The real link between crash reports and their bug in not defined in 

Mozilla and Bugzilla [6]. Therefore, we assumed that the selected 

crash reports were related to the corresponding bug. This could be 

a threat to the validity of the study. However, the results of the 

study (100% precision) seem to suggest that this is a valid 

assumption. A similar assumption was made by other researchers 

such as [8, 28].  

Finally, we see a threat to validity that stems from the fact that we 

only used crashes from the Mozilla web site, which is an open 

source repository. The results may not be generalizable to 

industrial systems. Unfortunately, we do not have access to 

industrial systems to experiment with and mitigate this threat.  

6. RELATED WORK 
Detecting duplicate crash reports and grouping them effectively 

improve the duplicate bug detection as well. To detect duplicates, 

methods use information inside crash reports such as stack traces 

or information from bug reports,e.g., comments and descriptions. 

Schröter et al. [22] proposed a study on the usage of stack traces 

by developers from the Eclipse project. They showed the 

usefulness of stack traces in fixing bugs by only examining key 

patterns in the stack traces. 

Jalbert et al. [9] introduced an approach to detect duplicate bug 

reports using a classifier. The classifier combines features of 

reports and uses textual similarity metrics and graph clustering 

algorithms. Similar to Jalbert et al. [9], Bartz et al. [13] trained a 

classifier on WER failure reports that predicts the similarity 

between two failure reports considering the call stack as the key 



 

 

feature. Another method by Sureka et al. [26] uses character n-gram-

based modes for duplicate bug detection. Instead of using words in 

feature selection, they use characters. The method searches for top-N 

bug reports and visualizes them with numerical scores to the triagers. 

Wang et al. [28], improved bug localization by detecting different crash 

types related to a same bug. If the occurrence of one bug causes the 

other bug to occur, this bug is referred to as correlated. The authors 

proposed an algorithm to improve the bug localization using crash 

correlation groups.  

The method proposed by Wang et al. [29] detects duplicate bug reports 

by combining both natural language information and execution 

information of existing bug reports in the Firefox bug reporting. They 

used natural language processing techniques together with stack trace 

similarity measurements to identify the duplicate bug reports from the 

non-duplicate ones. 

There are many other techniques [1, 2, 5, 11, 12, 16, 19] which use 

either the contextual parts of bug reports or stack traces from passing 

and failing execution traces. They usually dependent on 

instrumentation, predicates, and coverage reports of successful traces. 

These methods are not applicable to crash reports, since only failing 

crash reports are available. 

Dhaliwal et al. [8] applied two level grouping on Mozilla Firefox 

buckets. The first level is a grouping done according to the crash 

signature. The second level is to subgroup stack traces based on their 

similarities. Like our approach they generate a representative stack 

trace for each subgroup, however, the representative trace contains the 

frequency of each module in each frame. 

Although WER uses strong heuristics in generating its buckets, 

sometimes crashes caused by the same bug are put in different buckets. 

In addition WER may generate many buckets that contain only one or a 

few number of crash reports. To improve the accuracy of bucketing in 

WER,  Rebucket  [7] was proposed by Dang et al. for clustering crash 

reports based on call stack similarity. Rebucket measures the similarity 

between call stacks in WER and assigns crash reports to the buckets 

according to similarity values. 

The most similar work to our work as discussed before is CrashGraph 

[14]. Although CrashGraph could achieve better results than previous 

methods in WER, we showed that in Mozilla the results obtained by our 

approach outperform the results by CrashGraph. In comparison with 

WER, our CrashAutomata is a simpler and independent from 

developers’ investigations.  

7. CONCLUSION AND FUTURE WORK 
In this paper, we presented CrashAutomata, a technique for detecting 

duplicate crash (bug) reports using stack traces. Unlike other 

techniques, CrashAutomata is built with generalization in mind. Stack 

traces are first processed to extract varied-length n-grams, used to form 

automata. The extract algorithm relies on a variable  that controls the 

level of generalization of the automaton. The idea is to have a model 

that can be general enough to classify similar traces that were unseen 

during training. Once the automata are built, every time a new stack 

trace (crash report) arrives, instead of comparing crashes one by one to 

detect the duplicates, crashes could be assigned to a bucket with high 

accuracy of being duplicate of bugs related to that bucket. This 

approach can facilitate the triaging process and other crash handling 

tasks.  

We experimented with CrashAutomata on crash reports of the Firefox 

system (downloaded from the Mozilla crash reporting system). The F-

measure of our approach is in average 97%. We showed that 

CrashAutomata outperforms CrashGraph. It results in better recall than 

CrashGraph while keeping the same precision. We attributed this 

to the generalization power of CrashAutomata.  

In future, we will experiment with CrashAutomata on other 

systems. We will also investigate the variables that can lead to a 

generalizable model that has high true positive rate while reducing 

false positives and negatives. 
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